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ABSTRACT

A limitation of many gene expression analytic
approaches is that they do not incorporate compre-
hensive background knowledge about the genes
into the analysis. We present a computational
method that leverages the peer-reviewed literature
in the automatic analysis of gene expression data
sets. Including the literature in the analysis of gene
expression data offers an opportunity to incorporate
functional information about the genes when de®n-
ing expression clusters. We have created a method
that associates gene expression pro®les with
known biological functions. Our method has two
steps. First, we apply hierarchical clustering to the
given gene expression data set. Secondly, we use
text from abstracts about genes to (i) resolve hier-
archical cluster boundaries to optimize the func-
tional coherence of the clusters and (ii) recognize
those clusters that are most functionally coherent.
In the case where a gene has not been investigated
and therefore lacks primary literature, articles about
well-studied homologous genes are added as refer-
ences. We apply our method to two large gene
expression data sets with different properties. The
®rst contains measurements for a subset of well-
studied Saccharomyces cerevisiae genes with
multiple literature references, and the second con-
tains newly discovered genes in Drosophila melano-
gaster; many have no literature references at all. In
both cases, we are able to rapidly de®ne and identify
the biologically relevant gene expression pro®les
without manual intervention. In both cases, we
identi®ed novel clusters that were not noted by the
original investigators.

INTRODUCTION

High throughput gene expression analysis offers an oppor-
tunity to assay the induction of all genes in an organism.
Recent applications include pro®ling of human cancer speci-
mens (1±3), tracking gene expression during fruit ¯y develop-
ment (4,5) and the comprehensive measurement of yeast gene

expression in response to speci®c gene deletions (6,7). A
challenge in the ®eld has been to rapidly analyze and interpret
these comprehensive data sets with hundreds of measurements
of thousands of genes. It is critical to include comprehensive
background knowledge to appropriately analyze such data sets
and to fully understand them. We have argued elsewhere that
it is effective to use computational methods that incorporate
external information, such as functional information about the
genes, upstream nucleotide sequences and scienti®c literature,
to help drive the interpretation and organization of the
expression data (8).

Currently, clustering methods that use no background
knowledge remain the most popular computational approach
to apply to gene expression data. Clustering methods organize
complex expression data sets into tractable subgroups, or
clusters, of genes sharing similar expression patterns and thus
suggesting co-regulation and possibly common biological
function (9,10). Careful examination of the genes that cluster
together can lead to hypotheses about gene function and co-
regulation. However, the quality of clusters and their ability to
explain biological function can vary greatly.

Published scienti®c text contains a distilled version of all of
the most signi®cant biological discoveries and is a potent
source of functional information for analytical algorithms.
Text analysis of scienti®c literature has been applied success-
fully to many biological problems (11). Article abstracts about
genes can successfully predict gene function (12±15). Genes
can be clustered based on text in the scienti®c literature into
functionally related groups (16). Co-occurrence of gene names
in abstracts implies networks of related genes that are
potentially useful for gene expression analysis (17).

The most commonly used clustering method, hierarchical
clustering, offers considerable ambiguity in determining the
exact cluster boundaries. Hierarchical clustering organizes
expression data into a binary tree, in which the leaves are
genes and the interior nodes (or branch points) are candidate
clusters (Fig. 1) (10). The more similar the gene expression
patterns of two genes, the closer they are within the tree
structure. In many cases, genes with a shared biological
function also share expression features and therefore cluster
together in a node.

Once a tree has been devised, the challenge is to properly
de®ne the ®nal cluster boundaries by pruning the tree or, in
other words, to select nodes appropriately so that the genes are
divided into non-overlapping biologically meaningful clus-
ters. Typically, cluster boundaries are drawn so that the ®nal
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clusters contain functionally related genes. In practice,
investigators de®ne clusters by a manual scan of the genes
in each node and rely on their biological expertise to notice
shared functional properties of genes within a node, and then
select the nodes that are most coherent. The entire process is
very laborious, as it must be done one node at a time. Some
have proposed automatically selecting nodes and de®ning
boundaries based on statistical properties of the gene expres-
sion pro®les within them; however, the same statistical criteria
may not be generally applicable to identify all relevant
biological functions (18).

We previously have described and evaluated a computa-
tional method, neighbor divergence per gene (NDPG), which
uses scienti®c text to compute an information theoretical score
indicating how functionally coherent a set of genes is (19±21).
Thus, groups of genes with shared function receive high
scores. The method requires a corpus of documents and an
index connecting the documents to genes. Here we investigate
the application of the literature-based NDPG approach at
resolving gene expression cluster boundaries. We use scien-
ti®c literature to de®ne cluster boundaries by selecting a
disjoint set of nodes that correspond to biological functions.
Our method selects nodes so that the total weighted average of
NDPG cluster scores is maximal. Since selected nodes with
the highest scores are likely to constitute functionally relevant
clusters, the NDPG scores can be used to prioritize clusters
for subsequent detailed manual analysis and experimental
follow-up.

To test our method, we applied our pruning method to the
Saccharomyces cerevisiae (yeast) gene expression data set
based on measurements of 2467 genes over 79 experimental

conditions published by Eisen and colleagues (10). This data
set contains measurements of mostly well-studied genes
whose functions have been elucidated and described in the
literature. If our method is successful, the expression
clusters de®ned by our method should correspond to well-
de®ned functional groups of genes. Fortunately, a carefully
constructed catalog of yeast gene functions, gene ontology
(GO), is available for use as a gold standard for comparison
(22).

In a more challenging test, we applied this strategy to
analyzing a Drosophila melanogaster (¯y) development series
containing expression measurements for 3987 genes, most of
which are poorly characterized (4). This data set is more
challenging since only 1681 of the genes have any primary
literature. To effectively use our literature-based method with
a data set with a paucity of literature, we can use sequence
similarity searches to identify homologous genes for each
gene in the study, and associate references from the
homologous gene to the study gene. Such references aug-
mented the number of genes with references while providing
clues about potential gene functions.

In both cases, we are able to successfully de®ne and identify
the key reported functional groups of genes guided only by the
scienti®c literature. In addition, we also ®nd novel clusters
not reported in the original publications. Our results are
comparable with those produced manually by the original
investigators and required only about an hour of
computation.

MATERIALS AND METHODS

De®ning hierarchical cluster boundaries

Application of hierarchical clustering on K genes yields K ± 1
internal nodes containing at least two genes, and K leaf nodes
containing a single gene. The root node contains all K genes.
The goal of the algorithm presented here is `prune the tree', or
rather to select a subset of nodes, S, such that each gene is
contained in a single selected node (Fig. 1). The objective of
our pruning strategy is to maximize the functional relatedness
of the genes in each selected node based on the scienti®c
literature. To this end, we select nodes so that the weighted
average of the literature-based NDPG functional coherence
score is maximized. This method also applies if an alternative
functional coherence metric is used instead.

The NDPG weighted average of a disjoint set of nodes S, is
de®ned as:

FS � 1

K

X
i2 S

ni � fi 1

where fi is the NDPG score of the node i, and K is the total
number of genes. The average is weighted by the number of
genes in the node i, ni. Our algorithm selects disjoint nodes S
so that equation 1 is maximized. The key insight to the
algorithm is that if a node is in the optimal set, then the NDPG
score of the node must exceed the weighted average NDPG
score of any disjoint set of its descendants.

Our algorithm has three states that a node can be in:
unvisited, visited and selected. After running the algorithm,

Figure 1. Hierarchical clustering and cluster boundary de®nition. A sche-
matic of hierarchically clustered expression data with subsequent cluster
boundary de®nition. On the right are gene expression data represented as a
colored grid. Each row in the grid represents the expression of a single gene
across multiple conditions; each column represents the expression of each
of the genes in a speci®c condition. Red squares indicate gene induction,
while green squares indicate repression. On the left is a tree generated by a
hierarchical clustering algorithm. The tree consists of nodes (dark boxes)
that organize the genes according to expression similarity. All of the genes
that descend from one node are the genes in the candidate cluster de®ned
by that node. In this schematic, we illustrate a pruning of the tree into four
disjoint biologically relevant gene clusters. Pruning the tree de®nes concrete
clusters and their boundaries. After clustering the data, one must identify
the biologically signi®cant candidate clusters. Typically, careful expert
examination of the genes in the clusters is required to identify the critical
clusters in which the genes share function and to draw cluster boundaries
that respect biological function. We assert that scienti®c literature can be
mined automatically instead to identify biologically consistent clusters, and
to draw cluster boundaries that respect biological function.
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the set of selected nodes constitutes the ®nal set S of clusters;
the remainder of the nodes will be in the visited state.

The algorithm is summarized in Table 1. Initially all
internal nodes are unvisited and the terminal leaves are
selected. The pruning algorithm proceeds iteratively, visiting
unvisited nodes whose descendants are in the visited or
selected state; the status of the node is changed to visited. If the
functional coherence score of this node equals or exceeds that
of the weighted average of its selected descendants, it is placed
in the selected state, and all of its selected descendant children
are de-selected and placed in the visited state. The process
repeats until all nodes up to the root node have been examined;
the nodes that are still selected de®ne the ®nal set of clusters
that maximize NDPG weighted average across the hierarch-
ical tree.

Literature reference indices

Reference indices connecting each of the PubMed abstracts to
the genes are required for NDPG calculation. For yeast, we
obtained the index from the Saccharomyces Genome Database
(SGD) (23).

The ¯y data set contained expression measurements for
4040 expressed sequence tags (ESTs); 4032 of these corres-
ponded to 3987 different known ¯y genes. The available
reference index from Flybase contained PubMed references
for only 1681 of the 3987 unique ¯y data set genes represented
in the data set (24). We augmented this reference index by
looking for well-documented genes in ¯y, mouse and yeast
that have the protein sequences most similar to that of the gene
protein product and then transferring its references. We were
able to associate 3962 ¯y data set genes with protein
sequences from SWISS-PROT or SPTREMBL. We then
identi®ed all of the genes in ¯y, yeast and mouse with ®ve or
more PubMed references assigned by Flybase, SGD or the
Mouse Genome Database (MGD); this constituted our set of
well-documented genes. We obtained protein sequences for all
of these genes from the same databases. Then, for each of
these 3962 ¯y data set gene protein sequences, BLAST was
used to ®nd the single most similar well-documented protein
sequence corresponding to a ¯y, yeast or mouse gene. The ¯y
gene was assigned references from the most similar gene if the
e-value score of the similarity was less than 1 3 10±6. We did
not transfer references if the e-value was larger than this
arbitrary threshold, as the similarity may have represented a
local or spurious similarity.

Hierarchical clustering

For all data sets, we used the gene expression analysis
software Cluster to create hierarchical clusterings (10). The
yeast gene expression data set was published initially by Eisen
and colleagues and consisted of 79 diverse conditions
compiled from eight separate experimental series (10).
Expression measurements were compiled on 2467 genes. To
create the clustered dendrogram of the data, we used average
linkage clustering with the centered correlation metric option
to calculating inter-gene distances. In inter-gene distance
calculations, conditions were differentially weighted accord-
ing to the scheme introduced in the original publication; each
condition was weighted with the square root of the number of
conditions in that series.

The ¯y gene expression data set consisted of 4040 ESTs
measured over 85 conditions, 75 of which were part of a wild-
type developmental time series, four that were segregated by
sex, and ®ve that involved mutations in speci®c genes. To
create the clustered dendrogram of the data, we used average
linkage clustering with the uncentered correlation metric
option to calculating inter-gene distances.

We de®ne the tightness of a cluster as the correlation
between the two nodes fused to constitute that cluster.

Scoring a cluster of genes for related function with
scienti®c literature

To score how related a set of genes contained in a cluster are
with the scienti®c literature automatically, we utilize the
NDPG method; the details and validation of this method and
its evaluation are provided elsewhere (19,20). Based on
scienti®c literature, the method assigns a positive information
theoretic score that is proportional to the number of genes in a
group that share a common function. Detection of coherence is
dif®cult in gene groups that are too small due to limited
statistical power. In addition, coherent groups of genes that are
too large are likely to share a function too broad to be of
general interest. Therefore, in this study, groups containing
fewer than six or more than 200 genes with at least one
reference are assigned a score of zero.

NDPG requires a reference index that connects genes to
articles as well as the text of the article abstracts. The abstracts
were obtained from the PubMed database; only title and
abstract ®elds were employed.

Given the text of the abstracts, NDPG identi®es for each
abstract the N most similar abstracts, or semantic neighbors,

Table 1. Algorithm to de®ne cluster boundaries

1 For each node i, determine ni and fi
2 Assign all nodes state unvisited
3 Assign leaf nodes state selected
4 While there exists unvisited nodes,
5 For each node i (i) in the unvisited state and (ii) with both children in state visited or selected
6 Assign node i state visited
7 If ni´fi >

P
j2 Sel�i�

ni´fi

8 Assign node i state selected.
9 Assign all nodes in Sel(i) state visited

10 Nodes in state selected de®ne cluster boundaries

The NDPG score of a node i is represented as fi; the number of nodes in the cluster is ni. The set of
descendants of a node i in the selected state is Sel(i).
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based on word use similarity between abstracts. Here we used
n = 19, but n = 199 generated similar results. NDPG quanti®es
the similarity between two documents with the cosine angle
between the two inverse document frequency weighted article
abstract word vectors.

Then given a group of genes and reference index, NDPG
scores each of the referring abstracts for overall relevance to
the given gene group by counting the number of its semantic
neighbors that also have references to group genes. For each
gene in the group, the scores of its articles are compared with
the expected distribution of scores if the group of genes was a
random one. The functional relevance of each gene to the
subgroup is scored as the KL-divergence between its article
scores and the random distribution. The NDPG score for the
group is the average divergence for all genes in the group.

GO annotations

For yeast, GO annotations were obtained from http://www.
geneontology.org to use as a gold standard. GO is a
hierarchical vocabulary of gene functional terms in which
more general parent terms have more speci®c children terms.
For each GO code, a functional group was de®ned that
contained (i) all genes with that code as an annotation and
(ii) all genes with a descendant of that code as an annotation.
We used the January 23, 2002 release of GO component
ontology, the January 24, 2002 releases of the GO process and
function ontologies, and the January 24, 2002 GO gene
associations for yeast. To assess the concordance or overlap of
a cluster with a functional group, we used the following
formula:

#�G \ C�
#�G [ C� 2

Where G is the GO functional group and C is the cluster of
genes produced after resolving boundaries. This is the
percentage of genes in either the cluster or the GO functional
group that are in both.

RESULTS AND DISCUSSION

Analysis of the yeast data set

The literature reference index obtained from SGD had
references available for 2394 of the 2467 genes (97%) in the
data set. There were a total of 40 351 references to 17 858
articles. Each gene had a median of eight article references,
but a mean of 16.9 references. The distribution of article
references per gene is skewed; a few articles have many
references. This data set had the advantage of containing genes
that had excellent coverage in the scienti®c literature.

Hierarchical clustering of the yeast gene expression data set
creates a total of 2466 internal nodes containing two or more
genes; the availability of the SGD literature reference index
and corpus of article abstracts allows NDPG evaluation of the
functional coherence of each node. Here we use overlap with
GO functional groups as an independent measure of functional
coherence. An overlap of 100% indicates that the GO
functional group and the node contain the same genes and
the node is functionally coherent, while 0% indicates that
there are no shared genes between the functional group and the

node. In Figure 2A, we show that the literature-based NDPG
score of a node predicts how well it corresponds to a GO
functional group (non-parametric Spearman-rank correlation
r = 0.81). Therefore, selecting nodes with large NDPG groups
will result in selecting nodes whose genes share a common
function.

De®ning cluster boundaries that respect biological function
by maximizing total NDPG weighted average selects 369 non-
overlapping nodes as the ®nal clusters. These nodes are
indicated as black circles in Figure 2A. Figure 2B, C and D
individually plot three of the selected nodes as black circles
that correspond to biological functions: threonine endo-
peptidase, heat shock and cytosolic ribsome, respectively.
The other points in these plots correspond to other nodes that
are either ancestors or descendants of the selected node; these
nodes contain a subset or superset of the genes in the selected
nodes. The selected nodes usually have greater concordance
with a GO functional group than almost all of the other nodes
in the same plot; these are nodes that might have been selected
instead.

We ranked the clusters by NDPG scores; in Figure 3 we list
the top 20 clusters. To evaluate whether the selected genes are
true functional groups of genes, we checked the degree to
which they corresponded to any of the functional groups
de®ned by GO. Listed alongside the clusters is the best
corresponding GO code and a graphical depiction of the
overlap between that GO code and the cluster. Nine of the 10
functional clusters noted in the original publication of the data
set are included in our list, along with other functional clusters
(10). These functions include threonine endopeptidase, ATP
synthesis-coupled proton response, ATP-dependent DNA
helicase, nucleosome, electron transport, glyceraldehyde
3-phosphate dehydrogenase, cytosolic ribosome, mitochon-
drial ribosome and tricarboxylic acid cycle (TCA). The other
depicted groups also contain functionally related genes, but
were not described in the original publication, such as
pheromone response, heat shock protein and nucleolus.

It should be noted that for many functional groups, the
percentage overlap underestimates the functional relatedness
of the gene group. For example, the eleventh listed cluster has
the highest overlap with the glyceraldehydes-3-phosphate
dehydrogenase (G3PD) GO code, but the non-G3PD genes in
the cluster are other closely related glycolysis genes.

Analysis of the ¯y data set

The initial literature reference index obtained from Flybase
contained primary references for 1681 of the 3987 genes
(42%) in the data set. There were a total of 30 622 references
to 11 070 articles. Each gene had a median of three article
references and a mean of 18.2 references.

In the augmented reference index, containing references
transferred from homologous genes, 2602 of the 3987 genes
(65%) had references. There were a total of 77 509 references
to 29 115 articles. Each gene had a median of eight article
references and a mean of 29.8 references.

De®ning cluster boundaries by maximizing NDPG
weighted average selects 525 non-overlapping nodes as the
®nal clusters. Many of the de®ned clusters correspond to well-
de®ned biological functions such as photoreceptor genes,
protein degradation, protein synthesis, muscle function, citric
acid cycle and proton transport (Table 2). Some of these
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clusters listed are graphically depicted in Figure 4; the others
are available in the Supplementary Material. Most of these
clusters corresponded exactly or closely to clusters described
in the original publication of the data (4). These are discussed
in detail, and validated with in situ hybridization and mutation
experiments in that publication.

One novel cluster not previously noted represents unchar-
acterized maternally expressed genes that localize primarily to
the nucleolus; this functional cluster was not identi®ed in the
original publication and has the highest NDPG score of the
selected nodes (Fig. 4A). The maternal expression of these
genes is apparent from the expression pro®le: transcripts are
seen in the female adult, but not the male adult, and in the
embryo. These genes probably constitute an interesting
biological module of developmentally regulated ¯y genes.
Only two genes in the cluster are well studied, each with ®ve
primary papers listed in FlyBase. It has already been
demonstrated that these two genes, the Fbgn0029196 (Nop5)
and FBgn0023184 (Nop60B) genes, are in fact maternally
expressed genes that localize to the nucleolus (25,26). The
FBgn0038964 (Nop56) gene has only a single primary
document that indicates that it is a nucleolar gene (27). The
Fbgn0029148 (NHP2) and Fbgn0039627 genes have no
primary papers but do have GO annotations. The
Fbgn0029148 gene has been assigned the nucleolus GO
code by FlyBase, citing a non-traceable author statement as

evidence; the Fbgn0039627 gene has been assigned the rRNA
modi®cation GO codes by FlyBase by sequence similarity.
Two genes, Fbgn0033485 (CG1381) and FBgn0039275
(CG33095), are uncharacterized genes without any primary
literature or GO annotations.

Proper resolution for approximately half of the labeled
functional clusters, including the nucleolar maternal cluster in
Figure 4A, required the use of the augmented reference index,
as the published primary literature on the ¯y genes was sparse.

Understanding uncharacterized genes

One of the primary goals of gene expression analysis is to
attribute functions to unidenti®ed genes and identify novel
functions based on gene co-expression. If a gene with
unknown function is in a functionally coherent cluster, it
probably shares the common function of the other genes in the
cluster. Experimental follow-up is necessary to con®rm the
putative gene function. In addition, detailed examination of
unstudied genes just outside the cluster may be fruitful since
they may also share the cluster function.

For example, Figure 4D appears to be a cluster of muscle
genes. Some of the genes, have not been speci®cally annotated
as muscle-expressed genes, but are likely candidates.
Glycogenin, Fbgn0034603, was recently con®rmed to be a
muscle-speci®c gene by in situ hybridization (4). In addition,
other putative muscle genes were con®rmed that were just

Figure 2. NDPG score correlates with cluster functional coherence. (A) After clustering the yeast gene expression data into 2466 nodes, we have plotted the
literature-based NDPG score of the 1150 nodes containing 6±200 genes on the x-axis and the highest percentage concordance with a GO functional group on
the y-axis. Black circles indicate the nodes selected by the computational method. (B) Similar to (A), except we have plotted the NDPG score and the highest
percentage concordance with a GO functional group for the clusters containing threonine endopeptidase genes. The cluster selected by the algorithm is the
black circle; other points represent nodes that are the ancestors and descendants of the selected node containing subsets or supersets of the genes in the
selected node. (C) Similar plot for nodes containing heat shock genes. (D) Similar plot for nodes containing cytoplasmic ribosome genes.
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outside this cluster. Similarly, the cluster depicted in Figure 4A
consists of genes that are maternally expressed that localize to
the nucleolus; it contains two completely uncharacterized
genes. The Fbgn0033485 (CG1381) and FBgn0039275
(CG33095) genes may share function with the other genes in
the cluster. Experimental follow-up looking for genetic
interactions or immunolocalization studies could con®rm the
function of these genes. In addition, the Fbgn0029148 and
Fbgn0039627 genes have GO annotations based on poor
evidence that already supports the possibility that they are
nucleolar maternal genes; experimental validation could
con®rm this possibility.

Assessing the functional coherence of groups of genes

When we evaluated NDPG, it was 96% sensitive in yeast and
82% sensitive in ¯y at discriminating between functional
groups of genes and random groups of genes at 99.9%
speci®city (20). We also found that one of the limitations of
this (and probably any) literature-based approach is that
certain biological functions have not been studied and reported
on in the literature in certain organisms. For example, cellular
and metabolic functions of many genes are better character-
ized in yeast than in ¯y or mouse. So, in many cases,
transferring references from well-studied homologous genes
from other model organisms as we have done here may be
necessary to obtain a complete analysis. Additionally, the

Figure 3. Top 20 yeast gene clusters in order of literature-based functional coherence. To check if these clusters correspond to groups of genes with shared
function, we correlate the clusters with yeast GO codes. On the left of the graphic, we list the literature-based NDPG score of each cluster and the number of
genes within the cluster. On the right, we list the GO code that best corresponds to the cluster. The length of the green bar in the graphic is proportional to
the number of genes in the cluster that are also assigned the GO function listed on the right. The length of the yellow bar is proportional to the number of
genes in the cluster not assigned the corresponding function by GO. The length of the blue bar is proportional to the number of additional genes assigned the
GO function that are not in the cluster. The longer the green bar, the better the cluster represents that speci®c function.

Table 2. Fly functional clusters

NDPG score Tightness n Function

22.5 0.93 7 Nucleolar maternally expressed
20.5 0.84 7 Vacuolar ATPase
8.3 0.79 7 Photoreceptor
6.7 0.71 41 Proteasome
6.6 0.71 8 Vacuolar ATPase
6.5 0.84 7 T-ring complex
6.0 0.81 10 TCA cycle
5.2 0.84 7 Cell adhesion
5.0 0.81 34 Ribosomal
4.8 0.74 7 Vesicle transportÐcoatomer
4.8 0.58 12
4.1 0.92 9 Muscle
4.1 0.70 13
3.9 0.72 7
3.7 0.89 22 Strict maternal
3.7 0.85 7 Photoreceptor
2.9 0.82 10
2.7 0.29 12
2.7 0.33 12
2.7 0.68 12

Functional clusters obtained after using NDPG to de®ne boundaries on a
hierarchical clustering of a ¯y development time series are listed here. Here
we list the top 20 clusters sorted by NDPG score. Listed also are the
number of genes in the cluster, the tightness of the cluster and whether or
not a similar or identical cluster was reported in the original publication of
the data. We listed an appropriate cluster function if it was immediately
apparent. Clusters are depicted in greater detail in the Supplementary
Material.
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score of a group is also related to how extensively the function
that it embodies is described in the literature.

Since abstracts have limited information, we believe there is
the potential to further increase performance by including
whole text of scienti®c articles and citation information.

Once the functionally related groups of genes are parti-
tioned based on our method, the next challenge is to discern
the common function represented by the group. Some groups
have proposed algorithms that can identify keywords for
groups of genes automatically that describe the function of the
group from text about the genes (28±30). Since NDPG scores
articles for relevance to the unifying biological function of the
group, we could enhance the performance of these approaches
by only including the most relevant articles.

The cluster boundary de®nition method proposed here
would be effective with an alternative scoring of functional
coherence that relied on scienti®c text or other knowledge-
based resources, such as gene ontology annotations. The
preferred criteria for a scoring system are (i) that the groups of
genes containing all genes with a shared function should

receive a higher score than random groups; (ii) combination of
two unrelated coherent groups should result in a lower score;
(iii) the score should increase steadily as a greater proportion
of genes in a group share function; and (iv) large coherent
groups should not score consistently higher or lower than
small functionally coherent groups.

Hierarchical clustering

Hierarchical clustering can be implemented in multiple
different ways (such as average linkage, centered linkage,
etc.) with one of a wide array of metrics (such as euclidean,
manhattan, jack-knife, etc.). In this study, we did not wish to
explicitly evaluate the choice of hierarchical clustering
implementation. We attempted to use methodology that was
as consistent as possible with the original publication so that
our results were comparable. However, maximization of
NDPG weighted average to select cluster boundaries could be
used in evaluating the output of different implementations of
hierarchical clustering and selection of the best one. The better
implementation will produce hierarchical trees that are more

Figure 4. Four examples of gene expression clusters from a ¯y development time course whose boundaries were de®ned with scienti®c literature. The gene
expression conditions are annotated at the top with E (embryo), L (larvae), P (pupae), M (adult male) and F (adult female). On the right, genes are listed by
FlyBase ID and name if available. On the far right, we have listed the appropriate GO code annotation for that gene if available. (A) Nucleolar maternal
genes. This cluster had not been identi®ed in the original publication. (B) Photoreceptor genes. We found two separate photoreceptor clusters, as did the
authors of the original publication. (C) Citric acid cycle genes. Most of these genes have not yet been studied. Using sequence homology to obtain additional
references made it feasible to identify this cluster of genes. A related but broader cluster was identi®ed in the original publication. (D) Muscle-speci®c genes.
A similar but broader cluster was identi®ed in the original publication containing more unknown genes.

Nucleic Acids Research, 2003, Vol. 31, No. 15 4559



easily segmented into clusters that respect biological
function. Such hierarchical trees will have higher total
maximized NDPG weighted average than trees produced by
an implementation less effective for the speci®c data set.

Objective cluster boundary de®nition

The most labor-intensive component of gene expression array
projects is the identi®cation of biologically relevant clusters
and optimization of cluster boundaries. This task is dif®cult
and often arbitrary, requiring laborious steps of gathering
information on genes within a cluster, identifying a common
biological process, and drawing a boundary line somewhere
around a cluster. This method not only automates the
identi®cation of biologically relevant data using the same
source literature that researchers would access to make the
same comparisons by hand, but it also creates an optimized
version of each cluster, at the level of highest enrichment for a
given biological function. Not only has this method almost
completely recapitulated the biologically relevant associations
found through months of hands-on, one-gene-at-a-time work
by teams of scientists working in both yeast and ¯y, but it has
also been able to identify new clusters that were missed by the
primary researchers. Furthermore, this method was able to
accomplish this task in the order of hours. This approach will
give researchers the capability to simplify signi®cantly the
amount of data analysis required to begin to make meaning
from the mountain of experimental data.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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