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ABSTRACT
Motivation: With the advent of microarray chip technol-
ogy, large data sets are emerging containing the simulta-
neous expression levels of thousands of genes at various
time points during a biological process. Biologists are at-
tempting to group genes based on the temporal pattern of
their expression levels. While the use of hierarchical clus-
tering (UPGMA) with correlation ‘distance’ has been the
most common in the microarray studies, there are many
more choices of clustering algorithms in pattern recogni-
tion and statistics literature. At the moment there do not
seem to be any clear-cut guidelines regarding the choice
of a clustering algorithm to be used for grouping genes
based on their expression profiles.
Results: In this paper, we consider six clustering
algorithms (of various flavors!) and evaluate their perfor-
mances on a well-known publicly available microarray
data set on sporulation of budding yeast and on two
simulated data sets. Among other things, we formulate
three reasonable validation strategies that can be used
with any clustering algorithm when temporal observations
or replications are present. We evaluate each of these six
clustering methods with these validation measures. While
the ‘best’ method is dependent on the exact validation
strategy and the number of clusters to be used, overall
Diana appears to be a solid performer. Interestingly, the
performance of correlation-based hierarchical clustering
and model-based clustering (another method that has
been advocated by a number of researchers) appear to
be on opposite extremes, depending on what validation
measure one employs. Next it is shown that the group
means produced by Diana are the closest and those
produced by UPGMA are the farthest from a model profile
based on a set of hand-picked genes.
Availability: S+ codes for the partial least squares based
clustering are available from the authors upon request. All

∗To whom correspondence should be addressed.

other clustering methods considered have S+ implemen-
tation in the library MASS. S+ codes for calculating the
validation measures are available from the authors upon
request. The sporulation data set is publicly available at
http://cmgm.stanford.edu/pbrown/sporulation.
Supplementary information: http://www.mathstat.gsu.
edu/∼matsnd/clustering/supp.htm
Contact: sdatta@mathstat.gsu.edu

INTRODUCTION
Motivation
One of the central goals in microarray or expression
data analysis is to identify the changing and unchanging
levels of gene expression and to correlate these changes
to identify sets of genes with similar profiles. In some
cases (DeRisi et al., 1997; Chu et al., 1998; Cho et
al., 1998), a mainly visual analysis has been successful
in grouping genes into functionally relevant classes;
however, this method is labor intensive, very subjective
and may not be suitable in more complicated and large
scale studies. In subsequent studies, simple sorting of
expression ratios and some form of ‘correlation distance’
were used to identify genes (Spellman et al., 1998; Roth
et al., 1998; Eisen et al., 1998). Since the influential
paper by Eisen et al. and the availability of corresponding
free software, the gold standard in microarray studies
has been to use hierarchical clustering (UPGMA) with
correlation ‘distance’ (or dissimilarity). Waddell and
Kishino (2000) recommended using partial correlations
instead of correlations as measures of closeness. Here,
we introduce a new dissimilarity based on partial least
squares modeling (Datta, 2001). Model-based clustering
is another technique that has recently been used for
grouping microarray data (McLachlan et al., 2002). This
technique is based on modeling the expression profiles by
mixtures of multivariate normal distributions.

The literature on statistical clustering is fairly vast,
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offering many other choices of clustering methods,
notably partition methods such as K-means, divisive
clustering method Diana and fuzzy logic based method
Fanny. At the moment, there do not seem to exist any
objective guidelines regarding the choice of a clustering
algorithm to be used for grouping genes based on their
expression profiles. In this paper, we have selected six
clustering algorithms of various types and evaluated
their performance on a well known publicly available
microarray data set on sporulation of budding yeast, as
well as on two simulated data sets which are introduced
in the next section. Of course, one can extend and modify
this list of competing clustering algorithms to include
his/her favorite algorithm. At least five of these algorithms
are chosen to represent different classes of methods. Thus,
well known algorithms such as Pam and Clara, both of
which fall under partition methods, are not included in
favor of including the K-means algorithm. Also, another
noteworthy, but more complex algorithm called SOM
(self-organizing maps, Kohonen, 1997), whose imple-
mentation requires careful selection of various tuning
parameters is not included here.

Related work
Kerr and Churchill (2001) used a linear model (ANOVA)
and residual based resampling to access the reliability
of clustering algorithms. Chen et al. (2002) compared
the performances of a number of clustering algorithms
by physical characteristics of the resulting clusters such
as the homogeneity and separation. Yeung et al. (2001)
introduces the concept of Figure of Merit (FOM) in
selecting between competing clustering algorithms. FOM
resembles the Error sum of squares (ESS) criterion of
model selection.

Outline and summary
The Algorithm and implementation section introduces
three different validation criteria, following a novel ap-
proach, each of which can be used for an objective basis
of checking the consistency of the groupings produced by
a clustering algorithm. These criteria can be used for any
microarray data set that includes temporal observations.
We assume that the biologists have a rough prior assess-
ment of the number of clusters to be used. We compare the
stability or consistency of the results produced by deleting
one set of temporal observations at a time.

Often in microarray experiments, the biologists have
prior ideas concerning the various groups of interesting
expression patterns to be expected and a number of
representative genes from each group. We compare, for
each clustering method, the average expression patterns of
all genes in each group with the model profiles. The paper
ends with a discussion of our findings.

SYSTEMS AND METHODS
Sporulation data
We consider microarray data on the transcriptional
program of sporulation in budding yeast collected and
analyzed by Chu et al. (1998). The data set is publicly
available at http://cmgm.stanford.edu/pbrown/sporulation.
They used DNA microarrays containing 97% of the known
and predicted genes involved, 6118 in total. The mRNA
levels were measured at seven time points during the
sporulation process. Further details can be found in the
article by Chu et al.

The ratio of each gene’s mRNA level (expression) to
its mRNA level in vegetative cells just before transfer
to sporulation medium is measured, and the ratio data
are then log-transformed. 1143 genes whose expression
levels did not change ‘significantly’ during the sporulation
processes are deemed uninteresting and were dropped
from further analysis. Chu et al. (1998) determined
significance by using a threshold level of 1.13 for the root
mean squares of the log2-transformed ratios. Overall, 513
genes were (positively) expressed during the process†.

Simulated data
We consider two simulated data sets built around the same
nine distinct temporal patterns over ten time points as
used by Quackenbush (2001). The data values are then
generated by adding independent random noises at each
of these mean expression-ratio values. Overall 10 × 9 ×
50 = 4500 random variates were generated to create
the expression profiles (i.e. log2-transformed ratios) of 50
genes around each of the nine temporal patterns (for a total
sample size of 450 genes). In the first simulated data set,
normal variates with mean zero and standard deviation
0.2 were used; in the second data set half of them were
normal with zero mean and standard deviation 0.4, and
the remaining half were generated from an exponential
distribution with location −0.2 and scale 0.2.

Clustering methods
The following clustering techniques were considered. S+
implementation of all these techniques (with the exception
of partial least squares) are available in the library MASS
and are described in Venables and Ripley (1998).

(i) Hierarchical clustering with correlation: This algo-
rithm produces a hierarchy of clusters rather than a set
number of clusters fixed in advance. At the base or ini-
tial level, each observation forms its own cluster. At each
subsequent level, the two ‘nearest’ clusters are combined
to form one bigger cluster. We use method = ‘average’
which means the ‘distance’ between clusters is the average

† A gene is considered to be expressed during the process if
∑

log R > 0,
where the sum is over all time points.
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of the ‘distances’ between the points in one cluster and the
points in the other cluster. This is perhaps the most com-
mon and the simplest tree method and is popularly known
as UPGMA (Unweighted Pair Group Method with Arith-
metic Mean). The ‘distance’ between genes x and y were
taken to be d(x, y) = 1−| corr(x, y)|, where corr(x, y) is
the statistical correlation between the expression profiles
of x and y.

(ii) Clustering by K-means: Under this scheme, one
needs to fix the number of clusters in advance. Usually
another clustering algorithm, such as the one above, is
run to determine the initial cluster centers to be used in
the K-means algorithm. The algorithm then assigns the
observations into various clusters in order to minimize
the total within-class sum of squares. A complex iterative
numerical algorithm (see Hartigan and Wong, 1979) is
used to find this minimum (or rather a local minimum).

(iii) Diana: This is a divisive clustering method where
initially all the observations are clustered together. Subse-
quently, the bigger groups are broken down into smaller
groups so that genes with larger distance or dissimilarity
are placed in different clusters. Suppose at a given stage a
big cluster C with cardinality n(C) needs to be split into
two. For each member x1 ∈ C , one computes the ‘dis-
tance’ from the rest of C by

�1,x1 = (n(C) − 1)−1
∑

y∈C\{x1}
d(x1, y)

and identifies the gene x∗
1 , say, for which �1,x1 is

the largest. Continue the procedure to identify genes
x∗

1 , . . . , x∗
k+1 iteratively till �k+1, x∗

k+1 < 0 where

�k+1,xk+1 = (n(C) − k − 1)−1
∑

y∈C\{x∗
1 ,...,x∗

k }
d(xk+1, y)

−k−1
k∑

i=1

d(x∗
i , xk+1),

and x∗
k+1 maximizes �k+1,xk+1 . Then the split will be

{x∗
1 , . . . , x∗

k } and C\{x∗
1 , . . . , x∗

k }. See Kaufman and
Rousseeuw (1990) for further details and examples. We
used the standard Euclidean distance for d(x, y).

(iv) Fanny: This method uses fuzzy logic and produces
a probability vector for each observation. A hard cluster
is determined by assigning an observation to a group
which has the highest probability. Like distance-based
methods, one has a choice of using a general dissimilarity
measure. We have used the L1 distance (also known
as Manhattan distance) which is more robust than the
Euclidean distance.

Letting K denote the total number of desired clusters,
Fanny computes the probability vectors (called member-

ship coefficients; ux1, . . . , ux K ) for all genes x that mini-
mize the objective function

K∑
k=1

∑
x,y u2

xku2
ykd(x, y)∑

x u2
xk

.

Hard clusters are then produced, if needed, by assigning
genes to the group with the highest probability. See Kauf-
man and Rousseeuw (1990) for further details. Typically,
relatively fewer hard clusters are produced by this method.

(v) Model-based clustering: The idea behind model
based clustering is to regard the data as coming from
a mixture distribution. Suppose for the i th observation
γi gives the true, but unknown, group level for that
observation. Then letting f j (.; θ j ) denote the density
function for a typical observation from group j , where θ j
denotes an unknown parameter, the resulting likelihood of
genes with expression profiles x1, . . . , xn is given by

L(γ, θ) =
n∏

i=1

fγi (xi , θγi ).

The unknown group levels γ are obtained by method of
maximum likelihood that maximizes L jointly in γ and θ .
We use the S+ procedure mclust with the default option
that allows for multivariate normals with different centers
and orientations, but of constant pre-specified shape (the
ratio of the axes of the ellipsoid). See Banfield and Raftery
(1993) for further details.

(vi) Hierarchical clustering with partial least squares:
The usefulness of partial least squares in identifying gene
relationships through their expression profiles has recently
been demonstrated by Datta (2001). For a more detailed
account on partial least squares the reader may consult
Stone and Brooks (1990) and Brown (1993).

In the case of microarray data, xi will be the vector
of expression ratios (log-transformed, and normalized) for
the i th gene (or ORF). Let us suppose, we fit a partial least
squared model of x1 on x2, . . . , xM , of the form

xi =
p∑

l=1

β̂il t
(l)
i ,

where p will typically be a small integer (much smaller
than M ; we used p = 2), t (l)i = ∑M

k �=i c(l)
ik xk , {c(l)

ik } are
defined in a special way through the x . Then for any gene
pair (i, j), i �= j , the symmetrized coefficient

si j = [
β̂i1c(1)

i j + β̂i2c(2)
i j + · · · + β̂i pc(p)

i j + β̂ j1c(1)
j i

+β̂ j2c(2)
j i + · · · + β̂ j i c

(p)
j i

]/[
2
]
.

represents the closeness or prediction power one gene
has towards the expression level of the other gene. s was
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further normalized by the maximum value of observed s,
and sxx was taken to be 1 for all x . We use hierarchical
clustering with method = ‘average’ and this similarity
measure s.

ALGORITHM AND IMPLEMENTATION
First we implement each of these clustering techniques
using S+ for the sporulation data. Chu et al. (1998) ad-
vocated grouping the expressed genes into seven tempo-
ral classes on biological grounds. Following Chu et al.
(1998), the number of clusters was set to seven in each
case. As expected, there are some differences in the re-
sults of the various algorithms. Overall, K-means and Di-
ana seem to be most effective in achieving good separa-
tion and almost distinct class boundaries. One potential
problem with Fanny is that it typically produces only few
distinct hard clusters. For this data set, only three clusters
were produced, even though seven were desired. Further
details, including pictures, can be obtained from the sup-
plementary website.

Validation
Even before the recent surge of microarray data there have
been a number of clustering techniques in the existing
statistical/pattern-recognition literature. With the growing
availability of more and more microarray data sets, newer
algorithms are being proposed. This may pose a potential
problem for a practitioner, since, at the moment, there
do not seem to be any suitable guidelines regarding the
choice of a clustering algorithm to be used for grouping
genes based on their expression profiles. The problem is
particularly difficult, since no single algorithm is expected
to be the winner in every case.

Let K be the number of classes we set a clustering
algorithm to produce. As in the case of the sporulation
data, often times the biologists have some prior ideas of
what a good choice of K is, at least approximately. We
assume this to be the case for our strategy. However,
we suggest that the performance of an algorithm be
investigated over an entire range of nearby or usable K
values.

The idea behind the validation approach is that an
algorithm should be rewarded for consistency. We are
envisioning a setup where expression (ratio) data are
collected over all the genes under study at various time
points say T1, T2, . . . , Tl . In the case of the sporulation
data, K was around 7 (Chu et al. used K = 7) and
l = 7. Thus our data values are points in the l dimensional
Euclidean space �l . For each i = 1, 2, . . . , l, repeat the
clustering algorithms for each of the l data set in �l−1

obtained by deleting the observations at time Ti . For each
gene 1 � g � M let Cg,i denote the cluster containing
gene g in the clustering based on the data set with time Ti
observations deleted. Let Cg,0 be the cluster in the original

data containing gene g. Each of the following validation
measures seems to be a reasonable choice. For a good
clustering algorithm, we would expect these values to be
small.

(I) The average proportion of non-overlap measure

V1(K ) = 1

Ml

M∑
g=1

l∑
i=1

(
1 − n(Cg,i ∩ Cg,0)

n(Cg,0)

)
.

This measure computes the (average) proportion of genes
that are not put in the same cluster by the clustering
method under consideration on the basis of the full data
and the data obtained by deleting the expression levels at
one time point at a time.

(II) The average distance between means measure

V2(K ) = 1

Ml

M∑
g=1

l∑
i=1

d
(
xCg,i , xCg,0

)
,

where xCg,0 denotes the average expression profile for
genes across cluster Cg,0 and xCg,i denotes the average
expression profile for genes across cluster Cg,i . This
measure computes the (average) distance between the
mean expression ratios (log transformed) of all genes that
are put in the same cluster by the clustering method under
consideration on the basis of the full data and the data
obtained by deleting the expression levels at one time
point at a time.

(III) The average distance measure

V3(K ) = 1

Ml

M∑
g=1

l∑
i=1

1

n(Cg,0)n(Cg,i )

×
∑

g∈Cg,0,g′∈Cg,i

d(xg, xg′),

where d(xg, xg′) is a distance (e.g. Euclidean, Manhattan,
etc.) between the expression profiles of genes g and g′.
This measure computes the average distance between the
expression levels of all genes that are put in the same
cluster by the clustering method under consideration on
the basis of the full data and the data obtained by deleting
the expression levels at one time point at a time.

Results for sporulation data For each of the six cluster-
ing algorithms under consideration, we compute the three
validation measures over a range of K values around seven
(4–12). The results are displayed in Figures 1, 2 and 3, re-
spectively. In each plot, a profile closer to the horizontal
axis indicates better performance over the usable range of
K values.

The Average Proportion of Non-overlap Measure and
the Average Distance Between Means Measure produce
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Fig. 1. The average proportion of non-overlap measure for various
clustering algorithms applied to the sporulation data.
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Fig. 2. The average distance between means measure for various
clustering algorithms applied to the sporulation data.

similar results. A somewhat surprising finding is that the
performance of model-based clustering appears to be the
worst as judged by these measures. The standard hierar-
chical clustering (with absolute correlation dissimilarity
and method = average) and Fanny appear to be the best
as judged by these measures. As mentioned earlier, Fanny
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Fig. 3. The average distance measure for various clustering algo-
rithms applied to the sporulation data.

has its own problem in the sense that the true number of
hard clusters it would produce may be smaller than K . On
the other hand, according to the Average Distance Mea-
sure, performance of hierarchical clustering seems to be
the worst. Overall, Diana appears to be a solid and robust
performer under all three validation measures.

Results for simulated data For the sake of brevity
we would only discuss the performance of the first
validation measure. Hierarchical clustering (UPGMA)
with both correlation-based and partial least squares-
based similarity measures perform poorly. There is a
simple reason why correlation-based and partial least
squares-based similarity measures are not appropriate
here. These measures are invariant under location and
scale transformations, and, thus, they cannot distinguish
between the patterns that are related by location and/or
scale changes. On the other hand, hierarchical clustering
with Euclidean distance is able to distinguish between
the target patterns (results not shown). K-means, Diana,
Fanny and Model based all performed quite well with
Model based and Diana being slightly better than K-
means and Fanny. Interestingly, all three have a local
minima at nine for the first data set. The plots are available
on the supplementary website.

Comparisons with model profiles
Sporulation data Chu et al. (1998) described a small
training set of hand-picked genes from each of the seven
temporal classes that were expressed during sporulation.
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Table 1. Total distance (dist) from the model profile

Hierarchical K-Means Diana Model based Partial least squares

17.58 12.48 10.47 11.80 14.55

We use essentially‡ the same training set to construct our
model temporal profile, which can serve as a benchmark
for the end result produced by seven clusters using each of
these clustering methods.

For each class, the average of the log-expression ratio of
all the genes in that class are plotted over the seven time
points during sporulation. The resulting curves are termed
model temporal profiles and are given in the last plot in
Figure 4. Next, we run the five clustering algorithms (all
but Fanny§) for each set to generate K = 7 classes. For
each algorithm, the average of the log-expression ratio
of all the genes in each of the seven classes produced
by that algorithm are plotted over the seven time points
during sporulation. All these plots together with the model
profiles constitute Figure 4. An overall visual comparison
of these plots with the model profiles show that the Diana
plots are perhaps the closest to the model profiles.

An objective way to measure the closeness of any of
these plots to the model profiles will be to compute the
following distance measure

dist = min π

K∑
i=1

d(xm
i , xπ(i)),

where the minimum is taken over all permutation π of
the integers {1, . . . , K }, xm

i is the value of the (average)
model profile for the i th cluster, and d is the Euclidean (or
any other) distance between points in �K . The reason for
using various permutations π is to find the ‘best’ match
between the two sets of clusters. These values for the five
methods are given in Table 1.

This confirms our visual impression that Diana group
means come closest to the model profile based on the
hand-picked genes. Hierarchical seems to be the farthest
from the model profile.

Simulated data We set the number of clusters to nine
in each of the six algorithms and plotted the average
temporal profiles in each group (supplementary website).
A comparison with the target model profile shows that
all four of K-means, Diana, Fanny and Model based
performed extremely well for data set 1, but, for data
set 2, K-means was unable to pick at least one pattern.

‡ KNR4 was dropped from the list since it was not significantly expressed.
Also the gene PDS1 appears to have been incorrectly listed as Early-Mid.
§ Fanny was dropped because it was unable to produce seven hard clusters.

Hierarchical clustering with correlation or partial least
squares based similarity were unable to reproduce the
target patterns (for the same reasons as explained before).

Further analysis of sporulation data using Diana
We have seen that Diana has been a consistent performer,
as evidenced by the analysis done so far. We provide
a brief re-analysis of the sporulation data using this
particular clustering algorithm. Of course, the groups
represented by a clustering algorithm are unlikely to be
linked only through their time of first induction (which
was used to define the biological groups in (Chu et al.,
1998). However, the labels seem to be identifiable from
the group average profiles which match the model profiles
surprisingly well (Figure 4).

The number of genes clustered into the metabolic,
early 1, early 2, early–middle, middle, mid-late and late
induction groups were 29, 34, 100, 232, 73, 38 and
7, respectively. Overall, fewer genes were declared to
be metabolic, early 1 and mid-late. Many more genes
were identified as early II and, especially, early-mid than
previously reported (Chu et al., 1998). For example, the
metabolic group (cluster 1) contained known metabolic
genes such as ASC1 and PYC1, whereas genes such as
SIP4 and CAT2 that were placed in the metabolic group
in the model profile were actually grouped in cluster 5
by Diana. A closer inspection shows that, though the
later two genes did induce rapidly, their expression is
less transient than what was typical of a metabolic gene.
Also Diana found seven genes that were induced late.
Six of these genes had the typical expression profile of a
late gene. The other gene (ORF=YJL015C) clustered into
this group by Diana was first induced seven hours after
transfer to the sporulation medium. At time nine hours its
expression diminished, and it was re-expressed at the last
time point (time 11.5) samples were taken.

DISCUSSION
Cluster analysis programs are routinely run as a first step
of data summary and grouping genes in a microarray data
analysis. As we show here with the sporulation data on
budding yeast of Chu et al. (1998), the end result is very
much dependent on what clustering method is employed.
This is particularly disturbing since, at the moment, there
do not seem to exist clear guidelines in this regard.
While the standard hierarchical clustering (UPGMA) with
correlation (or absolute correlation) similarity seems to
be the most commonly employed clustering technique in
microarray data analysis, its optimality or superiority over
other methods have not been demonstrated in microarray
literature.

This paper offers some guidelines in the choice of
a clustering technique to be used in connection with a
particular microarray data set. The first and the obvious
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Fig. 4. Average temporal profiles of seven groups obtained using various clustering algorithms and the hand-picked genes for the sporulation
data.

one is a visual plot in the space of the first two prin-
cipal components to see which method offers the most
separation among the various groups. A more objective
method that checks for consistency is a novel valida-
tion technique that is demonstrated with the temporal
observations in the sporulation data and in two sets of
simulated data. An adaptation of this method for data sets
with full replicates should not be difficult to formulate.
Three different validation measures, each of which has
some appeal, have been proposed with respect to this
validation scheme. The third method we advocate is to
compare the average group temporal profiles with the
model profiles constructed from a set of hand-picked
genes (such as a training set) whose group memberships
are relatively well understood. We propose a distance
that can be computed for each method, which, in turn,
can be used to order their performance. We have also

examined this method applied to two simulated data
sets by comparing the average temporal profile with the
known target patterns used in generating the data. Though
relatively unknown in the microarray literature, we
conclude that the divisive clustering technique Diana is
the overall ‘winner’, amongst those we have considered,
for the data sets we have examined. Perhaps it should
receive more attention in future microarray analyses.

Other important aspects of clustering techniques, such
as computational stability and computational time, have
not been emphasized in this paper. There is a sizable litera-
ture dealing with these issues and other relative advantages
and disadvantages of most of these standard methods (see
for example, Hartigan, 1975, Kaufman and Rousseeuw,
1990). Correlation and partial least squares based sim-
ilarity measures used in conjunction with hierarchical
clustering may not adequately locate all the features in an
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expression profile. We should point out, however, that
we have considered only the most common type of
hierarchical clustering, namely UPGMA. The class of
hierarchical clustering methods is certainly very broad
and the resulting trees produced by different hierarchical
methods could look very different (Waddell and Kishino,
2000). In certain applications, hierarchical clustering is
preferable as an exploratory tool since it does not require
a pre-specification of the number of clusters. Instead,
the resulting dendrogram (or tree) can be inspected at
various ‘heights’. Divisive hierarchical clustering meth-
ods have received less attention, partly because optimal
division requires higher computing time. Diana avoids
this problem by using an intelligent splitting strategy.
If a specific number of hard clusters is desired, Fanny
may not be a suitable algorithm as we have seen for the
sporulation data. K-means is a popular algorithm that uses
a reasonable objective criterion. However, it could be
sensitive to the choice of the initial cluster centers. For the
simulated data sets, we have observed that the K-means
algorithm failed when the initial centers were taken to be
the cluster means obtained using UPGMA, and, subse-
quently, we had used the cluster means from Diana for
it to work. Model-based clustering has several modeling
and optimization options, and it worked reasonably well
in the simulated data.

Optimal selection of the number of clusters K is a dif-
ficult problem and perhaps should be addressed elsewhere
in its own right. There are limited statistical tools for this
purpose that are applicable to all clustering algorithms.
Variants of the model selection criteria such as the BIC
are available for certain likelihood based algorithms (e.g.
model-based clustering). Perhaps clustering, when used as
an exploratory tool, should be carried out at a number
of plausible K values, and existing scientific knowledge
about the problem be combined with the resulting cluster-
ing outputs. Echoing the same sentiment, we suggest ex-
amining the graphs of the validation measures over an en-
tire range of K values around the assumed number of clus-
ters. For the sporulation data set we ultimately used the
same number of clusters as in Chu et al. (1998), in order to
keep the analysis compatible and for the use of the model
profile which was constructed on biological grounds.
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