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Microarray technology is a powerful approach for

genomics research. The multi-step, data-intensive

nature of this technology has created an unprecedented

informatics and analytical challenge. It is important to

understand the crucial steps that can affect the out-

come of the analysis. In this review, we provide an over-

view of the contemporary trend on various main

analysis steps in the microarray data analysis process,

which includes experimental design, data standardiz-

ation, image acquisition and analysis, normalization,

statistical significance inference, exploratory data analy-

sis, class prediction and pathway analysis, as well as

various considerations relevant to their implementation.

The development of microarray technology has been
phenomenal in the past few years. It has become a
standard tool in many genomics research laboratories.
The reason for this popularity is that microarrays have
revolutionized the approach to biological research. Instead
of working on a gene-by-gene basis, scientists can now
study tens of thousands of genes at once. Unfortunately,
they are often daunted and confused by the complexity of
data analyses. Although it is advisable to collaborate with
statisticians and mathematicians on performing a proper
data analysis, it is crucial to understand the fundamentals
of data analysis. In this review, we explain these
fundamentals step-by-step (Figure 1; Table 1). Instead of
discussing any particular analysis software, we focus
primarily on the rationale behind the analysis processes
and the key factors that affect the quality of the result. For
a compilation of current microarray analysis software see
a recent article [1] and author’s website (http://ihome.
cuhk.edu.hk/~b400559/arraysoft.html; permanent link:
http://genomicshome.com). We also focus on the use of
the two-dye cDNA microarray data analysis, although
most of our discussions are also applicable to the single-dye
oligonucleotide platform (i.e. Affymetrix) (Box 1). We hope
that by appreciating the fundamentals novices will become
successful at microarray data analysis.

Experimental design and implementation

‘If the experimental design is wisely chosen, a great
deal of information is readily extractable, and no
elaborate analysis might be necessary. In fact, in
many happy situations all the important conclusions
are evident from visual examination of the data’. [2]

‘Well begun is half done’, is an aphorism that is
especially true of for microarray experiments. Good design
is very important at the beginning of a microarray experi-
ment. A typical microarray usually consists of tens of
thousands of elements. On the one hand, it provides a
comprehensive coverage that almost always promises
some new discoveries. On the other hand, analyzing the
vast amount of data being generated can be daunting to
scientists. It is therefore, more important now than ever, to
design a microarray project carefully to generate high-
quality data and to maximize the efficiency of data analysis.

Good microarray experimental design should comprise
at least four elements: (i) a clearly defined biological
question and/or hypothesis; (ii) treatment, perturbation
and observation of the biological materials, as well as the
microarray experimental protocols, should be as little
affected by systematic and experimental errors as possible;
(iii) a simple, sensible and statistically sound microarray
experimental arrangement that will give the maximal
amount of information given the cost structure and
complexity of the study [3–5]; and (iv) compliance with
the standard of microarray information collection, which
will be further discussed in the next section.

Standardization of information generated by microarray

experimentation

The adoption of international standards have long been
seen as vital in science because of the confusion generated
through the use of various units. We have been experienc-
ing a similar issue in the microarray field. The same
increase or decrease in gene expression observed by
two different laboratories might actually be different,
especially when they are using different experimental
protocols and data-analysis methods. Without a standard,
it is almost impossible to judge the validity of a result
just by inspecting the expression changes or even the raw
data [6]. In view of this problem, the Microarray Gene
Expression Data (MGED) Society (http://www.mged.org),
an international initiative to develop standards for
microarray data, has recently proposed a standard
Minimum Information About a Microarray Experiment
(MIAME) (http://www.mged.org/Workgroups/MIAME/
miame.html) [7]. The research community has embraced
it and many major journals now require compliance with
MIAME for any new submission [8]. It is therefore
advisable to ensure that the experimental design,
implementation and data analysis comply with the
MIAME standard.Corresponding author: Yuk Fai Leung (yfleung@cgr.harvard.edu).
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MIAME represents the minimal information to be
recorded that enables faithful experimental replication,
the verification of the validity of the reported result, and
the facilitation of the comparison among similar experi-
ments. Besides, the information should be structured with
controlled vocabularies and ontology to assist in develop-
ing database and automated data analysis. Currently, the
minimal information includes the six parts: (i) experimen-
tal design; (ii) array design; (iii) samples; (iv) hybridiz-
ations; (v) measurements; and (vi) normalization controls.
Adetaileddescriptionofeachpartandaconvenientchecklist
are available on the MIAME website (http://www.mged.org/
Workgroups/MIAME/miame_checklist.html).

Image acquisition and analysis

After performing all biological and hybridization experi-
ments, the first step of data analysis is scanning the slide
and extracting the raw intensity data from the images.
There are four basic steps in image acquisition and
analysis: (i) scanning; (ii) SPOT RECOGNITION OR GRIDDING

(see Glossary); (iii) SEGMENTATION; and (iv) INTENSITY

EXTRACTION and ratio calculation.
Image acquisition is a very important step in data

analysis. Once an image has been scanned, all data, high
or poor-quality, are essentially fixed. A poor-quality image
requires further manipulations, which will lead to a
decrease in the power of analysis. There are two pre-
requisites for obtaining a high-quality image. First, all
steps in array construction, RNA extraction, labeling,
and array hybridization have to be performed to the
highest possible standards. These endeavors ensure that
all images would be least affected by contamination
(e.g. dust or dirt), and have consistent spots with high
signal-to-noise ratios. Second, the choice of scanning

parameters is also important. We discuss the settings
for the Axon scanner, but the general principle is applic-
able to other platforms. A low laser power (30%) should be
used whenever possible to prevent photo-bleaching. The
photomultiplier tube (PMT) gain settings are adjusted
during the scanning process to balance the overall
intensities between the two channels (i.e. cy3 and cy5)
as much as possible. This balance can be evaluated in
several ways: (i) visual inspection of the scanning image.
The non-differentially expressed spots should appear

Glossary

Adaptive circle segmentation: a segmentation process in which the diameter

of the circle being applied to the spot is calculated case by case in order to

address the variation of spot diameter. The pixels that fall within the circle are

regarded as foreground.

Background estimation: the background fluorescence signal usually orig-

inates from non-specific hybridization of the labeled samples or auto-

fluorescence of the glass slide. This unwanted background signal needs to

be estimated and removed from foreground signal during image analysis.

Background intensity subtraction: the calculation of fluorescence signal from

the background pixels of a spot identified during the segmentation process.

Usually the median of the pixel intensities is used.

Dye-swapping experiment: two hybridizations of the sample pair of samples in

which the labeling dye of the two samples is reversed in one of hybridizations.

Averaging the two expression ratios would give one a good estimate of the

true ratio.

Fixed circle segmentation: a segmentation process in which a circle with a

constant diameter is applied to all spots on the image. The pixels that fall

within the circle are regarded as foreground.

Intensity extraction: the process that calculates the foreground (signal) and

background intensities from the pixels after the segmentation process.

Local background estimation: a commonly used background estimation

method in which the immediate background pixels surrounding the spot, as

identified by the segmentation process, are used for estimating the back-

ground signal.

Segmentation: a computational process which differentiates the pixels within

a spot-containing region into foreground (true signal) and background.

Spot intensity extraction: the calculation of fluorescence signal from the

foreground pixels of a spot identified during the segmentation process.

Usually the mean of the pixel intensities is used.

Spot recognition or gridding: a computational process which locates each spot

on the microarray image.

Figure 1. Flow of a typical microarray experiment. A typical microarray experiment

begins with good experimental design. After carrying out the biological experi-

ment, the samples, either tissues from patient or animal model, or cells from

in vitro cultures, are collected. Their RNAs are then extracted and labeled with

different fluorescent dyes, and co-hybridized to a microarray. The hybridized

microarray is scanned to acquire the fluorescent images. Image analysis is per-

formed to obtain the raw signal data for every spot. Poor quality data are filtered

out and the remaining high quality data are normalized. Finally depending on the

aim of the study, one can infer statistical significance of differential expression,

perform various exploratory data analyses, classify samples according to their

disease subtypes and carry out pathway analysis. Note that data from all the steps

should be collected according to certain standards, minimum information about a

microarray experiment (e.g. MIAME), and archived properly.
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yellow (i.e. ratio equals to 1) on a balanced image (Figure 2a).
In many cases, most of the spots on the array are non-
differentially expressed; (ii) examining the extent of overlap
between the pixel distribution histograms of both channels
(Figure 2b); and (iii) computation of the global normalization
factor for all the spots contained in the two channels, for
example the sum of signals in one channel divided by the
sum of signals in the other one. A well-balanced image
should have a factor close to 1.

The choice of a suitable scanning resolution depends
on the array specification. A rule of thumb is that the
resolution setting should be at least 10% of the spot
diameter. At the same time, the number of spots with
saturated pixels should be kept to a minimum (e.g. ,3–5
spots in a whole yeast genome array with 6240 elements)
to maximize the dynamic range usage of the scanner.

Excessive scanning of a slide should be avoided to prevent
photo-bleaching. Images of high-quality can be acquired
routinely when all these factors are taken into consider-
ation (Figure 2a).

Spot recognition or gridding is not a difficult problem for
most contemporary image analysis software, although it is
often necessary to adjust the grid for some spots manually
afterwards. In fact, many scientists prefer to visually
inspect the images for adjusting the grid and flagging low
quality spots instead of totally relying on software recog-
nition. Segmentation is a process used to differentiate the
foreground pixels (i.e. the true signal) in a spot grid from
the background pixels. This is a tricky computational
problem because the spot morphology in a poor-quality
image can vary substantially and the background can
be high. Furthermore, the image can contain other

Table 1. Summary of microarray analysis stepsa

Analysis step Caveats

Experimental design and implementation Define the biological question and hypothesis clearly

Design the microarray experimental scheme carefully; include biological replication in

experimental design

Avoid experimental errors

Data collection and archival Compliance with microarray information collection standards (e.g. MIAME)

Image acquisition Avoid photo-bleaching

Try to balance the overall intensities between the two dyes

Scan image at appropriate resolution

Image analysis Inspect the gridding result manually; adjust the mask and flag poor-quality spots if

necessary

Choose and apply an appropriate segmentation algorithm

Apply quality measures to aid decision of spot quality

Data pre-processing Remove poor-quality spots

Remove spots with intensity lower the background plus two standard deviations.

Log-transform the intensity ratios

Data normalization Use diagnostic plots to evaluate the data

Consider using LOWESS and its variants for normalization

Identifying differentially expressed genes Do not use fixed threshold (i.e. two-fold increase or decrease) to infer significance

Calculate a statistic based on replicate array data for ranking genes

Select a cut-off value for rejecting the null-hypothesis that a gene is not differentially

expressed; remember to adjust for multiple hypothesis testing

Exploratory data analysis Use different analysis tools with different setting to ‘explore’ the data

Validate the result by follow-up experiments

Class prediction and classification Do not over-train the classifier; try to balance the accuracy and generalizability

Pathway analysis Try to understand the microarray data in a pathway perspective and not genes in isolation

aAbbreviations: LOWESS, locally weighed scatterplot smoothing; MIAME, minimum information about a microarray experiment.

Box 1. Different microarray technologies

In general, there are two types of microarray platforms depending on

the method of nucleic acid deposition on the chip surface: robotically

spotted [52] or in situ synthesis by photolithography, a technology that

is commonly used in computer chips fabrication [53]. The latter is

commercially available from Affymetrixe. Historically the robotically

spotted microarrays were referred to as cDNA microarrays because the

nucleic acids being spotted were PCR products amplified from cDNA

libraries. And the photolithographically synthesized arrays were

commonly called oligonucleotides arrays or oligoarrays because

shorter oligonucleotides (,25mers) were placed on the arrays and

each gene is represented by multiple oligos. It is inaccurate to use the

type of probes on arrays to differentiate different platforms because

researchers now also prepare oligoarrays by robotically spotting

oligonucleotides (,50 to 70mers) on the slide.

Nonetheless, there is still a fundamental difference in the experi-

mental setup between the robotically spotted arrays and photolitho-

graphically synthesized ones. In the robotically spotted array

experiments, the two samples under comparison are labeled with two

different fluorescent dyes and co-hybridized to the same array. This is

essentially a comparative hybridization experiment. The ratio between

the two dyes indicates the relative abundance of a gene in these two

samples. In the photolithographically synthesized array experiments,

the two samples under comparison are labeled with the same dye and

individually hybridized to different arrays.

Although most downstream analyses like exploratory analysis are

similar for the two-microarray platforms, the differences in sample

labeling and hybridization have created different requirements in

upstream data pre-processing. In particular, because the samples are

individually hybridized to different arrays in the case of photolitho-

graphically synthesized array experiments, there are specific concerns

on features selection [54,55], background adjustment [56], the relation-

ship between signal intensity and transcript abundance [56,57], probe-

specific biases [58] and normalization across different arrays [55,56].

This review is focused on the data analysis of the spotted cDNA

microarrays, the most accessible microarray platform for general

biologists.
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imperfections. This can make a proper segmentation
difficult. There are several algorithms for segmentation,
including FIXED CIRCLE SEGMENTATION, ADAPTIVE CIRCLE

SEGMENTATION, adaptive shape segmentation and histo-
gram segmentation. There are also several algorithms for
BACKGROUND ESTIMATION, for example constant back-
ground, LOCAL BACKGROUND and morphological opening.

These algorithms are implemented in different image
analysis software [9]. The adaptive circle segmentation
and local background estimation algorithms work effi-
ciently for us, but the choice of appropriate algorithms
obviously depends on the quality of the raw images. For
example, the adaptive circle segmentation that estimates
the diameter separately for each spot, works best when all

Figure 2. A typical microarray image, pixel distribution histogram for image acquisition, and the effect of image quality on spot recognition and segmentation. (a) In this

microarray experiment yeast cells treated with a chemical that induced a subtle expression change was compared with the untreated cells by hybridization to a microarray

with a complete set of yeast open reading frames (ORFs). (b) Pixel histogram for image acquisition. The histograms of the two channels should overlap as much as pos-

sible. (c–e) Effect of image quality on spot recognition and segmentation. (c) A high-quality image. (d) Image with dust contamination. (e) Image with high background.

(More poor-quality images and how to trouble shoot are available at http://stress-genomics.org/stress.fls/expression/array_tech/trouble_shooting/troubles_index.htm.
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the spots are circular. Figures 2c–e show the recognition
and adaptive circle segmentation results of spots with
different background contaminations. When the image
quality is high, the algorithm can predict the size of the
spots and segment their signal accurately (Figure 2c). If
there is dust contamination (Figure 2d) or a high back-
ground signal in the image (Figure 2e), the algorithm will
not only reject those poor-quality spots, but might also
recognize the contamination as a spot (Figure 2d). In this
case, both the true signal and background signals will be
erroneously estimated. Because it is much more robust for
various algorithms to perform segmentation and back-
ground estimation processes on a high-quality image than
on a low-quality one, it is crucial to produce a high-quality
microarray and collect a high-quality image from it in
the first place.

Recently there has been an interesting experimental
segmentation method reported in which the DNA spots on
the microarray were counterstained by 40, 60 -diamidino-2-
phenylindole (DAPI) and the counterstained image used
to assist in the segmentation process [10]. This new
experimental approach has apparently resolved many
limitations of the algorithmic approach and potentially
facilitated the development of a fully automated image
analysis system.

After the segmentation process, the pixel intensities
within the foreground and background masks (i.e. the
areas in the image defined as foreground and background
by the software, respectively) are averaged separately to
give the foreground and background intensities, respec-
tively. Median or other intensity extraction methods can be
used when there are extreme values in the spots that skew
the distribution of pixel intensities. Subtracting the BACK-

GROUND INTENSITY from the foreground intensity in each
channel gives the SPOT INTENSITY for calculating the
expression ratio between the two channels.

A rapidly developing area that assists in image analysis
is the measurement of quality. Some software apply
criteria such as diameter, spot area, circularity and repli-
cate uniformity to judge whether a spot is of sufficiently
good quality for downstream analysis. The underlying
assumption of these criteria is usually a perfect spot,
which can be too idealized. A working definition of a good
spot is therefore necessary. There is also a need to relate
these measures to more common statistical concepts in
order that they can be useful for a routine image analysis
[9]. A combination of the empirical counterstain segmen-
tation method discussed above [10] and theoretical quality
measures can be a practical solution. The DNA counter-
stain provides information about actual spot morphology
and DNA distribution in the spots, which helps to formu-
late an improved basis for applying different theoretical
measures to evaluate the spot quality.

Data pre-processing and normalization

The data extracted from image analysis need to be
pre-processed to exclude poor-quality spots and normal-
ized to remove many systematic errors as possible before
downstream analysis. Any spot with intensity lower
than the background plus two standard deviations
should be excluded. The intensity ratios should also be

log-transformed so that upregulated and downregulated
values are of the same scale and comparable [11].

The process of normalization aims to removing sys-
tematic errors by balancing the fluorescence intensities of
the two labeling dyes. The dye bias can come from various
sources including differences in dye labeling efficiencies,
heat and light sensitivities, as well as scanner settings for
scanning two channels. Some commonly used methods
for calculating normalization factor include: (i) global
normalization that uses all genes on the array (Figure 3b);
(ii) housekeeping genes normalization that uses con-
stantly expressed housekeeping/invariant genes; and
(iii) internal controls normalization that uses known
amount of exogenous control genes added during hybrid-
ization (http://www.dnachip.org/mged/normalization.html)
[11]. Unfortunately these normalization methods are
inadequate because dye bias can depend on spot intensity
and spatial location on the array. Housekeeping genes are
not as constantly expressed as was previously assumed
[12]. As a result, using housekeeping genes normaliz-
ation might introduce another potential source of error.
Dye-swapping experiments are seen as a plausible
solution to reduce the dye bias problem, but can be
impractical because of the limited supply of certain
precious samples.

Recently there have been suggestions for using a non-
linear normalization method on the basis of gene intensity
and spatial information [4,11], which is believed to be
superior to the other methods. Figure 3 provides a com-
parison of various normalization methods, using the data
extracted from Figure 2a. All data analyses and graph
plotting were performed using statistical microarray
analysis (SMA) package (http://stat-zww.berkeley.edu/
users/terry/zarray/Software/smacode.html) running in
R statistical environment (http://www.r-project.org/). The
plots show Log2 of the expression ratio versus average spot
intensity. Ideally the center of the distribution of log-ratios
should be zero, the log-ratios should be independent of spot
intensity, and the fitted line should be parallel to the
intensity axis. In our example, the global locally weighted
scatterplot smoothing (LOWESS) normalization is a good
choice because it provides a good balance on the three
factors mentioned above (Figure 3c). The fluorescent
images (Figure 2a) do not suffer from serious spatial
effects, as indicated by a very similar log expression ratio
distribution among all the print-tips in the bloxplot for the
global LOWESS normalization (Figure 3c). However,
when there is a significant difference in the distribution
of log-ratios among the print-tips in the bloxplot, sug-
gesting a possible spatial effect, print-tip group LOWESS
(Figure 3d) or scaled print-tip group LOWESS normal-
ization (Figure 3e) should be considered. Apart from
within-a single array, the distribution of gene expression
ratios from replicate experiments might have different
distribution of log ratios due to the difference in experi-
mental conditions. Therefore scaling adjustment is often
necessary to standardize the distribution of log-ratios
across replicate experiments to prevent any particular
experiment becoming dominant and affecting downstream
statistical analysis.
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Data analysis

The next stage of analysis is to apply various statistical
and data mining techniques to study the data. There are
several typical approaches that are discussed in the
following sections.

Significance inference – identifying significantly

differentially expressed genes

Traditionally, differentially expressed genes are inferred
by a fixed threshold cut off method (i.e. a two-fold increase
or decrease), but this is statistically inefficient, the main
reason being that there are numerous systemic and
biological variations that occur during a microarray
experiment. Although some of the systemic variations
such as dye bias can be effectively removed by normal-
ization, random biological variations such as sample-to-
sample and physiological variations are more difficult
to handle [13,14] (for a comprehensive review of various
statistical issues, variations and errors of microarray
experiment see Ref. [15]). Because of these underlying
variations, merely using a fixed threshold to infer sig-
nificance might increase the proportion of false positives or
false negatives. A better framework of significance infer-
ence includes calculation of a statistic based on replicate
array data for ranking genes according to their possibi-
lities of differential expression and selection of a cut-off
value for rejecting the null-hypothesis that the gene is not
differentially expressed.

Replication of a microarray experiment is essential to
obtain the variation in the gene expression for statistics
calculation. It has been suggested that every microarray
experiment should be performed in triplicate to increase
data reliability [16]. There are two types of replication:
biological and technical. Biological replication refers to the
analysis of multiple independent biological samples
(e.g. one tissue type obtained from different patients
with the same disease, or individual samples of a par-
ticular cell line under the same treatment), whereas
technical replication refers to the repetition of microarray
experiment using the same extracted RNA samples.
Biological replication is particularly important for expres-
sion profiling of disease tissues, because there might be
variability of expression among the same tissue type or
tissue heterogeneity. Any particular tissue might not be
representative of the whole disease sample group. Tech-
nical replication provides a precise measurement of gene
expression for a particular sample and eliminates many
technical variations introduced during the experiment.
Unfortunately, merely obtaining a precise expression
measurement of a tissue by technical replication will not
resolve the problem of biological variation. Therefore it is
usually preferable to have biological replication rather
than technical replication if there are not enough tissues
or resources to perform several microarray experiments,
provided the experiment procedures are carried out care-
fully [4,5]. Statistical methods such as Student’s t-test

and its variants [17,18], ANOVA [19,20], Bayesian method
[17,20,21], or Mann–Whitney test [22], can be used to rank
the genes from replicated data.

Setting a cut-off for differential expression is tricky,
because one has to balance the false positives (Type I error)
and the false negatives (Type II error). Furthermore, per-
forming statistical tests for tens of thousands of genes
creates a multiple hypothesis-testing problem. For example,
in an experiment with a 10 000-gene array in which the
significance level a is set at 0.05, 10 000 £ 0.05 ¼ 500 genes
would be inferred as significant even though none is
differentially expressed. Therefore using a p-value of 0.05
is likely to exaggerate Type I errors. The multiple hypo-
thesis testing problem is conventionally tackled by con-
servative approaches that control the family-wise error
rate (FWER), the probability of having at least one false
positive among all testing hypotheses [23]. A classical
example is the Bonferroni correction. However, controlling
the FWER can be too stringent and limits the power to
identify significantly differentially expressed genes. In fact,
differential expression is usually confirmed by RT-PCR,
northern blots or in situ hybridization [24]. It is often
acceptable to have few false positives if the majority of true
positives are chosen. Therefore it might be more practical
to control the false discovery rate (FDR) [25], the expected
proportion of false positives among the number of rejected
hypotheses. A program, statistical analysis of microarray
(SAM), has been developed to utilize this FDR concept as a
tool to assist in determining a cut-off after performing
adjusted t-tests (http://www-stat.stanford.edu/~tibs/SAM/
index.html) [18].

Exploratory data analysis – understanding the

(dis)similarities of the gene expression levels among all

samples

Also known as unsupervised data analysis, exploratory
data analysis does not require the incorporation of any
prior knowledge in the process. It is essentially a grouping
technique that aims tot find genes with similar behaviors
(i.e. expression profiles). Some commonly used examples
include principal component analysis (PCA) [26] or singu-
lar value decomposition (SVD) [27] for dimensionality
reduction, as well as hierarchical clustering [28], K-means
clustering [29] and self organizing maps (SOMs) [30] for
clustering. There are already several excellent reviews
on various unsupervised analyses and their applications
in microarray data mining [31–33], therefore we do not
discuss their details here.

There is perhaps no unsupervised data analysis that
can suit all situations. Different analyses or even different
parameters of the same analysis can reveal unique aspects
of the data. This idea is illustrated in Figure 4, in which
five genes from a hypothetical time series data are
clustered using various distance or similarity measures
and unweighted pair group method with arithmetic mean
(UPGMA) algorithm. Each distance or similarity measure

Figure 3. A comparison of various normalization methods. The raw data was extracted from Figure 2a. Any spot with intensity lower than the background plus two standard

deviations or of poor-quality was excluded from further analysis. From top to bottom: Log2 ratios (M) versus average intensities (A) plot and boxplot of the data without

normalization (a) and with four different kinds of normalization methods: (b) median, (c) global locally weighted scatterplot smoothing (LOWESS), (d) print-tip group

LOWESS, (e) scaled print-tip group LOWESS.
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can assign the genes to different clusters. For example,
Euclidean and Manhattan distances are sensitive to
absolute expression levels, and are able to reveal those
genes that have similar expression levels in the cluster.
Two main clusters are identified in the data, one for
gene A and B and the other cluster for gene C, D and E
(Figure 4e,f). A and B are clustered with each because
their overall expression ratios more similar when com-
pared with C, D and E, and vice versa. The similarity
between their expression profiles suggests the genes in
the two clusters might be co-regulated. However, if the
researchers conclude the analysis at this stage, they are
likely to miss some other interesting relationship among
the genes. A slightly different picture is revealed by using
correlation coefficient with centering, a similarity measure
that is sensitive to the expression profile shape, regardless
of the expression levels (Figure 4b). Gene A, B and C are
grouped in the same cluster whereas D and E are in
another. Intriguingly, A and C, gene D and E are correlated
with each other perfectly using this distance measure. An
inspection of the expression profile offers a hint. Although
A and C differ largely in expression level, the shape of their
expression profiles is the same. This is also true for gene D
and E. As a result, the correlation coefficients for both
A and C and gene D and E are 1. This result suggests
gene A and C, gene D and E are likely to be co-regulated,
and analyzing their promoters can sometimes identify
common regulatory elements. Further insight is provided
using absolute correlation coefficient with centering as a
similarity measure (Figure 4d). This time A, C, D and E
are clustered perfectly together, leaving B separate. It is
because the shape of the expression profiles of A and C are
a mirror image of D and E. Although their correlation
coefficient is 21, which will place them in two separate
clusters as shown in Figure 4b, the absolute value of their
correlation coefficient is the same and will place them in
the same cluster. Therefore it is very likely that A, C, D, E
are regulated by a same factor or mechanism, which
represses the expression A and C while enhancing the
expression of D and E, and vice versa. The same principle
also applies to the choice of clustering algorithms [31].

Hence, it is always advisable to apply several unsuper-
vised analyses and different parameters to explore the
data. Nonetheless, there must be a balance between the
time spent on data analysis and the time spent on subse-
quent experimental confirmation. Unsupervised analysis
is a useful method for generating new hypotheses. The
validity of the result has to be built upon both statistical
significance and biological knowledge.

Class prediction – using gene expression profiles as a

means to classify samples

Another intriguing type of data analysis is to train a
classifier algorithm using the expression profiles of pre-
defined sample groups, so that the classifier can best
assign any new sample to the respective group. This type of

analysis is also known as supervised data analysis, which
has great promise in clinical diagnostics [31] and has
been used successfully in several recent studies [34–36].
Examples of such analysis include support vector machines
[37], artificial neural networks [38], k-nearest neighbor [39]
and various discrimination methods (http://stat-www.
berkeley.edu/users/terry/zarray/Html/discr.html). The ulti-
mate goal is to generalize the trained classifier as a
routine diagnostic tool for differentiating between the
samples that are difficult or even impossible to classify by
available methods.

The challenge for supervised data analysis is to
generalize the classifier for all situations. The training
samples are often limited in number that might not be
sufficiently representative for their classes in general.
Over-training on the same dataset would result in a
situation called ‘over-fitting’, in which the classifier is
very effective in classifying the training samples but not
accurate enough for new samples. A balance between
accuracy and generalizability has to be established by
validation of the trained classifier. Several approaches
are available for this purpose. For example, the training
samples are divided into two individual sets, one for train-
ing and one for validation. The training of the classifier
will be stopped when the prediction error on the validation
set reaches a minimum. More sophisticated cross-validation
methods divide the training dataset into several subsets.
Each subset will be the validation set in turn. The overall
accuracy therefore is the average accuracy across all
validation trials. An extreme case of cross-validation is
called leave-one-out cross-validation, in which one sample
is taken away from the training set to be a validation
sample each time. An investigation of several supervised
analyses, their performance, and cross-validation was
detailed previously [40].

An emerging approach – pathway analysis

Genes never act alone in a biological system – they are
working in a cascade of networks. As a result, analyzing
the microarray data in a pathway perspective could lead to
a higher level of understanding of the system. There are at
least three interesting approaches in this area. The first is
a natural extension of the exploratory cluster analysis
described above. If several genes are assigned to the same
group by cluster analysis, as discussed above, they might
be co-regulated or involved in the same signaling pathway.
Analyzing the promoters of this group of genes can often
reveal common regulatory motifs and unveil a higher level
of network organization in the biological system [41]. The
second is to reverse-engineer the global genetic pathways,
the identification of the global regulatory network archi-
tecture from microarray data. It can be done by a system-
atic targeted perturbation like mutation or chemical
treatment [42], and time series experiments [43]. The
assumption here is that the perturbation will cause a
change in expression of other proteins in the network. This

Figure 4. Different distance measures provide different views of the data. Line graphs of a hypothetical time series experiment with five genes and seven time points

(upper panel). Hierarchical clustering of the data using six common distance or similarity measures (lower panel): (a) correlation coefficient without centering,

(b) correlation coefficient with centering, (c) absolute correlation coefficient without centering, (d) absolute correlation coefficient with centering, (e) Euclidean distance,

(f) Manhattan distance. Clustering was performed using unweighted pair group method with arithmetic mean algorithm (UPGMA).
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change in the expression profiles should be able to capture
the underlying architecture of the network. Various
methods have been proposed for constructing a network
from this kind of microarray data, such as a Boolean
network that simplifies gene expression as a binary logical
value to infer the induction of a gene as a deterministic
function of the state of a group of other genes [44–46] and a
Bayesian network that models interactions among genes,
evaluates different models and assigns them probability
scores [47,48] (readers are referred to two excellent reviews
on these and other methods for reverse engineering of
networks [49,50]). The final approach is to study the
expression data on a pathway perspective. Our group has
recently developed a method called Pathway Processor
(http://cgr.harvard.edu/cavalieri/pp.html) that can map
expression data onto metabolic pathways and evaluate
which metabolic pathways are most affected by transcrip-
tional changes in whole-genome expression experiments
[51]. We used the Fisher Exact Test to score biochemical
pathways according to the probability that as many or
more genes in a pathway would be significantly altered
in a given experiment than by chance alone. Results from
multiple experiments can be compared, reducing the ana-
lysis from the full set of individual genes to a limited
number of pathways of interest.

Conclusion

Microarray analysis is evolving rapidly. New and more
complex analyses appear everyday, making it easy for the
researcher to get lost in endless new methods and soft-
ware. Collaborating with statisticians and mathemati-
cians is often advisable for performing a proper microarray
analysis. Nonetheless, this will not replace biological
expertise, a good foundation for statistical methods and
meticulousness in conducting experiments.
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