
BIOINFORMATICS Vol. 18 Suppl. 1 2002
Pages S136–S144

Discovering statistically significant biclusters in
gene expression data

Amos Tanay ∗, Roded Sharan ∗ and Ron Shamir

School Of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 69978, Israel

Received on January 24, 2002; revised and accepted on March 31, 2002

ABSTRACT
In gene expression data, a bicluster is a subset of the

genes exhibiting consistent patterns over a subset of the
conditions. We propose a new method to detect significant
biclusters in large expression datasets. Our approach
is graph theoretic coupled with statistical modelling of
the data. Under plausible assumptions, our algorithm is
polynomial and is guaranteed to find the most significant
biclusters. We tested our method on a collection of yeast
expression profiles and on a human cancer dataset.
Cross validation results show high specificity in assigning
function to genes based on their biclusters, and we are
able to annotate in this way 196 uncharacterized yeast
genes. We also demonstrate how the biclusters lead to
detecting new concrete biological associations. In cancer
data we are able to detect and relate finer tissue types
than was previously possible. We also show that the
method outperforms the biclustering algorithm of Cheng
and Church (2000).
Contact: amos@tau.ac.il; roded@tau.ac.il;
rshamir@tau.ac.il.
Availability: www.cs.tau.ac.il/∼rshamir/biclust.html.
Keywords: gene expression analysis; functional annota-
tion; biclustering; clustering.

INTRODUCTION
DNA microarray technology has recently attained a cen-
tral role in biological and biomedical research. It enables
monitoring the transcription levels of many thousands
of genes, while the cell undergoes specific conditions
or processes. The applications of such technology range
from gene functional annotation and genetic network
reconstruction to diagnosis of disease conditions and
characterizing effects of medical treatment.

A key step in the analysis of gene expression data is the
identification of groups of genes that exhibit similar ex-
pression patterns. Clustering gene expression data into ho-
mogeneous groups was shown to be instrumental in func-
tional annotation, tissue classification, motif identification
and more (for a review see (Sharan et al., 2002)). However,
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clustering has its limitations. First, the clustering process
builds on the assumption that related genes behave sim-
ilarly across all measured conditions. This assumption is
reasonable when the dataset contains few conditions from
a single, focused experiment, but does not hold for larger
datasets containing hundreds of heterogeneous conditions
from many experiments. Second, a clustering solution is
often a partition of the genes into disjoint sets, implying
an association of each gene with a single biological func-
tion or process, which may be an oversimplification of the
biological system.

To overcome the shortcomings of clustering, we
may seek instead a subset of genes that exhibit similar
behaviour across a subset of conditions. In terms of
the expression data matrix, we seek a ‘homogeneous’
submatrix whose rows and columns correspond to the
two subsets. These objects are called biclusters and the
process of detecting them is termed biclustering.

Biclustering was introduced in the seventies (Hartigan,
1975). Cheng and Church (2000) were the first to apply
it to gene expression data. They defined a bicluster as
a uniform submatrix (one having a low mean squared
residue score), and used a greedy approach to find
biclusters. Getz et al. (2000) devised a coupled two-
way iterative clustering algorithm to identify biclusters.
Lazzeroni and Owen (2000) introduced the notion of
a plaid model, which describes the input matrix as a
linear function of variables corresponding to its biclusters.
They showed how to estimate a model using an iterative
maximization process. Ben-Dor et al. (2002) defined a
bicluster as an order preserving submatrix, or equivalently,
a group of genes whose expression levels induce some
linear order across a subset of the conditions. A greedy
heuristic search procedure is employed to detect such
biclusters. The work of Segal et al. (2001) described
rich probabilistic models for studying relations between
expression, regulatory motifs and gene annotations. Its
outcome can be interpreted as a collection of disjoint
biclusters generated in a supervised manner.

In this paper we develop a novel approach to bicluster-
ing, which combines graph theoretic and statistical consid-
erations. The intuitive notion of a bicluster is a subset of
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genes that exhibit similar expression patterns over a subset
of conditions. Following this intuition we define a biclus-
ter as a subset of genes that jointly respond across a subset
of conditions, where a gene is termed responding in some
condition if its expression level changes significantly at
that condition with respect to its normal level.

We model the input expression data as a bipartite
graph whose two parts correspond to conditions and
genes, respectively, with edges for significant expression
changes. We present two statistical models of the resulting
graph. We show how to assign weights to the vertex
pairs of the bipartite graph according to each model, so
that heavy subgraphs correspond to significant biclusters.
Using the first, simpler statistical model, we show how
to compute a tight upper-bound on the probability of an
observed bicluster. For a more detailed model that takes
into account genes and conditions variability, we show
how to assign weights so that a maximum weight subgraph
corresponds to a maximum likelihood bicluster. We also
show how to approximate the p-value of observing a
subgraph with weight exceeding a given threshold.

Discovering the most significant biclusters in the data
reduces under these weighting schemes to finding the
heaviest subgraphs in the model bipartite graph. As
explained below, unrestricted versions of this problem are
computationally hard, so we assume a degree restriction
on the graphs and limit the discussion to graphs in which
the gene vertices have degrees not exceeding a fixed
constant d. This assumption has several justifications:
First, high-degree genes are more likely to participate
in heavy subgraphs and, thus, contribute little to the
significance of a bicluster containing them. Second, high
degree genes are involved in many processes and do not
manifest a focused specific effect. In the datasets we
studied, filtering high-degree genes resulted in a modest
reduction (20% on average) in the number of genes. Still,
our practical implementation considers high-degree genes
as well, in a heuristic manner.

Requiring a bicluster to be a complete subgraph gives
rise to the problem of finding a maximum edge biclique.
This problem is NP-complete for weighted bipartite
graphs (cf. Hochbaum (1998)). We present a polynomial
algorithm for the weighted problem under the degree
restriction.

To accommodate noisy data, we search for subgraphs
that are not necessarily complete. Let the weight of a
subgraph be the sum of the weights of gene-condition
pairs in it. We assume that edges are assigned positive
weights and non-edges are assigned negative weights. We
show that the problem of finding a maximum weight
subgraph is NP-complete in this case. In contrast, we give
a polynomial time algorithm for the problem on graphs
under the degree restriction.

One can argue that in some situations we lose informa-

tion by just looking for biclusters that manifest changes,
without considering if the change was an increase or a de-
crease in expression (henceforth, the unsigned problem).
We therefore study the problem of finding consistent
biclusters, in which every two conditions must always
have the same effect or always have the opposite effect on
each of the genes. We show how to solve this problem by
a polynomial reduction to the unsigned problem. Hence,
our polynomial algorithms apply to consistent biclusters
as well, enabling the detection of connections between
genes with either similar or complementary patterns.

We implemented a practical heuristic, called SAMBA
(Statistical-Algorithmic Method for Bicluster Analysis),
which follows the approach of the theoretical algorithm,
and is able to analyse large datasets within minutes. We
applied our algorithm to a broad class of gene expression
datasets, including yeast and human clinical data. In tests
on human lymphoma data, when measuring the solution
p-value with respect to a known tissue classification,
our solutions are superior to those of Cheng and Church
(2000). Our biclusters also enable differentiating fine
tissue types, e.g. germinal center, from DLBCL tissues,
although these tissue types were grouped together using
standard clustering techniques. We also show the utility of
our method to functional annotation, based on a compiled
dataset of some 515 yeast expression profiles. Using
GO annotations of the yeast genes, we can annotate
unknown genes that belong to a bicluster containing
many genes with the same known annotation. Our cross
validation test proves the soundness of this approach,
yielding 81.5% annotation specificity, and we are able
to annotate 196 unknown yeast genes in this manner.
For example, we discovered a link between a group of
unknown subtelomeric Y′ genes and DNA repair genes,
which was recently discovered experimentally.

The paper is organized as follows: We start by present-
ing our statistical models for gene expressions data. We
then present a combinatorial algorithm for finding maxi-
mum weight subgraphs of a bipartite graph, and general-
ize it to handle consistent biclusters. Finally, we describe
our practical implementation and our results on several bi-
ological datasets. Due to lack of space some details are
omitted.

STATISTICAL DATA MODELING
Given an input gene expression dataset we form a bipartite
graph G = (U, V, E) (see (Golumbic, 1980) for basic
graph-theoretic definitions and Figure 1 for an example).
In this graph, U is the set of conditions, V is the set of
genes, and (u, v) ∈ E iff v responds in condition u, that
is, if the expression level of v changes significantly in u
(see the SAMBA Algorithm Section for details). Later we
shall refine our graph to include the direction of expression
change (up or down regulation). A bicluster corresponds
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Fig. 1. Gene expression data is modelled using a bipartite graph
whose two sides correspond to the set of conditions U and the set
of genes V . An edge (u, v) indicates the response of gene v in
condition u. A statistical model assigns weights to the edges and
non-edges of the graph. (a) Part of the graph showing the condition
‘tup1 deletion’ and its effect on the genes ‘gal7’ (response) and
‘ecm11’ (no response). (b) A heavy subgraph (shaded) representing
a significant bicluster.

to a subgraph H = (U ′, V ′, E ′) of G, and represents a
subset V ′ of genes that are co-regulated under a subset of
conditions U ′ (see Figure 1). The weight of a subgraph (or
bicluster) is the sum of the weights of gene-condition pairs
in it, including edges and non-edges.

In the following we develop statistical models for our
bipartite graph representation of expression data. Using
these models we derive scoring schemes for assessing the
significance of an observed subgraph (corresponding to a
bicluster). We shall develop additive scores that can be
decomposed across the edges and non edges of the graph.
In other words, we shall assign weights to the edges and
non-edges of the graph, such that the weight of a subgraph
will correspond to its statistical significance. This will
allow us to reduce the biclustering problem to that of
finding heavy subgraphs in a bipartite graph.

A simple model
Let H = (U ′, V ′, E ′) be a subgraph of G. Denote |U ′| =
m′, |V ′| = n′. Let p = |E |

|U ||V | , and let k′ = |E ′|.
Our first model assumes that edges occur independently
and equiprobably with density p. Denote by BT (k, p, n)

the binomial tail, i.e. the probability of observing k or
more successes in n trials, where each success occurs
independently with probability p. Then the probability of
observing a graph at least as dense as H according to this
model is p(H) = BT (k′, p, n′m′).

Our goal is to find a subgraph H with lowest p(H).
By bounding the terms of the binomial tail using the
first one, assuming that p < 1/2, we obtain the

following upper bound for p(H): p∗(H) = 2n′m′ pk′(1 −
p)n′m′−k′ . Seeking a subgraph H minimizing log p∗(H)

is equivalent to finding a maximum weight subgraph of
G where each edge has positive weight (−1 − log p) and
each non-edge has negative weight (−1− log(1− p)).

Note that p(H) provides a reasonable approximation
only if n′m′ 	 nm, as the calculation of p(H) ignores the
total number of edges in G. As we constrain the degree to
d, this condition holds.

A refined model
We next develop a refined null model that takes into ac-
count the variability of the degrees in G, i.e. it incorporates
the characteristic behaviour of each specific condition and
gene.

Let H = (U ′, V ′, E ′) be a subgraph of G and
denote E ′ = (U ′ × V ′) \ E ′. For a vertex w ∈
U ′ ∪ V ′ let dw denote its degree in G. Our null model
assumes that the occurrence of each edge (u, v) is an
independent Bernoulli variable with parameter pu,v . The
probability pu,v is the fraction of bipartite graphs with
degree sequence identical to G that contain the edge
(u, v). In practice we estimate pu,v using a Monte-
Carlo process. The probability of observing H is thus
p(H) = (

∏
(u,v)∈E ′ pu,v)·(∏(u,v)∈E ′(1−pu,v)). However,

we cannot simply compare subgraphs according to this
probability, since it improves (decreases) as the size of H
increases.

To overcome this problem, we chose to use a likelihood
ratio to capture the significance of biclusters. Our null
model is as stated above. For the alternative model we
assume that each edge of a bicluster occurs with constant
probability pc > max(u,v)∈U×V pu,v . The estimation
of pc is described in the SAMBA Algorithm Section.
This model reflects our belief that biclusters represent
approximately uniform relations between their elements.
The log likelihood ratio for H is therefore:

log L(H) =
∑

(u,v)∈E ′
log

pc

pu,v

+
∑

(u,v)∈E ′
log

1− pc

1− pu,v

Setting the weight of each edge (u, v) to log pc
pu,v

> 0 and

the weight of each non-edge (u, v) to log 1−pc
1−pu,v

< 0, we
conclude that the score of H is simply its weight.

We note that the statistical model is more involved when
taking into account the direction of expression change
for each edge. Nevertheless, a likelihood score can be
computed in essentially the same way as for the unsigned
case.

COMBINATORIAL BICLUSTERING
In the previous section we have given an additive scoring
scheme assigning weights to edges and non-edges of a
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model bipartite graph. Discovering the most significant
biclusters in the data reduces under this scoring scheme
to finding the heaviest subgraphs in the bipartite graph.
We now give a polynomial algorithm to solve this problem
when the degree of every gene vertex is bounded.

Maximum bounded biclique
We start by describing an O(|V |2d)-time algorithm to find
a maximum weight biclique in a bipartite graph whose
gene vertices have d-bounded degree. This algorithm will
be a key component in our more involved algorithms that
follow.

Let G = (U, V, E) be a bipartite graph. We say that G
has d-bounded gene side, if every v ∈ V has degree at
most d. Let w : U × V → R be a weight function. For a
pair of subsets U ′ ⊆ U, V ′ ⊆ V we denote by w(U ′, V ′)
the weight of the subgraph induced on U ′ ∪ V ′, i.e.
w(U ′, V ′) = ∑

u∈U ′,v∈V ′ w((u, v)). The neighbourhood
of a vertex v, denoted N (v), is the set of vertices adjacent
to v in G. We denote n = |V | throughout.

PROBLEM 1 (MAXIMUM BOUNDED BICLIQUE).
Given a weighted bipartite graph G with d-bounded gene
side, find a maximum weight complete subgraph of G.

THEOREM 1. The maximum bounded biclique problem
can be solved in O(n2d) time and space.

PROOF. Observe that a maximum bounded biclique
H∗ = (U∗, V ∗, E∗) in G must have |U∗| ≤ d. Figure 2
describes a hash-table based algorithm that for each
vertex v ∈ V scans all O(2d) subsets of its neighbours,
thereby identifying the heaviest biclique. Each hash entry
corresponds to a subset of conditions and records the total
weight of edges from adjacent gene vertices. The iteration
over subsets of N (v) is done by repeatedly changing the
current subset S by adding or removing a single element,
updating w(S, {v}) in constant time. Hence, the algorithm
spends O(n2d) time on the hashing and finding Ubest .
Computing Vbest can be done in O(nd) time, so the total
running time is O(n2d). The space complexity is O(n2d)

due to the hash-table.

Note that the algorithm can be adapted to give the k
condition subsets that induce solutions of highest weight
in O(n2d log k) time using a priority queue (heap) data
structure.

Finding heavy subgraphs
We now look for heavy subgraphs which are not neces-
sarily complete. We start by giving weight 1 for an edge
and weight −1 for a non-edge. Formally, given a bipar-
tite graph G = (U, V, E) define a weight function w :
U ×V → {−1, 1} such that w((u, v)) = 1 for (u, v) ∈ E ,
and w((u, v)) = −1 for (u, v) ∈ (U × V ) \ E . Consider
the following problem:

MaxBoundBiClique(U , V , E , d):
Initialize a hash table weight ; weightbest ← 0
For all v ∈ V do

For all S ⊆ N (v) do
weight[S] ←weight[S]+

max{0, w(S, {v})}
If (weight[S] > weightbest )

Ubest ← S
weightbest ← weight[S]

Compute Vbest = ∩u∈Ubest N (u)

Output (Ubest , Vbest )

Fig. 2. An algorithm for the maximum bounded biclique problem.

PROBLEM 2. (Maximum Bounded Bipartite Subgraph)
Given a bipartite graph G with d-bounded gene side, find
a maximum weight subgraph of G.

LEMMA 2. Let H∗ = (U∗, V ∗, E∗) be a maximum
weight subgraph of G. Then every vertex in H∗ is
connected to at least half the vertices on the other side
of H∗.

PROOF. Follows from the choice of weights, since if a
vertex v ∈ V ∗ has less than �|U∗|/2� neighbours, then
removing v from H∗ will result in a heavier subgraph. The
proof for u ∈ U∗ is symmetric.

COROLLARY 3. A maximum weight subgraph of G has
at most 2d vertices from U.

LEMMA 4. Let H∗ = (U∗, V ∗, E∗) be a maximum
weight subgraph of G. For each set X ⊆ U∗ there exists a
subset Y ⊆ X with |Y | ≥ �|X |/2� such that Y ⊆ N (v) for
some v ∈ V ∗.

PROOF. Assume there exists X ⊆ U∗ such that all
subsets X∩N (v), v ∈ V ∗ are of size smaller than �|X |/2�.
Then the weight of the subgraph induced on (U∗ \ X, V ∗)
exceeds that of H∗, a contradiction.

COROLLARY 5. Let H∗ = (U∗, V ∗, E∗) be a maxi-
mum weight subgraph of G. Then U∗ can be covered by
at most �log(2d)� sets, each of which is contained in the
neighbourhood of some vertex in V ∗.

PROOF. Denote |U∗| = t . By Lemma 4 there exists a
subset Y ⊆ U∗ with |Y | ≥ �t/2�, such that Y ⊆ N (v)

for some v ∈ V ∗. The same holds for the set U∗ \ Y ,
and we can continue in this manner until we cover U∗.
By construction we have at most �log t� sets in the cover.
Since t ≤ 2d by Corollary 3, the result follows.
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Corollary 5 implies an algorithm to find a maximum
weight subgraph. The algorithm tests all collections of at
most �log(2d)� subsets of neighbourhoods of vertices in
V . Since there are O(n2d) such subsets we have:

THEOREM 6. The maximum bounded bipartite sub-
graph problem can be solved in O((n2d)log(2d)) time.

A non-redundant subgraph is one whose weight cannot
be increased by removing any vertex from it. Theorem 6
can be generalized to give the k heaviest non-redundant
subgraphs in O((n2d)log(2d) log k) time.

We now extend Theorem 6 to graphs with more gen-
eral weights: Suppose that edges in G have positive
weights and non-edges have negative weights. Define
r = max(u,v),(u′,v′)∈U×V | w(u,v)

w(u′,v′) |. We call r the maximum
weight ratio in G. Similarly to Lemma 4 we can show:

LEMMA 7. Let H∗ = (U∗, V ∗, E∗) be a maximum
weight subgraph of G. For each set X ⊆ U∗ there exists
a subset Y ⊆ X with |Y | ≥ �|X |/(r + 1)� such that
Y ⊆ N (v) for some v ∈ V ∗.

THEOREM 8. Let G be a bipartite graph with d-
bounded gene side. Suppose a weight function assigns
positive and negative weights to edges and non-edges,
respectively, such that the maximum weight ratio is r . Then
the k heaviest non-redundant subgraphs in G can be found
in O((n2d)log(r+1)/r (rd) log k) time.

We note that the general problem of finding a maximum
weight bipartite subgraph of G is NP-hard, as can be
shown by a simple reduction from CLIQUE.

THEOREM 9. For a bipartite weighted graph G and a
number k, the problem of determining if G contains a
subgraph of weight at least k is NP-complete, even if each
edge of G has positive weight and each non-edge has
negative weight.

INCORPORATING THE DIRECTION OF
EXPRESSION CHANGES
In our discussion so far, the underlying bipartite graph
used for modelling the data contained edges for signifi-
cantly changed genes, but ignored the type of change (in-
crease or decrease in the expression level). We can inte-
grate additional information into our model by associating
a sign of ‘up’ or ‘down’ with each edge. We now have
three types of binary relations in our bipartite graphs: An
‘up’ edge, a ‘down’ edge or no edge. It is reasonable to
look for a bicluster in which the conditions tend to af-
fect genes in a consistent way, i.e. two clustered condi-
tions should either have always the same effect or always
the opposite effect on each of the genes. This leads to the
definition of a consistent biclique: Given a bipartite graph

G = (U, V, E) with edge sign function c : E → {−1, 1},
we say that an induced biclique H = (U ′, V ′, E ′) is con-
sistent if there exists an assignment τ : U ′∪V ′ → {−1, 1}
such that for every v ∈ V ′, u ∈ U ′ we have c((u, v)) =
τ(u)τ (v). The maximum consistent biclique problem can
be solved in polynomial time by reduction to the standard
maximum biclique problem:

PROPOSITION 10. There is an O(n2d)-time algorithm
for the maximum consistent bounded biclique problem on
graphs with d-bounded gene side.

PROOF. Given G and c, we construct the graph G ′ =
(U ∪ U , V ∪ V , E ′), where U and V are copies of U
and V , respectively, and E ′ = {(u, v), (u, v)|(u, v) ∈
E, c((u, v)) = 1}∪ {(u, v), (u, v)|(u, v) ∈ E, c((u, v)) =
−1}. Suppose that (U ′, V ′) induce a consistent biclique
in G of size k with a sign assignment τ . Then {v ∈
U ′ ∪ V ′|τ(v) = 1} ∪ {v|v ∈ U ′ ∪ V ′, τ (v) = −1} induce
a biclique of size k in G ′. Conversely, if (U ′, V ′) induce
a biclique in G ′, then no pair u, u is contained in it, so
{v ∈ U ∪ V |v ∈ U ′ ∪ V ′ or v ∈ U ′ ∪ V ′} induce a
consistent biclique in G of the same size, where τ(v) = 1
if v ∈ U ′ ∪ V ′ and τ(v) = −1 if v ∈ U ′ ∪ V ′. The claim
thus follows from Theorem 1.

We now introduce the maximum consistent subgraph
problem and solve it using the algorithm of Theorem 6.

PROBLEM 3. (Maximum Consistent Bounded Bipartite
Subgraph) Given a weighted signed bipartite graph
G = (U, V, E, c, w) with d-bounded gene side, find an
induced subgraph H = (U ′, V ′, E ′) and an assignment
τ : U ′ ∪ V ′ → {−1, 1} maximizing the weight func-
tion: w(U ′, V ′) = ∑

(u,v)∈U ′×V ′(−1) f (u,v)w((u, v)),
where f (u, v) = 0 if (u, v) �∈ E ′ and f (u, v) =
1−τ(u)τ (v)c((u,v))

2 otherwise.

The special properties of the scoring function together
with the assignment of positive weights to edges and neg-
ative weights to non-edges enable us to apply the tech-
niques for the unsigned case on G ′. The crucial observa-
tion is that an induced subgraph of maximum weight in
G ′ cannot contain both copies of the same vertex, since
the neighbourhoods of two copies are disjoint, so one of
them must have a negative contribution to the total score.
We conclude:

THEOREM 11. There is an O((n2d+1)log(r+1)/r (rd))-
time algorithm for the maximum consistent bounded
bipartite subgraph problem on graphs with maximum
weight ratio r .

Note that the weighting scheme defined above is heuris-
tic in nature and is not a direct outcome of our statistical
model. An exact scheme can be obtained using a more de-
tailed statistical model. We omit the details.
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SIGNIFICANCE EVALUATION
In this section we develop a method for computing
the statistical significance of a bicluster. The method
computes a ‘p-value’ for a given bicluster B, i.e. the
probability of finding at random a bicluster with at least
the weight of B. Let H = (U ′, V ′, E ′) be a subgraph.
Suppose at first that U ′ is fixed, and we wish to compute
the probability of observing H , given that its weight
is maximum among all subgraphs over the same set of
conditions U ′. To this end, we note that H is obtained by
taking into V ′ all vertices v ∈ V whose weight w({v}, U ′)
is positive. Let fU ′ : V → R be a function defined
as fU ′(v) = max{0, w({v}, U ′)}. For each v ∈ V we
can view fU ′(v) as a random variable. The weight of
H is just w(H) = ∑

v∈V fU ′(v), a sum of independent
random variables. These variables can be shown to satisfy
the requirements of Liapunov’s generalization of the
Central Limit Theorem (cf. (DeGroot, 1989)), implying
that when |V | is sufficiently large, the weight of H
is approximately normally distributed. Hence, we can
compute the expectation and variance of w(H) and derive
a p-value p(H) for observing a subgraph with such
weight.

Finally, we have to accommodate the fact that the subset
U ′ is optimized by the algorithm. For that, we apply
Bonferroni’s rule and compute an upper bound on the p-
value: p∗(H) = p(H)

∑�(r+1)d�
i=1

(m
i

)
, since we are trying

all subsets of U of size at most �(r + 1)d�, where r is the
maximum weight ratio in the graph. Henceforth we call
log p∗(H) the significance value of H .

THE SAMBA ALGORITHM
We used the methods developed above in implementing
a novel biclustering algorithm called SAMBA for finding
high quality and distinct biclusters. SAMBA works as fol-
lows: We first form the bipartite graph and calculate vertex
pair weights using one of the weighting methods described
above. We consider a gene to be up regulated (or down reg-
ulated) in a condition if its standardized level with mean
0 and variance 1 is above 1 (or below −1). Depending on
the data, we may choose to work with signed or unsigned
graphs. When using the likelihood weighting scheme we
optimize the value of pc by measuring the significance of
the resulting biclusters.

In the second phase of the algorithm we apply the
hashing technique of the algorithm in Figure 2 to find the
heaviest bicliques in the graph. In fact, we look for the k
best bicliques intersecting every given condition or gene.
This can be done efficiently using a standard heap data
structure. To save on time and space we ignore genes with
degree exceeding some threshold D, and hash for each
gene only subsets of its neighbours of size ranging from
N1 to N2.

The third phase of the algorithm performs a local im-
provement procedure on the biclusters in each heap. The
procedure iteratively applies the best modification to the
bicluster (addition or deletion of a single vertex) until no
score improvement is possible. To avoid similar biclusters
whose vertex sets differ only slightly, we greedily filter
from the output biclusters whose intersection with a pre-
vious solution (number of shared conditions times number
of shared genes) is above L%.

The implementation was built on top of the GENESYS
platform (Tanay and Shamir, 2001). Typical runs of
the algorithm for large datasets (15,000 genes and 500
conditions) use parameter values D = 40, N1 = 4, N2 =
6, k = 20 and L = 30. A complete run of SAMBA on
such dataset takes a few minutes on a standard PC with
limited memory (256MB).

EXPERIMENTAL RESULTS
We analysed the performance of our algorithm on sev-
eral gene expression datasets and compared it to an ex-
tant biclustering algorithm. Our main tool in evaluating
biclustering results using prior biological knowledge is a
correspondence plot. The plot depicts the distribution of
p-values of the produced biclusters, using for evaluation
a known (putatively correct) classification of conditions
(e.g. to various cancer types) or a given gene annotation.
We describe the plot when a classification is given. For
each value of p on a logarithmic scale, the plot presents
the fraction of biclusters whose p-value is at most p out
of the (say) 100 best biclusters.

p-values are calculated according to the known classifi-
cation as follows: Suppose prior knowledge partitions the
m conditions into k classes, C1, . . . , Ck . Let B be a biclus-
ter with b conditions, out of which b j belong to class C j .
The p-value of B, assuming its most abundant class is Ci ,
is calculated as p(B) =∑b

k=bi

(|Ci |
k

)(m−|Ci |
b−k

)
/
(m

b

)
. Hence,

the p-value measures the probability of obtaining at least
bi elements from the class in a random set of size b. One
should note, that high quality biclusters can also identify
phenomena that are not covered by the given classification.
Nevertheless, we expect a large fraction of our biclusters
to conform to the known classification. Note that our algo-
rithm is unsupervised and does not use the classification in
any way.

Performance evaluation
We first compared the performance of the different weight-
ing schemes for graph edges and non-edges presented in
previous sections. To this end we used the dataset of (Al-
izadeh et al., 2000). It contains the expression levels of
4026 genes over 96 human tissue samples, which are clas-
sified into nine types of lymphoma and normal ones. Fig-
ure 3a shows the correspondence plots for the three sug-
gested weighting schemes. It is evident that the likelihood-
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based scoring method with pc = 0.9 outperforms the other
schemes. Consequently, all the experiments we report be-
low were performed using likelihood-based weights with
pc = 0.9.

Next we compared our performance to that of (Cheng
and Church, 2000) on the lymphoma dataset. Correspon-
dence plots for the two biclusterings are shown in Fig-
ure 3b. The plots demonstrate that the biclusters gener-
ated by our algorithm describe much more accurately the
known classification, and are thus more informative for
extracting additional novel biological insights. As a refer-
ence we added a correspondence plot calculated on a ran-
dom annotation of the 96 samples (preserving class sizes).
It shows that random p-values are at very low levels and
therefore the signal in the biclusters is indeed very strong.

As an additional test, we generated a random expression
dataset with the same characteristics as the lymphoma
data. This was done by generating a random bipartite
graph with the same degree sequence as the original
graph for this dataset. We then executed SAMBA on
this synthetic data and recorded the resulting biclusters.
Figure 3c presents a scatter plot of the significance values
of biclusters vs. their log likelihood (weight) on each
dataset. It can be seen that significance values on the
random data are well separated from those computed
on the original data and, furthermore, only two random
biclusters have significance values below 0. The plot for
the real data also demonstrates the quadratic fit between
the significance value of a bicluster and its weight. Both
observations support our use of weights for detecting
biclusters with low significance values.

Functional annotation in yeast
We have compiled a data set including 515 conditions
for the 6200 yeast ORFs. The data was collected from
five different experiments (Hughes et al., 2000; Gasch
et al., 2000, 2001; Spellman et al., 1998; Ideker et al.,
2001). Analysis by SAMBA generated 2406 biclusters
ranging over 4961 genes and 515 conditions. Many of the
biclusters contain conditions from several experiments.
Hence, the biclustering process truly integrates data from
different experiments.

We utilized our biclustering to perform a naive func-
tional annotation in conjunction with the SGD GO Gene
Ontology Consortium (2000) annotation, as follows: We
used the fourth level in the GO annotation as a classifica-
tion of the genes. We chose those biclusters in which more
than 60% of their annotated members had the same class.
Out of those, we only used biclusters that were function-
ally enriched (p-value below 10−4). We then assigned the
unannotated genes in those biclusters to this most abun-
dant class. Note that each gene may be annotated more
than once, as is the case for the curated GO annotations.
For cross validation, we performed 100 runs and in each

one we hid 30% of the annotations, and tested our success
rate in annotating those hidden genes.

The results of these runs are summarized in Figure 4a,b.
Overall, 81.5% of our test set annotations matched those
known from SGD. The results demonstrate that biclusters
qualifying as annotators accurately identify biological
processes and may be used to extrapolate from known
annotations to uncharacterized genes. We thus set out
to annotate unknown genes (based on the entire GO
annotation). Using the same procedure, we obtained
196 annotations of unknown genes as summarized in
Figure 4c.

Detailed analysis of the results demonstrates the power
of bicluster analysis. For example, one of the biclusters
in Figure 5a contains DNA repair genes and a large
family of Y′ DNA helicase genes. The Y′ genes are strong
paralogs present at the end of the yeast chromosome, and
their function is not fully understood. This bicluster raises
the conjecture that Y′ genes and DNA repair genes are
associated. Indeed, a recent study (Yamada et al., 1998)
suggested a connection between DNA damage and repair
mechanisms to this family. Another bicluster shown in
this figure contains several phosphate and glucose related
genes grouped with several unknown genes, which may be
assigned a putative function according to their expression
pattern in this bicluster.

Human cancer data
Large datasets of clinical samples are an ideal target for
biclustering. We can use biclusters to associate genes with
specific clinical classes or for classifying samples. We
demonstrate the applicability of our methods for tissue
expression analysis in Figure 5b. The lymphoma dataset is
characterized by well defined expression patterns differ-
entiating three types of lymphoma, DLBCL, CLL and FL
from one another. However, using hierarchical clustering
(see Alizadeh et al., 2000) germinal center tissues are
interleaved within the DLBCL class. In contrast, SAMBA
produced two biclusters associating the two germinal
center tissues in the data set with both the DLBCL and
FL classes, thereby uniquely characterizing them. It is our
ability to associate several statistically significant signals
with each condition or gene that makes such delicate
analysis possible.

DISCUSSION
We have developed a new statistical-algorithmic approach
to finding significant biclusters in gene expression data,
and demonstrated its utility on diverse datasets. In addition
to facilitating novel gene annotation at high specificity
and more accurate subclassification of cancer tissues, the
method allows performing simultaneously class discovery
and feature selection.
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Fig. 3. Performance of different weighting schemes and algorithms. (a) Correspondence plots for biclusters generated with different weighting
schemes. (b) Correspondence plots for SAMBA, the algorithm of Cheng and Church (2000), and random biclusters. Likelihood weights use
pc = 0.9. (c) Scatter plots of significance values on synthetic and real data. x-axis: significance value, y-axis: bicluster weight.

Mating
Lipid

Ene
Biotic

Abiot
Cyto

CH Met
CC

AA Met
Pro Met

Mating 92 1 1 3

Lipid 77 1 4 15

Ene 35 6 11 46

Biotic 5 25 8 11 22 27

Abiot 14 4 41 4 10 12 13

Cyto 13 1 38 10 4 31

CH Met 30 20 49

CC 2 1 81 14 1

AA Met 1 81 15

Pro Met 2 2 6 86

Mating
Lipid

Ene
Biotic

Abiot
Cyto

CH Met
CC

AA Met
Pro Met

Mating 94 2 18 2 4

Lipid 100 4 2 4

Ene 61 7 1 5

Biotic 4 100 4 1 1 1

Abiot 2 9 69 5 3 2 2

Cyto 2 2 70 14 1 4

CH Met 47 4 8

CC 11 4 87 9

AA Met 10 4 69 10

Pro Met 20 20 5 1 6 61

SGD GO
Known Annots

Unkown Annots

Mating 87 14 4

Lipid 93 9 6

Ene 71 6 7

Biotic 55 4 1

Abiot 91 10 1

Cyto 397 10 15

CH Met 93 10 8

CC 207 15 18

AA Met 85 36 70

Pro Met 670 31 70

(a) (b) (c)

Fig. 4. Yeast functional annotation. (a) Annotation specificity. The table depicts the annotation accuracy measured using 70 : 30 cross-
validation. Rows represent classes assigned using our method and columns represent SGD GO classes. Cell (x, y) contains the percentage
of genes annotated x that belong to GO class y. Higher percentages are darker. The average specificity was 81.5% (b) Annotation sensitivity
calculated with respect to annotated genes only. Cell (x, y) contains the percentage of SAMBA annotated genes that belong to GO class
y and were annotated x . (c) Annotation of unknown genes. The table shows for each functional class its size in the SGD GO annotation,
the number of genes that belong to this class and were annotated by SAMBA, and the number of unknown genes assigned to this class
by SAMBA. Abbreviations for functional classes: Mating – mating (sensu Saccharomyces, Fungi); Lipid – lipid metabolism; Ene – energy
pathway; Biotic – response to biotic stimulus; Abiot – response to abiotic stimulus; Cyb – cytoplasm organization and biogenesis; CH Met
– carbohydrate metabolism; CC – mitotic cell cycle; AA Met – amino acid and derivative metabolism; Pro Met – protein metabolism and
modification.

Statistically significant biclusters are generated in an
unsupervised fashion directly from the dataset by our
algorithm, and can be used in many contexts. Each
bicluster characterizes some tight biological phenomenon
and can be evaluated using existing biological knowledge
or provide new hypotheses.

We are currently extending the theoretical and practical
study to multiple response levels. A refined version of the
software will soon be available on our website.
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(a) (b)

Fig. 5. Sample biclusters. Each figure shows the expression patterns in two related biclusters. Rows correspond to genes and columns
correspond to conditions or tissues. Expression levels: Dark – up; light – down; black – unchanged. The frames indicate bicluster boundaries.
(a) Yeast biclusters. A group of unannotated subtelomeric Y′ genes is clustered with several DNA repair (DR) genes (upper left corner). This
raises the hypothesis of association between DNA repair mechanisms and the Y′ genes, which was independently suggested recently. Some
of the genes in this bicluster appear also in another presented at the lower right corner, which contains phosphate (P) and glucose (G) related
genes. Several unannotated genes (Un) may be assigned a putative function in this way. (b) Biclusters in lymphoma data. Germinal center
(GC) tissues are biclustered with both DLBCL and FL tissues, thus uniquely characterizing them as a distinct class.
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