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Comparing genomic properties of different organisms is of fundamental importance in the study of biological and
evolutionary principles. Although differences among organisms are often attributed to differential gene expression,
genome-wide comparative analysis thus far has been based primarily on genomic sequence information. We present a
comparative study of large datasets of expression profiles from six evolutionarily distant organisms: S. cerevisiae, C.
elegans, E. coli, A. thaliana, D. melanogaster, and H. sapiens. We use genomic sequence information to connect these
data and compare global and modular properties of the transcription programs. Linking genes whose expression
profiles are similar, we find that for all organisms the connectivity distribution follows a power-law, highly connected
genes tend to be essential and conserved, and the expression program is highly modular. We reveal the modular
structure by decomposing each set of expression data into coexpressed modules. Functionally related sets of genes are
frequently coexpressed in multiple organisms. Yet their relative importance to the transcription program and their
regulatory relationships vary among organisms. Our results demonstrate the potential of combining sequence and
expression data for improving functional gene annotation and expanding our understanding of how gene expression
and diversity evolved.

Introduction

Microarray experiments are now being used to address a
large diversity of biological issues. The large datasets obtained
by pooling those experiments together contain a wealth of
biological information beyond the insights gained by indi-
vidual measurements. For example, it was demonstrated that
diverse datasets of genome-wide expression profiles can be
applied for facilitating functional assignment of uncharac-
terized ORFs and for identification of cis-regulatory elements
(Eisen et al. 1998; Kim et al. 2001; Ihmels et al. 2002).

Comparing the genomic sequences of different organisms
presents an alternative prominent approach for gene
annotation and identification of regulatory elements (Cher-
vitz et al. 1998; Lynch and Conery 2000; Rubin et al. 2000;
Yanai and DeLisi 2002; Frazer et al. 2003). Sequenced-based
comparative analyses also proved crucial for deciphering
evolutionary principles. As evolutionary changes frequently
also involve modifications of the gene regulatory program
(Carroll 2000; True and Carroll 2002; Wray et al. 2003),
integration of expression data into interspecies comparative
analyses could potentially provide new insights into the
relation between genomic sequence and organismal form and
function. So far, however, such an approach has been mostly
applied to small numbers of genes (Carroll 2000; True and
Carroll 2002; Wray et al. 2003) or has been restricted to
variations in the genome-wide expression profiles during the
development of closely related species (Rifkin et al. 2003).
With the accumulation of large-scale expression data for a
number of diverse species, the time may be ripe for a macro-
evolutionary comparison of gene expression.

Expression data differ from sequence data in two main
aspects, which make their integration into comparative
analysis challenging. First, unlike sequence information,
which is direct and accurate, expression profiles provide only

indirect and noisy information about the regulatory relation-
ships between genes. Second, while the genomic sequence is
essentially complete, expression profiles only cover a subset
of all possible cellular conditions and thus provide only
partial information about the underlying regulatory pro-
gram. Moreover, this subset is typically very different for each
organism, reflecting distinct physiologies as well as different
research foci. One way to circumvent this problem is to
restrict the data to a small subset of similar conditions, such
as timepoints along the cell cycle (Alter et al. 2003). Such an
approach, however, drastically reduces the size of the dataset
and limits the scope of comparison.
Here, we present a comparative analysis of large sets of

expression data from six evolutionarily distant organisms
(Table 1). We integrate the expression data with genomic
sequence information to address three biological issues. First,
we verify that coexpression is often conserved among
organisms and propose a method for improving functional
gene annotations using this conservation. We provide a Web-
based application suitable for this purpose. Second, we
compare the regulatory relationships between particular
functional groups in the different organisms, giving initial
insights into the extent of conservation of the gene regulatory
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architecture. Interestingly, we find that while functionally
related genes are frequently coexpressed in several organ-
isms, their organization and relative contribution to the
overall expression program differ. Finally, we compare global
topological properties of the transcription networks derived
from the expression data, using a graph theoretical approach.
This analysis reveals that despite the differences in the
regulation of individual gene groups, the expression data of
all organisms share large-scale properties.

Results and Discussion

Combining Sequence and Expression Data for Improving
Functional Gene Annotations

With the rapid increase in the number of sequenced
genomes, assigning function to novel ORFs has become a
major computational challenge. Functional links are often
imputed based on sequence similarity with genes of known
functions. Despite the large success of this approach, it has
several well-recognized limitations. Foremost, an ORF can
have several close homologues, some of which may be related
to different functions. Furthermore, the sequence of an ORF
may have diverged beyond recognition although the gene
maintained its function.

Gene expression analysis can provide functional links for
new ORFs based on their coexpression with known genes.
However, in this case, only links between genes of the same
organism can be established. Moreover, owing to biological
interference and the noise in the expression data, the
inferred coexpression could be accidental and may not
necessarily reflect similar function.

Combining expression and sequence data may help to
overcome the abovementioned limitations. Specifically, ho-
mologous genes whose function has been preserved are
expected to be coregulated with genes related to that
function. Conserved coexpression could thus distinguish
them from homologues whose function diverged. This can
be done, for example, by focusing on a group of functionally
related genes in a characterized genome, identifying simulta-
neously all the respective homologues in a second genome,

and then examining which of the homologues are indeed
coexpressed (Figure 1A). Importantly, restricting the search
for coexpressed genes to a limited set of candidates provides
an effective mean to overcome the noise in the expression
data (Ihmels et al. 2002).
Conserved coregulation of functionally related genes. To

explore systematically the utility of this approach, we first
examined to what extent coexpression is conserved among
different organisms. We performed a statistical analysis
comparing the pairwise correlations between genes in one
organism to the correlations between their respective
homologues. Indeed, a significant fraction of such correla-
tions were similar (see Figure S8). The strongest conserva-
tion of coexpression was found between pairs of genes
associated with particular cellular processes, such as core
metabolic functions or central complexes (e.g., ribosome
and proteasome) (lists of gene pairs with conserved
coexpression are available at http://barkai-serv.weizmann.ac.il/
ComparativeAnalysis).
Next, we examined whether coexpression is conserved

among groups of genes that are associated with the same
cellular function. To this end, we used as a benchmark
coexpressed groups of genes (termed transcription modules;
see Materials and Methods for a precise definition) that we
extracted from the Saccharomyces cerevisiae expression data
(Ihmels et al. 2002; J. Ihmels, unpublished data). (The yeast
data are the most comprehensive and best annotated,
resulting in a large number of transcription modules that
can be associated with a specific cellular function.) For each
yeast module, we constructed five ‘‘homologue modules,’’
which contain the respective S. cerevisiae homologues in the
other organisms, and measured the correlation between the
genes of these homologue modules. The average correlation
between the genes of the homologue modules was indeed
statistically significant (see the top panel of Figure 1C),
indicating that coexpression of functionally linked genes is
often conserved among organisms.
Coexpression can be used for refining homologue modules.

Examining the pairwise correlations themselves, however,
revealed that usually only a fraction of the genes are
correlated with each other (see Figure S9). Such lack of
correlation probably reflects the inadequacy of defining
function solely based on homology. To search for a coex-
pressed subset within each homologue module, we applied
the signature algorithm we proposed recently (Ihmels et al.
2002). The algorithm identifies those homologues that are
coexpressed under a subset of the experimental conditions.
Furthermore, it reveals additional genes that are not
homologous with any of the original genes, but display a
similar expression pattern under those conditions (see
Materials and Methods). Studying the output of the algo-
rithm, we found that the rejected homologues are usually not
associated with the original function, while many of the
added genes are. For example, from the 15 coexpressed yeast
genes involved in heat-shock response, we identified eight
homologues in Escherichia coli and 16 in Caenorhabditis elegans.
While only some of these homologues are highly coexpressed,
they are sufficient to retrieve additional genes known to be
involved in heat shock (Figure 1B; see Figure S10 for other
modules).
A statistical analysis using all yeast modules revealed that

many homologue modules are significantly coexpressed. The

Table 1. Large-Scale Expression Data Used in This Study

Organism Genes Conditions

S. cerevisiae 6,206 1,011
E. coli 4,009 83
A. thaliana 5,095 131
C. elegans 18,372 547
D. melanogaster 4,040 75
H. sapiens 6,184 153

Publicly available large-scale expression data were obtained from different sources
(see Materials and Methods for references). We excluded genes or conditions with
more than 90% missing datapoints, resulting in expression matrices of the
dimensions shown. The data for Saccharomyces cerevisiae, Caenorhabditis elegans,
and Escherichia coli are genome-wide, while those for Arabidopsis thaliana,
Drosophila melanogaster, and Homo sapiens contain a large fraction of the
respective genomes. The datasets comprise diverse experimental conditions,
including environmental changes, time courses, tissues, and mutants. The
Drosophila data consist of 75 timepoints during development.
DOI: 10.1371/journal.pbio.0020009.t001
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extent of coregulation increases drastically upon removing
uncorrelated homologues and adding related genes (Figure
1C). We note that in some cases such a ‘‘purified module’’may
contain two or more distinct coexpressed groups. Such
substructures are identified by clustering all pairwise gene
correlations (see Data S3). We conclude that sequence-based
functional annotation can be significantly improved through
the integration of expression data. We provide an interactive
tool for this purpose on our Web site at http://barkai-serv.
weizmann.ac.il/ComparativeAnalysis (see also Figure S7). We
note that while this paper was in review, the possibility of
enhancing functional assignment based on the conservation
of coexpression was reported independently by Stuart et al.
(2003).

Higher-Order Regulatory Structures
Regulatory relations between functional groups vary

among organisms. The observation that groups of function-

ally related genes are often coexpressed in multiple organ-
isms prompted us to ask whether also the higher-order
regulatory relationships between these groups have been
conserved (see Materials and Methods). To address this
question, we focused on eight representative yeast modules
related to cellular core processes. Several of the regulatory
relations among the homologues of these modules have been
conserved (Figure 2A). For example, in all organisms the
modules associated with protein synthesis and protein
secretion are positively correlated, while the rRNA synthesis
and the peroxide modules are anticorrelated. Interestingly,
however, most of the relations between modules differ among
organisms. In particular, one of the prominent features of the
yeast transcription program, namely the strong anticorrela-
tion between heat-shock and protein-synthesis modules
(Ihmels et al. 2002), was observed only in the yeast and
Drosophila data. In contrast, those two modules displayed a
significant positive correlation in the expression data of all

Figure 1. Using Expression Data to Identify and Refine Sequence-Based Functional Assignments

(A) Starting from a set of coexpressed genes (yellow dots in left box) associated with a particular function in organism A, we first identify the
homologues in organism B using BLAST (middle box). Only some of these homologues are coexpressed while others are not (blue dots). The
signature algorithm selects this coexpressed subset and adds further genes (light yellow) that were not identified based on sequence, but share
similar expression profiles (right box).
(B) The 15 coexpressed genes associated with heat shock in yeast (center) have eight homologues in E. coli (left) and 14 in C. elegans (right). Among
the ten genes whose expression profiles are the most similar to these homologues (bottom), many are known to be associated with heat-shock
response (boldface).
(C) For each of the six organisms, the distribution of the Z-scores for the average gene–gene correlation of all the ‘‘homologue modules’’ (see
Materials and Methods) obtained from the yeast modules is shown (top). Rejecting the homologues that are not coexpressed gives rise to the
‘‘purified modules,’’ whose Z-scores generally are larger (except for the yeast modules, which contain only coexpressed genes from the
beginning). Adding further coexpressed genes yields the ‘‘refined modules,’’ which have significantly larger Z-scores (bottom).
DOI: 10.1371/journal.pbio.0020009.g001
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other organisms. We note that both types of regulation are
consistent with the role of heat-shock proteins as chaperones;
it appears that in yeast their primary role is to assist in
protein folding during stress conditions (when ribosomal
protein genes are repressed), while in the other organisms
they may be required to accelerate folding during cell growth.

In order to test whether the variations in the regulatory
relations among functional groups in different organisms are
due to the use of unrelated sets of experimental conditions,
we restricted both the human and the yeast expression data
to the cell cycle experiments. We found that the correlations
between modules did not change qualitatively due to this
restriction (Figure 2B and 2C). We also examined the
sensitivity of our results to the number of conditions used
(see Materials and Methods). Removal of up to 50% of all
conditions did not considerably change the gene content of
most refined modules (see Data S2). Importantly, this analysis
also revealed that the correlations between modules are
insensitive to the subset of conditions used (Figure 2D; see
also Figure S2). Note, for example, that for the largest datasets
(yeast and C. elegans), the standard deviations of the
correlation coefficients do not exceed 0.1, even when
removing half of the expression profiles. Taken together,

these results indicate that, despite the sparseness of the data,
our findings reflect real properties of the expression net-
works and not the specific subset of experimental conditions
used.
Global decomposition of the expression data of different

organisms. To compare the higher-order regulatory struc-
tures more systematically, we decomposed the expression
data of each organism into a set of transcription modules
using the iterative signature algorithm (ISA) we proposed
recently (Bergmann et al. 2003; J. Ihmels, unpublished data). A
transcription module consists of coexpressed genes and the
conditions that induce their coregulation. Importantly, the
stringency of coregulation is determined by a threshold
parameter, which allows for a modular decomposition at
different resolutions. At low resolution, a few relatively large
transcription modules are identified. At higher resolution,
the data are usually decomposed into a large number of
modules, which contain fewer but more tightly regulated
genes. We visualize the modular decomposition by a module
tree (Figure 3A and 3B). Highly similar modules, identified at
adjacent thresholds, are connected by lines and define the
branches of the tree. In contrast to the common dendrograms
used to summarize the results of hierarchical clustering, here

Figure 2. Regulatory Relations between

Modules

A selection of eight transcription mod-
ules whose function is known in yeast
was used to generate the corresponding
(refined) homologue modules in the
other five organisms. Each module is
associated with a ‘‘condition profile’’
generated by the signature algorithm
based on the expression data.
(A) Correlations between these profiles
were calculated for all pairs of modules
in each organism. Note that for E. coli
there is no proteasome and that the
mitochondrial ribosomal proteins
(MRPs) correspond to ribosomal genes.
Modules are represented by circles
(legend). Significantly correlated or sig-
nificantly anticorrelated modules are
connected by colored lines indicating
their correlation (color bar). Positively
correlated modules are placed close to
each other, while a large distance reflects
anticorrelation. See Figure S11 for a
numerical tabulation of all pairwise
correlations.
(B and C) Correlations between pairs of
modules according to the cell-cycle data
as a function their correlation in the full
data. Each circle corresponds to a pair of
S. cerevisiae modules (B) or human mod-
ules (C).
(D) To check the sensitivity of our results
with respect to the size of the dataset, we
reevaluated the correlations between the
sets of conditions for randomly selected
subsets of the data. Shown are the mean
and standard deviation of the correla-
tion coefficient between the heat-shock
and protein-synthesis modules as a func-
tion of the fraction of removed condi-
tions (see Figures S4 and S5 for
correlations between other module
pairs).
DOI: 10.1371/journal.pbio.0020009.g002
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distinct branches may share common genes, and when two
branches merge, the resulting branch is not necessarily their
union.

Modular architectures of the transcription programs are
distinct. Modular architectures, as reflected by the structure
of the associated module trees, vary greatly among organisms.
Differences were observed in the total number of modules,
the threshold ranges over which modules are stable, and the
overall hierarchical organizations. For example, in yeast the
data were composed into just five transcription modules at
low resolution, which remained stable for a wide range of
thresholds (Figure 3A). As we reported previously (Bergmann
et al. 2003), these modules correspond to the central yeast
functions (protein synthesis, stress, amino-acid biosynthesis,
cell cycle, and mating). At high resolution, a large number of
modules with specific cellular functions were identified. The
corresponding module tree reveals a clear hierarchy in the
transcriptional network, with gradually increasing complex-

ity. In contrast, the C. elegans tree exhibits a sharp transition
between a regime dominated by a single branch (from which
only few less-stable modules branch off) to a part of the tree
that rapidly bifurcates into many branches at higher thresh-
olds (Figure 3B).
Interestingly, the functional groups that dominate the

transcription program of each organism are also distinct. For
example, in S. cerevisiae and E. coli, genes coding for ribosomal
proteins are associated with a central branch that persists
over a wide range of thresholds, reflecting the large number
of the experimental perturbations that induce the coregula-
tion of these genes. In contrast, although ribosomal proteins
are also coregulated in higher organisms, they are associated
with short branches that extend only over a small range of
thresholds. This suggests that transcriptional regulation of
genes involved in protein synthesis plays a major role in the
transcription program of unicellular organisms, but a less
dominant role in multicellular organisms.
Conserved and organism-specific transcription modules.

We observed that several functional groups were repeatedly
identified as coexpressed in several organisms. This includes
modules related to core biological functions such as protein
synthesis, rRNA processing, the proteasome, and oxidative
phosphorylation. Still, most of the transcription modules
were observed in just one organism. In order to distinguish
more systematically between generic modules and those that
are involved in an organism-specific function, we determined
for each module the fraction of genes that possess at least one
homologue in a second organism (see Materials and Methods).
For S. cerevisiae and C. elegans (the two largest datasets), most
modules have either significantly less or significantly more
homologues than expected (Figure 3C and 3D). This indicates
that while a number of generic modules have been conserved
under evolution, each transcriptome also contains more
recently evolved modules that are associated with organism-
specific functions.

Comparing Global Features of Gene Expression Networks
Power-law connectivity distribution. We next sought to

compare global topological properties of the expression data.
To this end, we represented the data by an undirected
‘‘expression network,’’ whose nodes correspond to genes. Two
genes are connected by an edge if their expression profiles
are sufficiently correlated (see Materials and Methods). We
use this mapping to explore the global structure of the
expression data using tools of graph theory. A well-
established indicator of the network topology is the distri-
bution n(k) of the connectivity k (the number of edges of a
particular gene). We find that for all organisms, the
connectivity is distributed as a power-law, n(k) ; k�c, with
similar exponents c ’ 1.1–1.8 (see Figure 4A). The expression
networks thus belong to the class of scale-free networks,
which comprises many real-world networks (Albert and
Barabasi 2002). Power-law distributions have been attributed
to dynamically evolving networks (Barabasi and Albert 1999)
and to systems that are optimized to provide robust
performance in uncertain environments (Doyle and Carlson
2000). In the present context, a power-law connectivity
distribution indicates that there is no typical size for sets of
coexpressed genes and that there is a significant enrichment
of highly connected genes as compared to random networks

Figure 3. Properties of Transcription Modules

(A and B) Module trees summarize the transcription modules
identified by the ISA at different resolutions. Branches represent
modules (rectangles) that remain fixed points over a range of
thresholds. Fixed points that emerge at a higher threshold converge
into an existing module when iterated at a lower threshold (thin
transversal lines). Modules are colored according to the fraction of
homologues they possess in the other organism (see the color bar).
Among the yeast modules, those associated with protein synthesis
(arrow) have the largest fraction of worm homologues. Searchable
trees for all six organisms are available at http://barkai-serv.weizmann.
ac.il/ComparativeAnalysis.
(C) Histogram for the number of yeast modules with a given fraction
of genes possessing a homologue in C. elegans (black bars). The
distribution indicates that a significant number of modules have
either much less or much more homologues than expected; indicated
p-value were computed according to Kolmogorov–Smirnov test
against control distribution (gray) generated from random sets of
modules preserving their size.
(D) Same as in (C) for C. elegans modules considering yeast
homologues (see Figure S12 for other organisms).
DOI: 10.1371/journal.pbio.0020009.g003
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(see also Guelzim et al. 2002; Lee et al. 2002; Shen-Orr et al.
2002).

Highly connected genes are often essential and evolutio-
narily conserved. To see whether higher-order features of the
connectivity distribution are also conserved, we calculated
the likelihood P(k, k9) that two genes of connectivity k and k9,
respectively, are connected with each other (Maslov and
Sneppen 2002). In all expression networks, connections
between genes with similar connectivity occur much more
often than expected, while connections between highly and
weakly connected genes are suppressed (Figure 4D). The
common topology of the expression networks is thus differ-
ent from the topology of the yeast protein–protein inter-
action network, although both exhibit a scale-free
connectivity distribution (Maslov and Sneppen 2002).

We next examined whether highly connected genes are
involved in central biological functions. In yeast, most of such
genes are associated with protein synthesis, in particular
rRNA processing. In the other organisms, the functional role
of the highly connected genes is different and less coherent
(lists of these ‘‘hub’’ genes are available at http://barkai-serv.
weizmann.ac.il/ComparativeAnalysis). Interestingly, in the
three organisms in which large-scale knockout information
is available (see Materials and Methods), the likelihood of a
gene to be essential increases with its connectivity (Figure
4B). Similar results were recently reported for the yeast

expression and protein–protein interaction networks (Jeong
et al. 2001; Farkas et al. 2003). We also observed that the
highly connected genes are more likely to have homologues in
the other organisms (Figure 4C). This finding is consistent
with the framework of dynamically evolving networks, where
nodes that were added at an early stage (and may thus
correspond to highly conserved genes) are more likely to
develop many connections.
Expression networks are highly clustered. A further

indicator of the network structure is the clustering coefficient
C, which quantifies the degree of modularity (Watts and
Strogatz 1998). For expression networks, Cg measures to what
extent the genes connected to a specific gene g are also
connected with each other (see Materials and Methods). The
networks of all organisms exhibit a high modularity with hCgi
’ ½, several orders of magnitude higher than what would be
expected for random networks (Albert and Barabasi 2002).
We also examined the relation between the clustering
coefficient and the connectivity of each gene. For all six
organisms, we observed an approximately triangular region
in the k–C plane where genes clustered into several localized
elongated regions (Figure 4E). Within these ‘‘bands,’’ the
clustering coefficient decreases monotonically as a function
of the connectivity. Recently, a similar monotonic relation
was observed in metabolic networks as well as in several
nonbiological networks (Ravasz et al. 2002; Ravasz and

Figure 4. Global Properties of Transcrip-

tion Networks

(A) The number of genes n(k) with
connectivity k is plotted as a function
of k (see Materials and Methods). For
each of the six organisms n(k) is distrib-
uted as a power-law, n(k) ; k�c, with
similar exponents c ’ 1.1–1.8 (see Figure
S13).
(B) The fraction of lethal genes is shown
as a function of k for S. cerevisiae, E. coli,
and C. elegans. The control (gray line) is
obtained from 10,000 random choices
for the lethal genes (preserving their
total number). The dashed lines indicate
standard deviations.
(C) The fraction of genes with at least
one yeast homologue is shown as a
function of k for all six organisms.
Control (gray) as in (B).
(D) Z-score quantifying the deviation of
the number of connections between
genes with connectivities k and k9 from
that expected by randomly rewired net-
works (see Maslov and Sneppen 2002).
Note that connections between genes of
similar connectivity are enhanced (red
regions), while those between highly and
weakly connected genes are suppressed
(blue).
(E) The clustering coefficient C is plotted
against k. Each dot corresponds to a
single gene and is colored according to
the transcription module it is associated
with (see also Figure 2). Note that genes
associated with the same module corre-
spond to a specific band in the k–C
plane. Several genes with high connec-
tivity belong to more than one module
(green dots superimposed on orange
ones).
DOI: 10.1371/journal.pbio.0020009.g004
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Barabasi 2003). For random networks and for simple
dynamically evolving networks, it was shown that C is
independent of k. However, deterministic models that lead
to a hierarchical organization of modularity predict C ; k–1

(Dorogovtsev et al. 2002; Ravasz and Barabasi 2003).
Intriguingly, we found that genes belonging to the same

band are often coexpressed and associated with one of the
dominating coexpressed units (transcription modules) iden-
tified by our modular analysis. The decrease of C as a function
of k may reflect overlap between modules. Genes that are
associated with only one module have a connectivity
reflecting the size of the module and a large clustering
coefficient. In contrast, genes that belong to several modules
are correlated with a larger number of genes, but many of
these genes are not connected with each other, leading to a
smaller clustering coefficient. In support of this, we found
that highly connected genes with a small clustering coefficient
are often associated with several modules (Figure 4E). Thus,
the band-like structures we observed may reflect the
combinatorial regulation of gene expression.

Conclusions

Comparing genomic properties of different organisms is of
fundamental importance in the study of biological and
evolutionary principles. Although much of the differences
among organisms is attributed to different gene expression,
comparative analysis thus far has been based primarily on
genomic sequence information. The potential of including
functional genomic properties in a comparison analysis was
demonstrated in recent studies that compared protein–
protein interaction networks of different organisms (Mat-
thews et al. 2001; Kelley et al. 2003).

In this paper we presented a comparative analysis of large
datasets of expression profiles from six evolutionarily distant
organisms. We showed that all expression networks share
common topological properties, such as a scale-free con-
nectivity distribution and a high degree of modularity. While
these common global properties may reflect universal
principles underlying the evolution or robustness of these
networks, they do not imply similarity in the details of the
regulatory programs. Rather, with a few exceptions, the
modular components of each transcription program as well
as their higher-order organization appear to vary significantly
between organisms and are likely to reflect organism-specific
requirements.

Nevertheless, coexpression of functionally linked genes is
often conserved among several organisms. Based on this
finding, we proposed an efficient method that uses
coexpression analysis for improving sequence-based func-
tional annotation. An interactive implementation of this
algorithm is available at http://barkai-serv.weizmann.ac.il/
ComparativeAnalysis/.
Our analysis was based on the available expression data,

which are still sparse for most organisms. It is likely that the
modular decompositions we obtained are partial, so addi-
tional modules can be identified as more expression data
become available. Nevertheless, by analyzing the sensitivity of
our results to the number of conditions, we concluded that
the composition of the modules themselves is rather robust.
Moreover, the higher-order correlations between modules
are only slightly affected by the number of conditions.
The absence of a large set of common experimental

conditions, however, does limit the scope of the present
analysis and reduces the possibility of addressing particular
evolutionary issues. It would be interesting, for example, to
compare how different organisms respond to a variety of
stress conditions, which were found to induce a unified
transcription program in S. cerevisiae (Gasch et al. 2000).
Similarly, it would be intriguing to examine whether knock-
outs of homologous genes induce a similar transcriptional
response in the different organisms. Comparative studies of
gene expression pattern could be largely facilitated by unified
datasets, which examine the genome-wide expression profiles
of diverse as well as related species, under comparable
experimental conditions.

Materials and Methods

Expression data. Preprocessed expression data from E. coli,
Arabidopsis thaliana, and Homo sapiens were downloaded from the
Stanford Microarray Database (Sherlock et al. 2001) using default
parameters and selecting data from all experimenters and categories.
For technical reasons (see Data S5), we only used the first 720
experimental conditions for the human dataset or all conditions
related to the cell cycle. C. elegans expression data were obtained from
Kim et al. (2001) and Drosophila melanogaster data from Arbeitman et
al. (2002). The yeast expression data (Gasch et al. 2000; Hughes et al.
2000; Causton et al. 2001) contain more than 1,000 experiments (see
http://barkai-serv.weizmann.ac.il/modules/page/references.html for a
complete list of references). We excluded genes or conditions with
more than 90% missing datapoints, resulting in expression matrices
of the dimensions shown in Table 1 (see Data S4 for comment on
missing values in the expression data).

Sequence data. FASTA files for amino-acid sequences of coding
regions were downloaded from the sources detailed in Table 2. We

Table 2. The Sources of the Sequence Data Used in This Study

Organism Sequence Source

S. cerevisiae ftp://genome-ftp.stanford.edu/yeast/data_download/sequence_similarity/yeast_worm_datasets
E. coli ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K12/NC_000913.faa
A. thaliana ftp://arabidopsis.org/Sequences/blast_datasets/OLD/ATH1_pep_20020731.Z
C. elegans ftp://genome-ftp.stanford.edu/yeast/data_download/sequence_similarity/yeast_worm_datasets
D. melanogaster http://www.fruitfly.org/sequence/sequence_db/aa_whole-genome_peptide_dmel_RELEASE3.FASTA
H. sapiens ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/protein/protein.fa.gz

DOI: 10.1371/journal.pbio.0020009.t002
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ran the BLASTP 2.2.2 (Altschul et al. 1997) locally in order to
determine the sequence similarity among all coding regions. Gene/
ORF identifiers were used to link the sequence data with the
expression profiles.

Knockout data. Data for deletion mutants (S. cerevisiae and E. coli)
and RNAi experiments (C. elegans) were obtained from the sources
indicated in Table 3. Note that the fraction of the genome that was
tested for viability varies among the three organisms.

Module definition. A transcription modules consist of a set of
coregulated genes (a subset Gm of the genome G) and an associated set
of regulating conditions (a subset Cm of all conditions C). The defining
property of a transcriptional module is self-consistency, which is
achieved as follows. First, we assign scores to both genes and
conditions that reflect their degree of association with the module.
The gene score is the average expression of each gene over the
module conditions, weighted by the condition score: sg ¼ hscECgcic2Cm

.
Analogously, the condition score is the weighted average over the
module genes, sc¼hsgEGgcig2Gm

. Here, EG
gc and EC

gc are the log-expression
ratio of gene g in condition c normalized over genes and conditions,
respectively, such that hEG

gcig2Gm
¼ 0, h(EG

gc)2ig2Gm
¼ 1 and hECgcic2Cm

¼ 0,
h(ECgc)2ic2Cm

¼ 1. Self-consistency denotes the property that the genes
of the module are those genes of the genome that receive the highest
scores sg, while the module conditions are those conditions in the
dataset with the highest scores sc. The ISA identifies transcription
modules through iterative refinement of a large number of random
gene scores.

Module analysis. For the analysis of the fraction of homologues
(see Figure 3C and 3D) as well as the average pairwise correlations
(see Figure 1C), we used most of the transcription modules identified
by the ISA. In order to avoid bias from similar modules identified at
adjacent thresholds, we considered only modules with less than 70%
similarity to any module identified at a lower threshold. Two
sequences were considered homologues if they could be aligned
along at least 40% of the shorter sequence by the BLAST algorithm
and obtained an E-value smaller than 10–5. The precise parameter
values have only a minor effect on our results (see Data S1 for
detailed statistical analysis). We only considered modules with at least
five homologues.

Module purification and refinement. A ‘‘homologue module’’
consists of the genes homologous to a transcription module in
another organism. We used the signature algorithm to purify and
refine these homologue modules (see Ihmels et al. 2002 for details of
the algorithm). A ‘‘purified module’’ is the intersection between the
homologue module, used as input for the signature algorithm, and
the resulting output. It contains only genes that are coexpressed. A
‘‘refined module’’ is obtained by applying the signature algorithm
again, this time using the purified module as input. The output
consists both of the coexpressed genes and the conditions inducing
their coexpression. This twofold application of the signature
algorithm usually provides a more accurate determination of the
coexpressed genes related to the original transcription module than a
single application. In order to also capture weakly coexpressed
modules, we used relatively low thresholds (tg = tc = 1.5) in the
present analysis, but retained only genes whose score is not less than
70% of the most significant gene (Ihmels et al. 2002).

Correlations between modules. Both a transcription modules and
the refined homologue module derived from it are associated with a
set of coregulating experimental conditions (Ihmels et al. 2002). The
significance of each condition is characterized by a score sc. The sets
of scores can be used to compute the regulatory relation between two
modules of the same organism. We use Cij ¼ (Rcsc

(i)�sc( j))/
(Rcsc

(i)�sc(i)�Rcsc
( j)�sc( j))½ as the correlation coefficient between two

modules with score sets fsc(i)g and fsc( j)g, respectively. Note that,

unlike for the Pearson correlation, this definition of Cij does not
center the scores.

Network analysis. Each expression network can be described by a
symmetric adjacency matrix Aij, whose elements are 1 if the
expression of gene i and gene j are sufficiently similar and 0
otherwise. Similarity was measures by the Pearson correlation
coefficient between the expression profiles. Owing to the very
different sizes of the respective sets of expression data, we demanded
that the average connectivity ,k. (rather than the minimal
correlation) is identical in all expression networks and fixed it to
,k. = 0.001. Using the top 0.1% of all possible correlations
corresponds to a lower limit on the correlation coefficients between
0.63 for S. cerevisae and 0.85 for D. melanogaster. The results are
insensitive to the precise threshold value (see Figure S2 for detailed
analysis). The connectivity of gene i is k¼ Rj6¼i Aij. In order to obtain
the connectivity distributions n(k), we used logarithmic binning. The
edges of the bins were powers of 2, and we counted the number of
genes with ki between two edges and normalized by the bin width. We
applied a linear fit to the log values of the bin centers against the
normalized counts. We note that the resulting connectivity distribu-
tions scale as a power-law for a wide range of thresholds and the
exponents only depend weakly on the choice of the threshold. The
clustering coefficient of gene i is Ci ¼ (Rk.j6¼iAikAkjAji)/[ki(ki �1)/2].

Web site. Interactive applications for the refinement of sets of
homologous genes and the exploration of our modular decomposi-
tions of the expression data are available online. We also present
details about the highly connected genes in each organism, the pairs
of genes that are significantly correlated in two organisms, and the
eight modules related to core processes in yeast (and their homologue
modules before and after refinement) on our website at http://
barkai-serv.weizmann.ac.il/ComparativeAnalysis.

Supporting Information

Data S1. Testing the Robustness of Our Analyses with Respect to the
Precise Values of Threshold Parameters

This note includes Figure S1 and Figure S2.
Found at DOI: 10.1371/journal.pbio.0020009.sd001 (38 KB PDF).

Data S2. Controls to Verify That Our Results Are Not Impaired by the
Sparseness of the Available Expression Data

This note includes Figure S3, Figure S4, and Figure S5.
Found at DOI: 10.1371/journal.pbio.0020009.sd002 (59 KB PDF).

Data S3. Testing for Coregulated Subsets within the Homologue
Modules

This note includes Figure S6.
Found at DOI: 10.1371/journal.pbio.0020009.sd003 (11 KB PDF).

Data S4. Comment on Missing Values in the Expression Data

Found at DOI: 10.1371/journal.pbio.0020009.sd004 (3 KB PDF).

Data S5. Comment on the Size of the Human Dataset Used in This
Work

After this work was completed, we succeeded in processing the more
than 2,000 human chip experiments deposited at the SMD. Removing
genes and conditions with more than 90% missing values resulted in
1,474 expression profiles for 24,795 genes. Our Web tools (‘‘Gene-
Hopping’’ and ‘‘ModuleTree’’) allow researchers to use also this
updated dataset.
Found at DOI: 10.1371/journal.pbio.0020009.sd005 (3 KB PDF).

Figure S7. The Interactive Web Tool

Found at DOI: 10.1371/journal.pbio.0020009.sg001 (137 KB PDF).

Figure S8. Statistical Analysis Comparing the Pairwise Correlations
between Genes in One Organism to the Correlations between Their
Respective Homologues

Found at DOI: 10.1371/journal.pbio.0020009.sg002 (16 KB PDF).

Figure S9. Pairwise Correlations of C. elegansHomologues to the Yeast
Heat-Shock Module

Found at DOI: 10.1371/journal.pbio.0020009.sg003 (15 KB PDF).

Figure S10. Correlations between the Genes of Eight Representative
Yeast Modules and Their Homologue Modules, Purified Modules, and
Refined Modules

Found at DOI: 10.1371/journal.pbio.0020009.sg004 (33 KB PDF).

Table 3. Sources of Knockout Data Used in This Study

Organism Source of Knockout Data

S. cerevisiae Giaever et al. (2002)
E. coli Yamazaki (2003)
C. elegans Gonczy et al. (2000)

DOI: 10.1371/journal.pbio.0020009.t003
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Figure S11. Pairwise Correlations between Eight Transcription
Modules of Known Function in Yeast and Their Refined Homologue
Modules in the Five Other Organisms

Found at DOI: 10.1371/journal.pbio.0020009.sg005 (11 KB PDF).

Figure S12. Histograms Showing the Number of Modules of One
Organism with a Given Fraction of Homologues in Another
Organism

Found at DOI: 10.1371/journal.pbio.0020009.sg006 (29 KB PDF).

Figure S13. Connectivity Distributions for the Six Organisms in
Separate Plots

Found at DOI: 10.1371/journal.pbio.0020009.sg007 (19 KB PDF).
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