USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference

Monterey, California, USA, June 6-11, 1999

The UVM Virtual Memory System

Charles D. Cranor and Gurudatta M. Parulkar

Washington University

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738
Email: office @usenix.org WWW: http://www.usenix.org

The UVM Virtual Memory System

Charles D. Cranor

Gurudatta M. Parulkar

Department of Computer Science
Washington University
St. Louis, MO 63130

{chuck, guru}@arl.wustl.edu

Abstract

We introduce UVM, a new virtual memory system for
the BSD kernel that has an improved design that in-
creases system performance over the old Mach-based
44BSD VM system. In this paper we present an
overview of both UVM and the BSD VM system. We
focus our discussion on the design decisions made when
creating UVM and contrast the UVM design with the
less efficient BSD VM design. Topics covered in-
clude mapping, memory object management, anony-
mous memory and copy-on-write mechanisms, and
pager design. We also present an overview of virtual
memory based data movement mechanisms that have
been introduced in BSD by UVM. We believe that the
lessons we learned from designing and implementing
UVM can be applied to other kernels and large software
systems. Implemented in the NetBSD operating system,
UVM will completely replace BSD VM in NetBSD 1.4.

1 Introduction

In this paper we introduce UVM!, a new virtual memory
system that replaces the 4.4BSD virtual memory system
in BSD-based operating systems. UVM is the third gen-
eration BSD virtual memory system that improves the
performance and reduces the complexity of the BSD ker-
nel. UVM’s improved performance is particularly useful
to applications that make heavy use of VM features such
as memory-mapped files and copy-on-write memory.
Versions of BSD prior to 4.4BSD used the old BSD-
VAX virtual memory system that was tightly bound to
the VAX architecture and lacked support for memory-
mapped files (mmap) and fine-grain data structure lock-
ing for multiprocessors. To address these issues, the old
VAX-based VM system was replaced with a new VM
system for 4.4BSD [12]. The 4.4BSD virtual mem-
ory system (BSD VM) is a modified version of the

'Note that “UVM” is a name, not an acronym

virtual memory system that was written for Carnegie
Mellon University’s Mach operating system [18]. The
BSD VM system features a clean separation of machine-
dependent functions, support for mmap, and fine-grain
data structure locking suitable for multiprocessor sys-
tems.

1.1 Why Replace BSD VYM?

The BSD VM system has four main drawbacks that con-
tributed to our decision to replace it: complex data struc-
tures, poor performance, no virtual memory based data
movement mechanisms, and poor documentation.

The data structures and functions used by BSD to
manage memory are complex and thus difficult to main-
tain. This is especially true of the structures used to
represent copy-on-write mappings of memory objects.
As memory objects are copied using the copy-on-write
mechanism [2] (e.g., during a fork) they are linked to-
gether in lists called object chains. If left unchecked,
use of the copy-on-write mechanism can cause object
chains to grow quite long. Long object chains are a
problem for two reasons. First, long object chains slow
memory search times by increasing the number of ob-
jects that need to be checked to locate a requested page.
Second, long object chains are likely to contain inacces-
sible redundant copies of the same page of data, thus
wasting memory. If the BSD VM system allows too
many pages of memory to be wasted this way the sys-
tem’s swap area will eventually become filled with re-
dundant data and the system will deadlock. This condi-
tion is known as a swap memory leak deadlock. To avoid
problems associated with long object chains, the BSD
VM system attempts to reduce their length by using a
complex collapse operation. To successfully collapse an
object chain, the VM system must search for an object
that contains redundant data and is no longer needed in
the chain. If a redundant object is found, then it is either
bypassed or discarded. Note that even a successfully col-

lapsed object chain can still contain inaccessible redun-
dant pages. The collapse operation can only repair swap
memory leaks after they occur, it cannot prevent them
from happening.

BSD VM exhibits poor performance due to several
factors. First, the overhead of object chain management
slows down common operations such as page faults and
memory mapping. Second, I/O operations in BSD VM
are performed one page at a time rather than in more effi-
cient multi-page clusters, thus slowing paging response
time. Third, BSD VM’s integration into the BSD ker-
nel has not been optimized. For example, unreferenced
memory-mapped file objects are cached at the I/O sys-
tem (vnode) layer and redundantly at the virtual memory
layer as well. Finally, several virtual memory operations
are unnecessarily performed multiple times at different
layers of the BSD kernel.

Another drawback of the BSD VM system is its lack
of virtual memory based data movement mechanisms.
While BSD VM does support the copy-on-write mecha-
nism, it is not possible in BSD VM for the virtual mem-
ory system to safely share memory it controls with other
kernel subsystems such as I/O and IPC without perform-
ing a costly data copy. It is also not possible for pro-
cesses to easily exchange, copy, or share chunks of their
virtual address space between themselves.

Finally, the BSD VM system is poorly documented.
While some parts of the BSD kernel such as the network-
ing and IPC system are well documented [20], the BSD
VM system lacks such detailed documentation and is
poorly commented. This has made it difficult for devel-
opers of free operating systems projects such as NetBSD
[17] to understand and maintain the 4.4BSD VM code.

1.2 The UVM Approach

One way to address the shortcomings of the BSD virtual
memory system is to try and evolve the data structures
and functions BSD inherited from Mach into a more effi-
cient VM system. This technique has been successfully
applied by the FreeBSD project to the BSD VM sys-
tem. However, the improved VM system in FreeBSD
still suffers from the object chaining model it inherited
from BSD VM. An alternative approach is to reimple-
ment the virtual memory system, reusing the positive
aspects of the BSD VM design, replacing the parts of
the design that do not work well, and adding new fea-
tures on top of the resulting VM system. This is the
approach we used for UVM. In UVM we retained the
machine-dependent/machine-independent layering and
mapping structures of the BSD VM system. We re-
placed the virtual memory object, fault handling, and
pager code. And, we introduced new virtual memory
based data movement mechanisms into UVM. When

combined with I/O and IPC system changes currently
under development, these mechanisms can reduce the
kernel’s data copying overhead.

UVM’s source code is freely available under the stan-
dard BSD license. UVM was merged into the NetBSD
operating system’s master source repository in early
1998 and has proven stable on the architectures sup-
ported by NetBSD including the Alpha, 1386, M68K,
MIPS, Sparc, and VAX. UVM will appear as the official
virtual memory system of NetBSD in NetBSD release
1.4. A port of UVM to OpenBSD is also in progress.

In this paper we present the design and implementa-
tion of the UVM virtual memory system, highlighting its
improvements over the BSD VM design. In Section 2
we present an overview of BSD VM and UVM. In Sec-
tions 3, 4, 5, 6, and 7 we present the design of UVM’s
map, object, anonymous memory, pager, and data move-
ment facilities, respectively. In Section 8 we present the
overall performance of UVM. Section 9 contains related
work, and Section 10 contains our concluding remarks
and directions for future research.

2 VM Overview

Both BSD VM and UVM can be divided into two layers:
a small machine-dependent layer, and a larger machine-
independent layer. The machine-dependent layer used
by both BSD and UVM is called the pmap layer. The
pmap layer handles the low level details of program-
ming a processor’s MMU. This task consists of adding,
removing, modifying, and querying the mappings of a
virtual address or of a page of physical memory. The
pmap layer has no knowledge of higher-level operat-
ing system abstractions such as files. Each architecture
supported by the BSD kernel must have its own pmap
module. Note that UVM was designed to use the same
machine-dependent layer that BSD VM and Mach use.
This allows pmap modules from those systems to be
reused with UVM, thus reducing the overhead of port-
ing a UVM-based kernel to a new architecture.

The machine-independent code is shared by all BSD-
supported processors and contains functions that per-
form the high-level operations of the VM system. Such
functions include managing a process’ file mappings,
requesting data from backing store, paging out mem-
ory when it becomes scarce, managing the allocation
of physical memory, and managing copy-on-write mem-
ory. Figure 1 shows the five main abstractions that cor-
respond to data structures in both BSD VM and UVM
that the activities of the machine-independent layer are
centered around. These abstractions are:

virtual memory space: describes both the machine-
dependent and machine-independent parts of a pro-

process 1 (init)
vmspace []
pmap

process 4 (sh)

(points to process 4’s
memory objects)

text stack
memory object

page

(in object) /sm init zero- |I ZEero- |I in/s
pager % I__L l__L %
swap swap vnode

Figure 1: The five main machine-independent abstrac-
tions. The triangles represent memory objects, and the
solid circles within them represent pages. A memory
object can contain any number of pages. Note that the
text and data areas of a file are different parts of a single
object.

cess’ virtual address space. The vmspace struc-
ture contains pointers to a process’ pmap and mem-
ory map structures, and contains statistics on the
process’ memory usage.

memory map: describes the machine-independent part
of the virtual address space of a process or the ker-
nel. Both BSD VM and UVM use map (vm_map)
structures to map memory objects into regions of
a virtual address space. Each map structure on the
system contains a sorted doubly-linked list of entry
structures. Each entry structure contains a record of
a mapping in the map’s virtual address space. This
record includes information such as starting and
ending virtual address and a pointer to the mem-
ory object mapped into that address range. The en-
try also contains the attributes of the mapping. At-
tributes include protection, memory usage pattern
(advice), and wire count. The kernel and each pro-
cess on the system have their own map structures to
handle the allocations of their virtual address space.

memory object: describes a file, a zero-fill memory
area, or a device that can be mapped into a vir-
tual address space. Memory objects contain a list
of pages that contain data from that object. In
BSD VM, a memory object consists of one or more
vm_object structures. In UVM, a memory ob-
ject consists of either a vim_amap anonymous mem-
ory map structure or a uvm_object structure (or
both). The details of the handling of memory ob-
jects in both BSD VM and UVM are discussed in

Section 4 and Section 5.

pager: describes how backing store can be accessed.
Each memory object on the system has a pager
that points to a list of functions used by the object
to fetch and store pages between physical memory
and backing store. Pages are read in from backing
store when a process faults on them (or in antic-
ipation of a process faulting on them). Pages are
written out to backing store at the request of a user
(e.g., via the msync system call), when physical
memory is scarce, or when the object that owns the
pages is freed.

page: describes a page of physical memory. When the
system is booted a vim_page structure is allocated
for each page of physical memory that can be used
by the VM system?.

In Figure 1, the system has just been booted single-
user so there are only two processes (1nit and sh). The
init process has four entries in its memory map. These
entries map the process’ text, data, bss, and stack. The
entries are sorted by starting virtual address. Each entry
describes a mapping of a memory object into init’s
address space. Note that a single memory object can
be mapped into different areas of an address space. For
example, the /sbin/init file is mapped into init’s
address space twice, once for the text and once for the
data. These mappings must be separate because they
have different protections. Each memory object has a
list of pages containing its resident data, and a pointer to
a pager that can transfer data between an object’s pages
and backing store. Note that each process’ map struc-
ture has an associated pmap structure that contains the
low-level machine-dependent memory management in-
formation (e.g., page tables) for that process’ virtual ad-
dress space.

When a process attempts to access an unmapped area
of memory a page fault is generated. The VM system’s
page fault routine resolves page faults by locating and
mapping the faulting page. In order to find which page
should be mapped, the VM system must look in the pro-
cess’ map structure for the entry that corresponds to the
faulting address. If there is no entry mapping the fault-
ing address an error signal is generated. If an object is
mapped at the faulting address, the VM system must
determine if the requested data is already resident in a
page. If so, that page can be mapped in. If not, then the
fault routine must issue a request to the object’s pager to
make the data resident and resolve the fault.

20n a few systems that have small hardware page sizes, such as
the VAX, the VM system has a page structure that manages two or
more hardware pages. This is all handled in the pmap layer and thus is
transparent to the machine-independent VM code.

The following sections examine the design and man-
agement of these five abstractions in more detail.

3 Memory Maps

UVM introduces two important improvements to mem-
ory maps. First, we have redesigned the memory map-
ping functions so that they are more efficient and secure.
Second, we have greatly reduced map entry fragmenta-
tion due to memory wiring.

3.1 Memory Mapping Functions

The uvm_map and uvm_unmap functions are two of a
number of functions that perform operations on maps.
The uvm_map function is used to establish a new mem-
ory mapping with the specified attributes. The uvm_map
function operates by locking the map, adding the map-
ping, and then unlocking the map. The BSD VM system
does not have an equivalent function to uvm_map. In-
stead, BSD VM provides a function that establishes a
mapping with default attributes and a set of functions
that change the attributes of a mapping. This is both in-
efficient and insecure. It is inefficient because it requires
extra map locking and lookup steps to establish a map-
ping with non-default values. For example, the default
BSD VM protection is read-write, and thus establishing
a read-only mapping under BSD VM is a two step pro-
cess. First, the mapping must be established with the de-
fault protection. Second, the map must be relocked and
the desired mapping located again in order to change its
protection from read-write to read-only. Note that when
establishing a read-only mapping, there is a brief period
of time between the first and second step where the map-
ping has been fully established with a read-write protec-
tion. Under a multithreaded kernel two threads sharing
the same address space could exploit this window to by-
pass system security and illegally modify read-only data.

Both BSD VM and UVM have unmap functions with
the same API, however the internal structure of these two
functions differ. The BSD VM unmap function keeps the
target map locked for a longer period of time than nec-
essary, thus blocking other threads from accessing it. In
BSD VM, an unmap operation is performed by locking
the map, removing the requested map entries, dropping
the references to the mapped memory objects, and then
unlocking the map. Though the map is locked through-
out BSD VM’s unmap operation, it really only needs to
be locked when removing entries from the map. The tar-
get map does not need to be locked to drop references
to memory objects (note that dropping the final refer-
ence to a memory object can trigger lengthy I/O opera-
tions). UVM’s unmap function breaks the unmap oper-
ation into two phases. In the first phase the target map

is locked while the requested map entries are removed.
Once this is complete, the map is unlocked and the mem-
ory object references can be dropped. The second phase
is done with the target map unlocked, thus reducing the
total amount of time access to the target map is blocked.

3.2 Wiring and Map Entry Fragmentation

Map entry fragmentation occurs when an area of virtual
memory mapped by a single map entry is broken up into
two or three adjoining pieces, each with their own map
entry. Map entry fragmentation is undesirable for a num-
ber of reasons. First, the more entries a map has the
longer it takes to perform operations on it, for example,
searching the map for the proper entry when resolving
a page fault. Second, the process of fragmenting a map
entry can add overhead to a mapping operation. To frag-
ment a map entry, new map entries must be allocated and
initialized, and additional references to backing objects
must be gained. Finally, in the case of the kernel, the
total number of available map entries is fixed. If the ker-
nel’s pool of map entries is exhausted then the system
will fail. While map entry fragmentation is unavoidable
in many cases, it is clearly to the kernel’s advantage to
reduce it as much as possible.

Map entry fragmentation occurs when modifications
are made to only part of an area of virtual memory
mapped by an entry. Since all pages of virtual mem-
ory mapped by a single map entry must have the same
attributes, the entry must be fragmented. For example,
the adjoining text and data segments of the init pro-
cess shown in Figure 1 must be mapped by separate map
entries because they have different protections. Once a
map entry has been fragmented neither BSD VM nor
UVM will attempt to reassemble it in the unlikely event
that the attributes are changed to be compatible.

One of the most frequent causes of map entry frag-
mentation is the wiring and unwiring of virtual mem-
ory. Wired memory is memory that must remain resi-
dent in physical memory, and thus cannot be paged out.
In BSD, there are five ways for memory to be wired.
Unlike BSD VM, UVM avoids map entry fragmentation
and the penalties associated with it in four out of five of
these cases by taking advantage of the fact that the wired
state of a page is often stored in other areas of memory
in addition to the entry mapping it, and thus there is no
need to disturb the map structure. Memory is wired by
the BSD kernel in the following cases:

e The memory used to store the kernel’s code seg-
ment, data segment, and dynamically allocated data
structures is wired to prevent the kernel from taking
an unexpected page fault in critical code. Since this
memory is always wired, there is no need for UVM
to note this fact in the kernel’s map structure.

e Each process on the system has a user structure
containing its kernel stack, signal information, and
process control block. A process’ user structure
must be wired as long as the process is runnable.
When a process is swapped out its user structure
is unwired until the process is swapped back in. In
this case the wired state of the user structure is
stored in the process’ proc structure and there is
no need for UVM to store it in the kernel’s map as
well.

e The sysctl system call is used to query the ker-
nel about its status. The sysctl call temporar-
ily wires the user’s buffer before copying the re-
sults of the call to it. This is done to minimize the
chances of a page fault causing inconsistent data to
be returned. Rather than store the wired state of the
user’s buffer in the process’ map, UVM stores this
information on the process’ kernel stack since the
buffer is only wired while the sysct1 operation is
in progress.

e The kernel function physio is used to perform
raw I/O between a device and a user process’ mem-
ory. Like sysctl, physio temporarily wires the
user’s buffer while the I/O is in progress to keep it
resident in physical memory. And like sysctl,
UVM stores the wired state of the users’ buffer on
the process’ kernel stack.

o The kernel provides the mlock system call to al-
low processes to wire their memory to avoid page
faults in time-critical code. In this case the wired
state of memory must be stored in the user process’
map because there is no other place to store it.

In addition to these five cases, under the 1386 architec-
ture the machine-dependent code uses wired memory to
allocate hardware page tables. Under UVM the wired
state of page table memory is stored only in the i386’s
pmap structure rather than in both the pmap structure
and the user process’ map.

By reducing the amount of map entry fragmentation
due to wired memory, we significantly lowered map en-
try demand under UVM. For example, consider the stat-
ically linked program cat and the dynamically linked
program od. On the i386 platform, BSD VM requires
11 map entries for cat and 21 for od, while UVM re-
quires only six map entries for cat and 12 for od. The
difference between BSD VM and UVM is due to the
user structure allocation, the sysct1 system call, and
the i1386’s pmap page table allocation routine. We found
that calls to mlock and physio seldom occur under
normal system operation. Table 1 shows a comparison
of the number of allocated map entries for several com-
mon operations. While the effect of this reduction in the

Operation Number of
Map Entries
BSD | UVM
cat (static link) 11 6
od (dynamic link) 21 12
single-user boot 50 26
multi-user boot (no logins) | 400 242
starting X11 (9 processes) 275 186

Table 1: Comparison of the number of allocated map
entries on the 1386 for some common operations. On an
1386 a map entry is fifty-six bytes.

number of allocated map entries on overall system per-
formance is minimal, it should be noted that the total
number of map entries available for the kernel is fixed
and if this pool is exhausted the system will panic. This
could become a problem under BSD VM since each pro-
cess requires two kernel map entries.

4 Memory Objects

UVM manages memory objects significantly differently
than BSD VM. In BSD VM, the memory object structure
is considered a stand-alone abstraction under the control
of the VM system. BSD VM controls when objects are
allocated, when they can be referenced, and how they
can be used. In contrast, in UVM the memory object
structure is considered a secondary structure designed
to be embedded within some larger structure in order to
provide UVM with a handle for memory mapping. The
structure in which UVM’s memory object is embedded
is typically part of a structure managed externally to the
VM system by some other kernel subsystem. For ex-
ample, UVM’s object structure for file data is embed-
ded within the I/O system’s vnode structure. The vnode
system handles the allocation of UVM’s memory object
structure along with the allocation of the vnode struc-
tures. All access to the memory object’s data and state
is routed through the object’s pager functions. These
functions act as bridge between UVM and the external
kernel subsystem that provides UVM with its data (see
Section 6).

UVM’s style of management of memory objects is
preferable to BSD VM'’s style for several reasons. First,
UVM’s management of memory objects is more effi-
cient than BSD VM’s. In UVM, memory objects are
allocated and managed in cooperation with their data
source (typically vnodes). In BSD VM, memory objects
and their data sources must be allocated and managed
separately. This causes the BSD VM system to dupli-
cate work that the data source subsystem has already

performed. BSD VM must allocate more structures and
have more object management code than UVM to per-
form the same operations.

Second, UVM’s memory object structure is more flex-
ible than BSD VM’s structure. By making the memory
object an embeddable data structure, it is easy to make
any kernel abstraction memory mappable. Additionally,
UVM’s routing of object requests through its pager oper-
ations gives the external kernel subsystem that generates
the memory object’s data a finer grain of control over
how UVM uses it.

Finally, UVM’s memory object management structure
creates less conflict between the VM system and external
kernel subsystems such as the vnode subsystem. BSD’s
vnode subsystem caches unreferenced vnodes in phys-
ical memory in hopes that they will be accessed again.
If vnodes become scarce, then the kernel recycles the
least recently used unreferenced vnode. In the same way,
the BSD VM system caches unreferenced memory ob-
jects. While vnode structures are allocated when a file
is opened, read, written, or memory mapped, BSD VM
vnode-based memory objects are allocated only when a
file is memory mapped. When an unreferenced memory
object is persisting in BSD VM’s object cache, the VM
system gains a reference to the object’s backing vnode to
prevent it from being recycled out from under it. Unfor-
tunately, this also means that there are times when the
most optimal unreferenced vnode to recycle is in BSD
VM'’s object cache, resulting in the vnode system choos-
ing a non-optimal vnode to recycle. Another problem
with the BSD VM object cache is that it is limited to one
hundred unreferenced objects in order to prevent the VM
system from holding too many active references to vn-
ode structures (preventing recycling). If the BSD VM
system wants to add an unreferenced object to a full
cache, then the least recently used object is discarded.
This is less than optimal because the object’s vnode data
may still be persisting in the vnode system’s cache and
it would be more efficient to allow the memory object to
persist as long as its vnode does.

Rather than having two layers of unreferenced object
caching, UVM has only one. Instead of maintaining its
own cache, UVM relies on external kernel subsystems
such as the vnode system to manage the unreferenced
object cache. This reduces redundant code and allows
the least recently used caching mechanism to be fairly
applied to both vnodes and memory objects. When re-
cycling a vnode, UVM provides the vnode subsystem
with a hook to terminate the memory object associated
with it. This change can have a significant effect on per-
formance. For example, consider a web server such as
Apache that transmits files by memory mapping them
and writing them out to the network. If the number
of files in the server’s working set is below the one-

1e+01

time to read (sec)

0.1 ¢

0.01

. . . .
0 100 200 300 400 500
number of 64KB files

Figure 2: BSD VM object cache effect on file access

hundred-file limit, then both BSD VM and UVM can
keep all the file data resident in memory. However, if the
working set grows beyond one hundred files, then BSD
VM flushes older inactive objects out of the object cache
(even if memory is available). This results in BSD VM
being slowed by disk access. Figure 2 shows this effect
measured on a 333MHz Pentium-II. To produce the plot
we wrote a program that accesses files in the same way
as Apache and timed how long it took to memory map
and access each byte of an increasing number of files.

5 Anonymous Memory

Anonymous memory is memory that is freed as soon as
it is no longer referenced. This memory is referred to as
anonymous because it is not associated with a file and
thus does not have a file name. Anonymous memory
is paged out to the swap area when memory is scarce.
Anonymous memory is used for a number of purposes in
a Unix-like operating system including for zero-fill map-
pings (e.g., bss and stack), for System V shared mem-
ory, for pageable areas of kernel memory, and to store
changed pages of a copy-on-write mapping. A signifi-
cant part of the code used to manage anonymous mem-
ory is dedicated to controlling copy-on-write memory.
In this section we first present a brief overview of the
management of anonymous memory in both BSD VM
and UVM. We then describe the improvements intro-
duced in UVM which result in the elimination of swap
memory leaks, a more efficient copy-on-write mecha-
nism, and less complex code.

5.1 BSD VM Anonymous Memory

Creating an anonymous zero-fill mapping under BSD
VM is a straight forward process. BSD VM simply al-

locates an anonymous memory object of the specified
size and inserts a map entry pointing to that object into
a map. On the other hand, the management of copy-on-
write memory under BSD is more complex.

The BSD VM system manages copy-on-write map-
pings of memory objects by using shadow objects. A
shadow object is an anonymous memory object that con-
tains the modified pages of a copy-on-write mapped
memory object. The map entry mapping a copy-on-write
area of memory points to the shadow object allocated for
it. Shadow objects point to the object they are shadow-
ing. When searching for pages in a copy-on-write map-
ping, the shadow object pointed to by the map entry is
searched first. If the desired page is not present in the
shadow object, then the underlying object is searched.
The underlying object may either be a file object or an-
other shadow object. The search continues until the de-
sired page is found, or there are no more underlying ob-
jects. The list of objects that connect a copy-on-write
map entry to the bottom-most object is called a shadow
object chain.

The upper row of Figure 3 shows how shadow object
chains are formed in BSD VM. In the figure, a three-
page file object is copy-on-write memory mapped into
a process’ address space. The first column of the fig-
ure shows how copy-on-write mappings are established.
To establish a copy-on-write mapping the BSD VM sys-
tem allocates a new map entry, sets the entry’s needs-
copy and copy-on-write flags, points the map entry at
the underlying object (usually a file object), and inserts
it into the target map. The needs-copy flag is used to de-
fer allocating a new memory object until the first write
fault on the mapping occurs. Once a write fault occurs,
a new memory object is created and that object tracks
all the pages that have been copied and modified due
to write faults. Under BSD VM, needs-copy indicates
that the mapping requires a shadow object the next time
the mapped memory is modified. Read access to the
mapping will cause the underlying object’s pages to be
mapped read-only into the target map.

The second column in Figure 3 shows what happens
when the process writes to the middle page of the object.
Since the middle page is either unmapped or mapped
read-only, writing to it triggers a page fault. The VM
system’s page fault routine must catch and resolve this
fault so that process execution can continue. The fault
routine looks up the appropriate map entry and notes that
it is a needs-copy copy-on-write mapping. It first clears
needs-copy by allocating a shadow object and inserting
it between the map entry and the underlying file. Then
it copies the data from the middle page of the backing
object into a new page that is inserted into the shadow
object. The shadow object’s page can then be mapped
read-write into the faulting process’ address space. Note

establish write-fault ‘ fork+write-faults
object chains (BSD VM)
map entry map entry parent map entry child entry

(needs-

1 1
o VANEIAN
shadow 2 shadow 3

\ /
shadow 1

AN AN

shadow 1

A

Jorig_file Jorig_file Jorig_file
amap/anons (UVM)
map entry map entry parent map entry child entry
amap/obj amap/obj amap/obj amap/obj
(needs- amap 1 amap 2 amap 1
copy)
O O [o][@]
anon 1 a2 al a3
Jorig_file Jorig_file Jorig_file

Figure 3: The copy-on-write mechanisms of BSD VM
and UVM. In the figures a process establishes a copy-
on-write mapping to a three page file (the solid black cir-
cles represent pages). When the mapping is established
the needs-copy flag is set. After the first write fault the
needs-copy flag is cleared by allocating a shadow object
or an amap. If the process forks and more write faults oc-
cur additional shadow objects and amaps are allocated.

that the shadow object only contains the middle page.
Other pages will be copied only if they are modified.

The third column in Figure 3 shows the BSD VM data
structures after the process with the copy-on-write map-
ping forks a child, the parent writes to the middle page,
and the child writes to the right-hand page. When the
parent forks, the child receives a copy-on-write copy
of the parent’s mapping. This is done by write pro-
tecting the parent’s mappings and setting needs-copy in
both processes. When the parent faults on the middle
page, a second shadow object is allocated for it (clear-
ing needs-copy) and inserted on top of the first shadow
object. When the child faults on the right-hand page the
same thing happens, resulting in the allocation of a third
shadow object.

5.2 UVM Anonymous Memory

UVM manages anonymous memory using an extended
version of the anon and amap abstractions first intro-

duced in the SunOS VM system [4, 9, 13]. An anon is a
data structure that describes a single page of anonymous
memory, and an amap (also known as an “anonymous
map”) is a data structure that contains pointers to a set
of anons that are mapped together in virtual memory.
UVM’s amap-based anonymous memory system differs
from SunOS’ system in four ways. First, UVM’s anony-
mous memory system introduces support for Mach-style
memory inheritance and deferred creation of amaps (via
the needs-copy flag). Second, in SunOS the anonymous
memory system resides below the vnode pager interface
and was not designed to be visible to generic VM code.
In UVM, we expose the anonymous memory system to
the pager-independent code, thus allowing it to be cen-
trally managed and used by all pagers and the IPC and
I/O systems. Third, SunOS’ pager structure requires that
each pager handle its own faults. UVM, on the other
hand, has a general purpose page fault handler that in-
cludes code to handle anonymous memory faults. Fi-
nally, in UVM we separate the implementation of amaps
from the amap interface in order to easily allow the amap
implementation to change.

In BSD VM, a copy-on-write map entry points to a
chain of shadow objects. There is no limit on the num-
ber of objects that can reside in a single shadow object
chain. UVM, on the other hand, uses a simple two-level
mapping scheme consisting of an upper amap anony-
mous memory layer and a lower backing object layer.
In UVM, a copy-on-write map entry has pointers to the
amap and underlying object mapped by that entry. FEi-
ther pointer can be null. For example, a shared mapping
usually has a null amap pointer and a zero-fill mapping
has a null object pointer.

UVM’s anon structure contains a reference counter
and the current location of the data (i.e., in memory
or on backing store). An anon with a single reference
is considered writable, while anons referenced by more
than one amap are copy-on-write. To resolve a copy-
on-write fault on an anon, the data is copied to a newly
allocated anon and the reference to the original anon is
dropped. The lower row of Figure 3 shows how UVM
handles copy-on-write mappings using the same exam-
ple used for BSD VM. In UVM a copy-on-write map-
ping is established by inserting a needs-copy copy-on-
write map entry pointing to the underlying object in the
target map. When the process with the copy-on-write
mapping writes to the middle page the UVM fault rou-
tine resolves the fault by first allocating a new amap
to clear needs-copy and then copying the data from the
backing object into a newly allocated anon. The anon is
inserted into the middle slot of the mapping’s amap.

The third column in the UVM row of Figure 3 shows
the UVM data structures after the process with the copy-
on-write mapping forks a child process, the parent pro-

cess writes to the middle page, and the child process
writes to the right-hand page. When the parent process
forks, the child receives a copy-on-write copy of the par-
ent’s mapping. This is done by write protecting the par-
ent’s mappings and setting needs-copy in both the parent
and child. When the parent process faults on the middle
page, a second amap is allocated for it (clearing needs-
copy and incrementing the reference count of anon 1)
and the data is copied from the first anon (still in the
original amap) to a newly allocated anon that gets in-
stalled in the new amap. When the child process faults
on the right-hand page the fault routine clears needs-
copy without allocating a new amap because the child
process holds the only reference to the original amap.
The fault routine resolves the child’s fault by allocating
a third anon and installing it in the child’s amap.

5.3 Anonymous Memory Comparison

Both BSD VM and UVM use needs-copy to defer the al-
location of anonymous memory structures until the first
copy-on-write fault. Thus, in a typical fork operation
where the child process immediately executes another
program most amap copying and shadow object creation
is avoided’. In both systems there is a per-page overhead
involved in write protecting the parent process’ map-
pings to trigger the appropriate copy-on-write faults. To
clear needs-copy under UVM a new amap must be allo-
cated and initialized with anon pointers (adding a refer-
ence to each anon’s reference counter). To clear needs-
copy under BSD VM a new shadow object must be al-
located and inserted in the object chain. Future write
faults require BSD VM to search underlying objects in
the chain for data and promote that data to the top-level
shadow object. Also, in addition to normal write-fault
processing, BSD VM attempts an object collapse opera-
tion each time a copy-on-write fault occurs.

BSD VM’s kernel data structure space requirements
for copy-on-write consist of a fixed-size shadow object
and the pager data structures associated with it. The
number of pager data structures varies with the num-
ber of virtual pages the object maps. Pages are clus-
tered together into swap blocks that can be anywhere
from 32KB to 128KB depending on object size. Each
allocated swap block structure contains a pointer to a
location on backing store. UVM’s kernel data struc-
ture space requirements for copy-on-write consist of an
amap data structure and the anons associated with it. An
amap’s size is dictated by the amap implementation be-
ing used. UVM currently uses an array-based imple-
mentation whose space cost varies with the number of
virtual pages covered by the amap. This is expensive for

3 And even this could be avoided with the vfork system call.

larger sparsely allocated amaps, but the cost could eas-
ily be reduced by using a hybrid amap implementation
that uses both hash tables and arrays. UVM stores swap
location information on a per-page basis in anon struc-
tures. UVM must store this information on a per-page
basis rather than using BSD VM-like swap blocks be-
cause UVM supports the dynamic reassignment of swap
location at page-level granularity for fast clustered page
out (described in Section 6).

There are a number of design problems and short-
comings in BSD VM’s anonymous memory system that
contributed to our decision to completely replace it with
UVM’s amap-based anonymous memory system. BSD
VM'’s copy-on-write mechanism can leak memory by al-
lowing pages of memory that are no longer accessible to
remain allocated within an object chain. For example,
consider the final BSD VM diagram in Figure 3. If the
child process exits, then the third shadow object will be
freed. The remaining shadow object chain contains three
copies of the middle page. Of these three copies only
two are accessible — the page in the first shadow object
is no longer accessible and should be freed. Likewise,
if the child process writes to the middle page rather than
exits, then the page in the first shadow object also be-
comes inaccessible. If such leaks were left unchecked,
the system would exhaust its swap space.

Clearly the longer a shadow object chain is, the
greater the chance for swap space to be wasted. Al-
though BSD VM cannot prevent shadow object chains
from forming, it attempts to reduce the length of a chain
after it has formed by collapsing it. BSD VM attempts
to collapse a shadow object chain when ever a write fault
occurs on a shadow object, a shadow object reference is
dropped, a shadow object is copied, or a shadow object
pages out to swap for the first time. This work is done in
addition to normal VM processing.

Searching for objects that can be collapsed is a com-
plex process that adds extra overhead to BSD VM. To
contrast, no collapsing is necessary with UVM because
the amap and anon reference counters keep track of
when pages should be freed. This allows new features
of UVM such as copy-on-write based data movement
mechanisms to be implemented more efficiently than un-
der BSD VM.

Another problem with BSD VM’s copy-on-write
mechanism is that it is inefficient. For example, consider
what happens if the child process in Figure 3 writes to
the middle page. Under BSD VM, the data in the mid-
dle page of shadow object 1 is copied into a new page of
shadow object 3 to resolve the fault. This page allocation
and data copy are unnecessary. Ideally, rather than copy-
ing the data from shadow object 1 to shadow object 3 the
middle page from shadow object 1 would simply be re-
assigned to shadow object 3. Unfortunately this is not

possible under BSD VM because the data structure do
not indicate if shadow object 1 still needs its page or
not. In UVM, writing to the middle page is handled by
allowing the child process to directly write to the page
in anon 1 (this is allowable because anon 1’s reference
count is one), thus avoiding the expensive and unneces-
sary page allocation and data copy.

Finally, the code used to manage anonymous memory
under BSD VM is more complex than UVM’s amap-
based code. BSD VM must be prepared to loop through
a multi-level object chain to find needed data. Each ob-
ject in the chain has its own set of I/O operations, its own
lock, its own shadow object, and its own pool of phys-
ical memory and swap space. BSD VM must carefully
manage all aspects of each object in the chain so that
memory remains in a consistent state. At the same time,
it needs to aggressively collapse and bypass shadow ob-
jects to prevent memory leaks and keep the object chains
from becoming too long, thus slowing memory searches.
In contrast, UVM can perform the same function us-
ing its simple two-level lookup mechanism. Rather than
looping through a chain of objects to find data, UVM
need only check the amap and then the object layer to
find data. Rather than using lists of objects, UVM uses
reference counters in amaps and anons to track access
to anonymous memory. UVM’s new anonymous mem-
ory management system has contributed to a noticeable
improvement in overall system performance (see Sec-
tion 8).

5.4 Amap Adaptation Issues

UVM’s amap-based anonymous memory system is mod-
eled on the SunOS VM system vnode segment driver
anonymous memory system [9, 13]. (Segment drivers
in SunOS perform a similar role to pagers in UVM.)
While this system is sufficient for SunOS, it required a
number of adaptations and extensions in order to func-
tion in a BSD environment and to support UVM’s new
data movement features (described in Section 7). First,
SunOS’s anonymous memory mechanism is not a gen-
eral purpose VM abstraction. Instead, it is implemented
as a part of the SunOS vnode segment driver. This is
adequate for SunOS because copy-on-write and zero-fill
memory can be isolated in the vnode layer. However, in
UVM parts of the general purpose VM system such as
the fault routine and data movement mechanisms require
access to amaps. Thus in UVM we have repositioned the
amap system as a general purpose machine-independent
virtual memory abstraction. This allows any type of
mapping to have an anonymous layer.

Second, the BSD kernel uses several mechanisms that
are not present in SunOS. In order for UVM to replace
BSD VM without loss of function the design of UVM’s

amap system must account for these mechanisms. For
example, BSD supports the minherit system call.
This system call allows a process to control its children’s
access to its virtual memory. In traditional Unix-like
systems (including SunOS) child processes get shared
access to a parent’s shared mappings and copy-on-write
access to the rest of the mappings. In BSD the traditional
behavior is the default, however the minherit system
call can be used to change this. The minherit sys-
tem call allows a process to designate the inheritance of
its memory as “none,” “shared,” or “copy.” This cre-
ates cases such as a child process sharing a copy-on-
write mapping with its parent, or a child process receiv-
ing a copy-on-write copy of a parent’s shared mapping.
In addition to minherit, BSD also uses a mapping’s
needs-copy flag to defer the allocation of anonymous
memory structures until they are needed. SunOS does
not have a needs-copy flag. Thus UVM, unlike SunOS,
must be prepared to delay the allocation of amaps using
needs-copy until they are actually needed. In order to
maintain consistent memory for all processes while sup-
porting both minherit and needs-copy, UVM’s amap
code must carefully control when amaps are created and
track when they are shared.

A third area where the adaptation of an amap-based
anonymous memory system affected the design of UVM
is in the design of UVM'’s page fault routine. In SunOS,
other than the map entry lookup, all of the work of re-
solving a page fault is left to the segment driver. On the
other hand, BSD VM has a general purpose page fault
routine that handles all aspects of resolving a page fault
other than I/O, including memory allocation, and walk-
ing and managing object chains. In fact, the majority
of the BSD VM fault routine’s code is related to object
chain management. Neither of these two styles of fault
routine is appropriate for UVM. A SunOS style fault
routine forces too much pager-independent work into the
pager layer, and as UVM does not use object chaining
the BSD VM fault routine is not applicable. Thus, a new
fault routine had to be written for UVM from scratch.
The UVM fault routine first looks up the faulting ad-
dress in the faulting map. It then searches the mapping’s
amap layer to determine if the required data is in there. If
not, it then checks the backing object layer for the data.
If the data is not there, then an error code is returned.
In addition to resolving the current page fault, the UVM
fault routine also looks for resident pages that are close
to the faulting address and maps them in. The number of
pages looked for is controlled by the madvise system
(the default is to look four pages ahead of the faulting
address and three pages behind). This can reduce the
number of future page faults. Table 2 shows the results
of this change on an i386 for several sample commands.
Note that this mechanism only works for resident pages

Command BSD VM | UVM
ls / 59 33
finger chuck 128 74
cc 1086 590
man csh 114 64
newaliases 229 127

Table 2: Page fault counts on an 1386 obtained through
csh’s “time” command. The cc command was run on

a “hello world” program.

and thus has a minimal effect on execution time for these
non-fault intensive applications. As part of our future
work, we plan to modify UVM to asynchronously page
in non-resident pages that appear to be useful.

6 Pagers

UVM introduces three important improvements to
pagers. The allocation of pager-related data structures
has been made more efficient, the pager API has been
made more flexible giving the pager more control over
the pages it owns, and aggressive clustering has been in-
troduced into the anonymous memory system.

There is a significant difference between the way the
pager-related data structures are organized in BSD VM
and UVM. In BSD VM the pager requires several sepa-
rately allocated data structures. The left side of Figure 4
shows these structures for the vnode pager. In BSD VM
a memory object points to a vim_pager structure. This
structure contains pointers to a set of pager operations
and a pointer to a pager-specific private data structure
(vn_pager). In turn, this structure points to the vnode
being mapped. In addition to these structures, BSD VM
also maintains a hash table that maps a pager structure to
the object it backs (note that there is no pointer from the
vm_pager to the vim_object). To contrast, the right
side of Figure 4 shows the UVM pager data structures
for a vnode. All VM related vnode data is embedded
within the vnode structure rather than allocated sepa-
rately. The pager data structure has been eliminated—
UVM’s memory object points directly to the pager oper-
ations. So, in order to set up the initial mappings of a file
the BSD VM system must allocate three data structures
(vim_object, vm_pager, and vn_pager), and enter
the pager in the pager hash table. On the other hand,
UVM does not have to access a hash table or allocate
any data structures. All the data structures UVM needs
are embedded within the vnode structure.

Another difference between the BSD VM pager in-
terface and the UVM pager interface is in the API used
to fetch data from backing store. To get a page of an

BSD VM UVM

vm_object uvm_object

uvm_vnode
vm_pager

pagerops | | vn_pager |

vnode

Figure 4: Pager data structures

vnode

object’s data from backing store in BSD VM, the VM
system must allocate a new page, add it to the object,
and then request that the pager fill it with data. In UVM,
the process fetching the data does not allocate anything,
this is left to the pager. If a new page is needed the pager
will allocate it itself. This API change allows the pager
to have full control over when pages get added to an ob-
ject. This can be useful in cases where the pager wants
to specifically choose which page to put the data in. For
example, consider a pager that wants to allow a process
to map in code directly from pages in a ROM.

Another difference between the BSD VM pager inter-
face and UVM’s pager interface is how UVM handles
paging out anonymous memory. One unique property
of anonymous memory is that it is completely under the
control of the VM system and it has no permanent home
on backing store. UVM takes advantage of this property
to more aggressively cluster anonymous memory than
is possible with the scheme used by BSD VM. The key
to this aggressive clustering is that UVM’s pagedaemon
can reassign an anonymous page’s pageout location on
backing store. This allows UVM’s pagedaemon to col-
lect enough dirty anonymous pages to form a large clus-
ter for pageout. Each page’s location on swap is assigned
(or reassigned) so that the cluster occupies a contiguous
chunk of swap and can be paged out in a single large
I/O operation. So, for example if UVM’s pagedaemon
detects dirty pages at page offsets three, five, and seven
in an anonymous object it can still group these pages
in a single cluster, while the BSD VM would end up
performing three separate I/O operations to pageout the
same pages. As a result UVM can recover from page
shortages quicker and more efficiently than BSD VM.
Figure 5 compares the time it take to allocate anony-
mous memory under BSD VM and UVM on a 333MHz
Pentium-II with thirty-two megabytes of RAM. As the

50

e—eBSDVM
=——=a UVM
40

[
o

time (seconds)

n
o

I
0 10 20 30 40 50
memory allocation (MB)

Figure 5: Anonymous memory allocation time under
BSD VM and UVM

allocation size becomes larger than physical memory,
the system must start paging in order to satisfy the re-
quest. UVM can clearly page the data much faster than
BSD VM.

7 Data Movement

UVM includes three new virtual memory based data
movement mechanisms that are more efficient than bulk
data copies when transferring large chunks of data [6].
Page loanout allows pages from a process’ address space
to be borrowed by other processes. Page transfer allows
for pages from the kernel or other processes to be in-
serted into a process’ address space easily. Map entry
passing allows processes to copy, share, or move chunks
of their virtual address space between themselves. We
are currently in the process of modifying the kernel’s
I/O and IPC systems to take advantage of these facilities
to reduce data movement overhead.

Page loanout allows a process to safely let a shared
copy-on-write copy of its memory be used either by
other processes, the I/O system, or the IPC system.
The loaned page of memory can come from a memory-
mapped file, anonymous memory, or a combination of
the two. Pages can be loaned into wired pages for the
kernel’s I/O system, or they can be loaned as page-
able anonymous memory for transfer to another process.
Page loanout gracefully preserves copy-on-write in the
presence of page faults, pageouts, and memory flushes.
It also operates in such a way that it provides access
to memory at page-level granularity without fragment-
ing or disrupting the VM system’s higher-level memory
mapping data structures. An example of where page
loanout can be used is when data is transmitted over a
socket. Rather than bulk copy the data from the user’s

memory to the kernel’s memory, the user’s pages can be
directly shared with the socket layer.

Page transfer allows pages of memory from the I/O
system, the IPC system, or from other processes to be
inserted easily into a process’ address space. Once the
pages are inserted into the process they become anony-
mous memory. Such anonymous memory is indistin-
guishable from anonymous memory allocated by tradi-
tional means. Page transfer is able to handle pages that
have been copied from another process’ address space
using page loanout. Also, if the page transfer mech-
anism is allowed to choose the virtual address where
the inserted pages are placed, then it can usually in-
sert them without fragmenting or disrupting the VM
system’s higher-level memory mapping data structures.
Page transfer can be used by the kernel to place pages
from other processes, I/O devices, or the kernel directly
into the receiving process’ address space without a data
copy.

Map entry passing allows processes and the kernel to
exchange large chunks of their virtual address spaces us-
ing the VM system’s higher-level memory mapping data
structures. This mechanism can copy, move, or share
any range of a virtual address space. This can be a prob-
lem for some VM systems because it introduces the pos-
sibility of allowing a copy-on-write area of memory to
become shared with another process. Because map en-
try passing operates on high-level mapping structures,
the per-page cost of map entry passing is less than page
loanout or page transfer, however it can increase map
entry fragmentation if used on a small number of pages
and it cannot be used to share memory with other kernel
subsystems that may access pages with DMA. Map en-
try passing can be used as a replacement for pipes when
transferring large-sized data.

The preliminary measurements of UVM’s three data
movement mechanisms show that VM-based data move-
ment mechanisms improve performance over data copy-
ing when the size of the data being transfered is larger
than a page. For example, in our tests, single-page
loanouts to the networking subsystem took 26% less
time than copying data. Tests involving multi-page
loanouts show that page loaning can reduce the process-
ing time further, for example a 256 page loanout took
78% less time than copying data. We are currently in the
process of applying these mechanisms to real-life appli-
cations to determine their effectiveness.

8 Overall UVM Performance

Replacing the old BSD VM system with UVM has im-
proved both the overall efficiency and overall perfor-
mance of the BSD kernel. For example, Figure 6 shows
the total time it takes for a process with a given amount

5000

e&——o BSD VM (data touched)
=—=a UVM (data touched)
4000 - «—+BSDVM

A~—a UVM

3000 -

2000 -

fork+wait time (usec)

1000

. . .
0 5 10 15
amount of anonymous memory (MB)

Figure 6: Process fork-and-wait overhead under BSD
VM and UVM measured on a 333MHz Pentium-II aver-
aged over 10,000 fork-and-wait cycles

Fault/mapping | BSD VM (usec) | UVM (usec)
read/shared file 24 21
read/private file 48 22
write/shared file 113 100
write/private file 80 67
read/zero fill 60 49
write/zero fill 60 48

Table 3: Single page map-fault-unmap time on a 333
MHz Pentium II.

of dynamically allocated anonymous memory to fork a
child process and then wait for that child process to exit
under both BSD VM and UVM. Thus, the plot measures
critical VM-related tasks such as creating a new address
space, copying the parent’s mappings into the child pro-
cess, copy-on-write faulting, and disposing of the child’s
address space. In the upper two plots, the child pro-
cess writes to its dynamically allocated memory once
and then exits (thus triggering a copy-on-write fault). In
the lower plots the child exits without accessing the data.
In both cases UVM clearly out performs BSD VM.

Another example of UVM’s performance gain is
shown in Table 3. The table shows the time (averaged
over 1 million cycles) it takes to memory map a page
of memory, fault it in, and then unmap the page. UVM
outperforms BSD VM in all cases. Note that read faults
on a private mapping under BSD VM are more expen-
sive that shared read faults because BSD VM allocates
a shadow object for the mapping (even though it is not
necessary).

NetBSD users have also reported that UVM’s im-
provements have had a positive effect on their applica-
tions. This is most noticeable when physical memory

becomes scarce and the VM system must page out data
to free up memory. Under BSD VM this type of paging
causes the system to become highly unresponsive, while
under UVM the system slows while paging but does not
become unresponsive. This situation can occur when
running large virtual memory intensive applications like
a lisp interpreter, or when running a large compile job
concurrently with an X server on a system with a small
amount of physical memory. In addition to improved re-
sponsiveness during paging, users of older architectures
supported by NetBSD have noticed that applications run
quicker. For example, the running time of /etc/rc
was reduced by ten percent (ten seconds) on the VAX
architecture.

9 Related Work

In UVM, we have focused our efforts on exploring key
data structures and mechanisms used for memory man-
agement. There has been little recent work in this area,
but there has been a lot of work on extensible operating
system structure. With UVM, we have created a VM
system that is tightly coupled and contains global opti-
mizations that produce a positive impact on system per-
formance. On the other hand, a goal of extensible oper-
ating systems is to allow an operating system’s functions
to be partitioned and extended in user-specified ways.
This can be achieved in a number of ways including
providing a hardware-like interface to applications (Ex-
okernel [11]), allowing code written in a type safe lan-
guage to be linked directly into the kernel (SPIN [1]),
and allowing software modules to be connected in ver-
tical slices (Scout [14, 19]). While the data structures
and mechanisms used by UVM are orthogonal to oper-
ating system structure, the effect of extensibility on the
tightly coupled global optimizations provided by UVM
is unclear. It may be possible to load UVM-like mem-
ory management into these systems, for example recent
work on the L4 microkernel [10] has shown that a port
of Linux to L4 can run with a minimal performance
penalty. However, interactions with other extensions
may have an adverse effect.

The two virtual memory systems most closely related
to UVM are the Mach VM system [18] and the SunOS
VM system [4, 9, 13]. Since BSD VM is based on
Mach VM, most of the discussion of BSD VM in this
paper applies to both VM systems (and to a lesser extent
the FreeBSD VM system). As described in Section 5
UVM incorporates and extends parts of SunOS VM’s
anonymous memory management mechanism. Dyson
and Greenman took a different approach to improving
the BSD VM data structures in FreeBSD by keeping
the same basic structure but eliminating the unnecessary
parts of the Mach VM system that BSD inherited [16].

The Linux VM system [21] provides a generic three-
level page table based interface to underlying memory
management hardware rather than a function-based API
like Mach’s pmap. All anonymous memory functions
are managed through the page table. This is limiting be-
cause it does not provide a high-level abstraction for an
anonymous page of memory, and it prevents page tables
from being recycled when physical memory is scarce.
Recent work on virtual memory support for multiple
page sizes [8] allows better clustering of I/O operations
similar to UVM’s aggressive clustering of anonymous
memory for page out. However, with large pages data
must be copied into a physically contiguous block of
memory before it can be paged out. UVM can dynami-
cally reassign anonymous memory’s swap location using
normal sized pages without copying the data.

Other recent work has focused on zero-copy data
movement mechanisms. IO-Lite [15] is a unified buffer-
ing system based on Fbufs [7]. IO-Lite achieves zero-
copy by forcing all buffers to be immutable once ini-
tialized and forcing all I/O operations to be in terms of
buffer aggregates. 10-Lite does not interact well with
memory-mapped files and is not integrated with a VM
system. Solaris zero-copy TCP [5] uses a new low-level
pmap API and ATM hardware support to provide zero-
copy TCP without effecting higher-level VM code. The
L4 microkernel [10] provides granting (remap), map-
ping, and unmapping primitives to threads to allow for
fast VM-based data movement, but it leaves issues such
as copy-on-write for higher-level software such as its
Linux server. Finally, the Genie I/O subsystem [3] in-
cludes mechanisms that allow an operating system to
emulate a copy-based API with VM-based mechanisms.
Genie’s mechanisms could be applied to UVM if such
support is desired.

10 Conclusions and Future Work

In this paper we introduced UVM, a new virtual mem-
ory system for the BSD kernel. Key aspects of UVM’s
design include:

e The reuse of BSD VM’s machine-dependent
layer. This allowed us to focus on the machine-
independent aspects of UVM without getting
bogged down in machine-specific details. This
reuse made porting UVM to architectures sup-
ported by BSD VM easy.

e The repartitioning of VM functions in more effi-
cient ways. For example, we combined BSD VM’s
two-step mapping process into a more efficient and
secure single step mapping function, and we broke
BSD VM'’s unmapping function up into smaller

functions that hold map locks for a shorter period
of time.

The reduction of duplicate copies of the same state
information. This was used in UVM to reduce map
entry fragmentation due to page wiring.

The elimination of the contention between the VM
system and other kernel subsystems. For example,
we redesigned and improved the management of
the inactive memory object cache to work with the
vnode system (rather than in parallel to it).

The elimination of complex data structures such as
BSD VM’s object chains that make accounting for
a program’s memory usage difficult and expensive.

The grouping or clustering of the allocation and
use of systems resources to improve system effi-
ciency and performance. For example, we grouped
UVM’s allocation of pager data structures and we
aggressively clustered UVM’s anonymous pageout.

Easy resource sharing with other kernel subsys-
tems. For example, UVM’s data movement mech-
anisms allow it to share its pages with the I/O and
IPC subsystem without costly data copies.

Our future plans for UVM include unifying the VM
cache with the BSD buffer cache, adding more asyn-
chronous 1I/0 support to UVM (for both pagein and pa-
geout), and adapting the BSD kernel to take advantage
of UVM’s new data movement mechanisms to improve
application performance.

Acknowledgments

We would like to thank Orran Krieger, Lorrie Faith Cra-
nor, and the anonymous reviewers for their helpful com-
ments on drafts of this paper.

References

(1]

(2]

(3]

(4]

B. Bershad et al. Extensibility, safety and performance
in the SPIN operating system. In Proceedings of the Fif-
teenth Symposium on Operating System Principles, 1996.

D. Bobrow et al. TENEX, a paged time sharing system
for the PDP-10. Communications of the ACM, 15(3),
March 1972.

J. Brustoloni and P. Steenkiste. Copy emulation in check-
summed, multiple-packet communication. In Proceed-
ings of IEEE INFOCOM 1997, pages 1124-1132, April
1997.

H. Chartock and P. Snyder. Virtual swap space in SunOS.
In Proceedings of the Autumn 1991 European UNIX
Users Group Conference, September 1991.

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

H. Chu. Zero-copy TCP in Solaris. In Proceedings of the
USENIX Conference, pages 253-264. USENIX, 1996.

C. Cranor. Design and Implementation of the UVM Vir-
tual Memory System. Doctoral dissertation, Washington
University, August 1998.

P. Druschel and L. Peterson. Fbufs: A high-bandwidth
cross-domain transfer facility. In Proceedings of the
Fourteenth ACM Symposium on Operating Systems Prin-
ciples, December 1993.

N. Ganapathy and C. Schimmel. General purpose oper-
ating system support for multiple page sizes. In Proceed-
ings of the USENIX Conference. USENIX, 1998.

R. Gingell, J. Moran, and W. Shannon. Virtual memory
architecture in SunOS. In Proceedings of USENIX Sum-
mer Conference, pages 81-94. USENIX, June 1987.

H. Hirtig, M. Hohmuth, J. Liedtke, S. Schonberg, and
J. Wolter. The performance of p-kernel-based systems.
In Proceedings of the ACM Symposium on Operating
Systems Principles, 1997.

M. Kaashoek et al. Application performance and flexi-
bility on Exokernel systems. In Proceedings of the Six-
teenth Symposium on Operating System Principles, Oc-
tober 1997.

M. McKausick, K. Bostic, M. Karels, and J. Quarterman.
The Design and Implementation of the 4.4BSD Operating
System. Addison Wesley, 1996.

J. Moran. SunOS virtual memory implementation. In
Proceedings of the Spring 1988 European UNIX Users
Group Conference, April 1988.

D. Mosberger and L. Peterson. Making paths explicit in
the Scout operating system. In Operating Systems Design
and Implementation (OSDI), pages 153-168, 1996.

V. Pai, P. Druschel, and W. Zwaenepoel. 10-Lite: a uni-
fied I/O buffering and caching system. In Operating Sys-
tems Design and Implementation (OSDI), pages 15-28.
USENIX, 1999.

The FreeBSD Project. The FreeBSD operating system.
See http://www.freebsd.org for more informa-
tion.

The NetBSD Project. The NetBSD operating system. See
http://www.netbsd. org for more information.

R. Rashid et al. Machine-independent virtual memory
management for paged uniprocessor and multiprocessor
architectures. IEEE Transactions on Computing, 37(8),
August 1988.

O. Spatscheck and L. Peterson. Defending against de-
nial of service attacks in Scout. In Operating Sys-
tems Design and Implementation (OSDI), pages 59-72.
USENIX, 1999.

R. Stevens. TCP/IP Illustrated, Volume 2: The Imple-
mentation. Addison-Wesley, 1995.

L. Torvalds et al. The Linux operating system. See
http://www.linux.org for more information.

