Threads and Input/Output in the Synthesis Kernel

Henry Massalin. and Callon Pu

Department of Computer Science
Columbia University,

New York, NY 10027

calton@cs.columbia.edu

Abstract

The Synthesis operating system kernel combines sev-
eral techniques to provide high performance, includ-
ing kernel code synthesis, fine-grain scheduling. and
optimistic synchronization. Kernel code synthesis re-
duces the execution path for frequently used kernel
calls. Optimistic synchronization increases coucurrency
within the kernel. Their combination results in signifi-
cant performance improvement over traditional operat-
g system implementations. Using hardware and soft-
ware emulating a SUN 3/160 running SUNQOS, Syvnthe-
sis achieves several times to several dozen times speedup
for UNIX kernel calls and context switch times of 21 mi-
croseconds or faster.

1 Introduction

Synthesis is an operating system kernel for a parallel
and distributed computational environment. We have
three major goals in the design and implementation of
Synthesis:

1. high performance,

2. self-tuning capability to dynamic load and config-
uration changes,

3. asimple, uniform and intuitive model of computa-
tion with a high-level interface.

In this paper, we focus on the aspects of the Synthe-
sis kernel implementation that supports threads and in-
put/output. To achieve very high performance, we com-
bine kernel code synthesis [5], which decreases kernel call
overhead through specialization, and reduced synchro-
nization, which decreases kernel thread synchronization
overhead.

Permission to copy without fee ail or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1989 ACM 089791-338-3/89/0012/0191 $1.50

191

We have introduced the principles of code synthesis
[5]. which makes the Synthesis kernel fast for several rea-
sons. Iirst, frequently executed Synthesis kernel calls
are “compiled” and optimized at run-time using ideas
stimilar to currying and constant folding. For example,
when we open a file for input, a custom-made (thus
short and fast) read routine is returned for later read
calls. Second. frequently traversed data structures are
sprinkled with a few machine instructions to make them
self-traversing. For example, the CPU dispatching, in-
cluding context-switches, is done by the ready queue
this way (for details see Figure 3). In this paper, we de-
scribe the synergy from combining code synthesis with
the other kernel implementation techniques. To make
the paper self-contained, we sumuinarize kernel code syn-
thesis and other aspects of background information in
Section 2.

In traditional OS’s, the kernel call and dispatch-
mg/scheduling overhead overshadows the kernel syn-
chronization cost. Therefore, we see traditional kernels
using powerful mutual exclusion mechanisms such as
semaphores. However, in Synthesis we have used kernel
code synthesis to trim kernel calls and context switches.
The next bottleneck turned out to be kernel internal
synchronization cost, given that the Synthesis kernel is
highly parallel. Qur answer to this problem consists of
methods that reduce synchronization in the Synthesis
kernel, described in Section 3.

To illustrate the new possibilities for performance im-
provements introduced by these techniques, we will de-
scribe two kinds of objects supported by the Synthesis
kernel, threads and 1/0. Our discussions on threads in
Section 4 and 1/0O in Section 5 are relevant to unipro-
cessor and multiprocessor systems. The distribution as-
pects of Synthesis are beyond the scope of this paper.

All the performance improvement techniques follow
from one software engineering principle, called the prin-
ciple of frugality, which says that we should use the least
powerful solution to a given problem. Since we carefully
separate the kernel implementation from the interface
specification, the principle of frugality has been applied
throughout the system. Both kernel code synthesis and
reduced synchronization are good examples. In Section
6 we present measurement data to show the effectiveness

of these techniques.

2 Synthesis Background
2.1

The Synthesis model of computation is conceptually a
von Neumann machine with threads of execution, mem-
ory protection boundaries, and 1/0 devices. To support
parallel and distributed computing, the threads of ex-
ecution form a directed graph, in which the nodes are
threads and the arcs are data flow channels. This graph
model and other support for parallel and distributed
computation will be described in more detail in another
paper [4].

Synthesis threads are threads of execution, like UNIX
processes. Some threads never execute user-level code,
but run entirely within the kernel to provide additional
concurrency for some kernel operations. Threads ex-
ecute programs in a quaspace (quasi eddress space),
which also store data. Finally, I/O devices move data
between threads, including files and messages.

On one physical node, all the Synthesis quaspaces are
subspaces of one single address space, defined by the
CPU architecture (e.g., with a 32-bit microprocessor we
have a 32-bit address space). The kernel blanks out the
part of the address space that each quaspace is not sup-
posed to see. Since they are parts of the same address
space, 1t is easy to share memory between quaspaces by
setting their address mappings. The current implemen-
tation of the kernel does not support. virtual memory.

Synthesis Model of Computation

2.2 Kernel Code Synthesis

The idea of kernel code synthesis has been introduced
in a previous paper [5]. In Synthesis, we have a code
synthesizer in the kernel to generate specialized (thus
short and fast) kernel routines for specific situations.

We have three methods to synthesize code. The Fac-
toring Invariants method bypasses redundant computa-
tions, much like constant folding. The Collapsing Lay-
ers method eliminates unnecessary procedure calls and
context switches, both vertically for layered modules
and horizontally for pipelined threads. The Executable
Data Structures method shortens data structure traver-
sal time when the data structure is always traversed the
same way.

2.3 Basic Kernel Components

To describe the Synthesis kernel implementation in con-
crete terms, we first summarize its basic components.
The Synthesis kernel can be divided into a number of
collections of procedures and data. We call these collec-
tions of procedures quajects that encapsulate hardware
resources, like Hydra objects [7]. For this paper the
most important quajects are threads and I/O device
servers. Threads are an abstraction of the CPU. The
device servers are abstractions of I/O devices. Except
for the threads, quajects consist only of procedures and
data. Events such as interrupts start the threads that
animate the quajects and do work. The quajects do not
support inheritance or any other language features.

192

Most quajects are implemented by combining a small
number of building blocks. Some of the building blocks
are well known, such as monitors, queues, and sched-
ulers. The others are simple but somewhat unusual:
switches, pumps and gauges. As we shall see in Sec-
tion 5, all of Synthesis I/O is implemented with these
building blocks. The quaject interfacer (see below) uses
optimization techniques such as Collapsing Layers to
combine these building blocks into kernel quajects.

The unusual building blocks require some explana-
tion. A switch is equivalent to the C switch state-
ment. For example, switches direct interrupts to the
appropriate service routines. A pump contains a thread
that actively copies 1ts input into its output. Pumps
connect passive producers with passive consumers. A
gauge coutits events (e.g., procedure calls, data arrival,
interrupts). Schedulers use gauges to collect data for
scheduling decisions.

Each building block may have several implementa-
tions. Applying the principle of frugality, we use the
most economical implementation depending on the us-
age. For example. there are several kinds of queues
in the Synthesis kernel. Semantically, we have the
usual two kinds of queues, the synchronous queue which
blocks at queue full or queue empty, and the asyn-
chronous queue which signals at those conditions. For
each kind, we have two implementations: dedicated
queuves and optumstic queues. Dedicated queues use
the knowledge that only one producer (or consumer)
is using the queue and omit the synchronization code.
Optimistic queues accept queue insert and queue delete
operations from multiple producers and multiple con-
sumers. The optimistic queue is described in detail in
Section 3.2.

Quajects such as threads are created by the quaject
creator, which contains three stages: allocation, factor-
ization, and optimization. The allocation stage allo-
cates memory for the quaject and all associated synthe-
sized procedures. The factorization stage uses Factor-
ing Invariants to substitute constants into the quaject’s
code templates. The optimization stage then improves
the final code with specialized peephole optimizations.

The quaject interfacer starts the execution of existing
quajects by installing them in the invoking thread. The
quaject interfacer has four stages: combination, factor-
izalion, optimization, and dynamic link. The combina-
tion stage finds the appropriate connecting mechanism
(queue, monitor, pump, or a simple procedure call).
Factorization and optimization (the same as quaject cre-
ator) clean up the connecting code. Then the dynamic
link stage stores the synthesized code’s entry points into
the quajects.

3 Reduced Synchronization

3.1

We have three methods to reduce synchronization cost:
Code Isolation, Procedure Chaining, and Optimistic
Synchronization. Each method shortens the execution
path in a somewhat different way. Informally speaking,
Code Isolation and Procedure Chaining can be thought

Overview

of as synchronization avoidance techniques. If abso-
lutely unavoidable we use Optimistic Synchronization.

Code Isolation uses kernel code synthesis Lo separate
and isolate fragments of data structure manipulation
programs. The separation eliminates unnecessary syn-
chronization if each fragment operates on its own piece
of data. For example, each thread has a Thread Ta-
ble Entry (TTE, equivalent to the proctable in UNIX).
Naive procedures that traverse the Thread Table to
modify a TTE would have to lock the table. However, in
Synthesis each thread updates its own TTE exclusively.
Therefore, we can synthesize short code to manipulate
the TTE without synchronization.

Procedure Chaining avoids synchronization by seri-
alizing the execution of conflicting threads. Instead of
allowing concurrent execution that would have compli-
cated synchronization problems, we chain the new pro-
cedure to be executed to the end of the currently run-
ning procedure. For example, the currently executing
thread handles interrupts in Synthesis. A signal arriv-
ing in the middle of interrupt handling is potentially
dangerous: the kill signal may terminate the interrupt
handling prematurely. Therefore, we chain the proce-
dure invoked by the signal to the end of the interrupt
handler. Procedure Chaining is implemented efficiently
by simply changing the return addresses on the stack.

Optimistic Synchronization assumes that interference
between threads is rare, so we should shorten the normal
non-interfering case. The idea of optimistic validation is
to go ahead and make the changes, without locking any-
thing. A check at the end of the update tests whether
the assumption of non-interference remains true. If the
test fails, we rollback the changes and retry. Using Op-
timistic Synchronization we have implemented an opti-
mistic queue, which we describe now.

3.2 Optimistic Queues

The queue manipulation example for optimistic syn-
chronization is important because most of the Synthe-
sis kernel data structures are queues. Also, some of the
control structures, such as chained interrupt and signal
handlers, are implemented as queues of pointers to the
routines. In other words, once we can synchronize queue
operations without locking, most of the Synthesis kernel
will run without locking.

Although all the queues have the usual put-item
(Q-put) and get-item (Q-get) operations, we clas-
sify them according to their operations environment.
We have four kinds of queues: single-producer and
single-consumer (SP-SC), multiple-producer and single-
consumer (MP-SC), single-producer and multiple-
consumer (SP-MC), multiple-producer and multiple-
consumer (MP-MC).

The simplest case, SP-SC (figure 1), gives the basic
idea of all four queues: when the queue buffer is neither
full nor empty, the consumer and the producer operate
on different parts of the buffer. Therefore, synchroniza-
tion is necessary only when the buffer becomes enmpty
or full. The synchronization primitives are the usual
primitives, say busy wait or blocking wait.

193

next(x):
if(x == Q_size~1) return 0;
else return x+1;

Q_get(data): Q_put (data):

t = Q_tail; h = Q_head;

if (¢t == Q_head) if (next(h) == Q_tail)
wait; wait;

data = Q_buf([t]; Q_buf [h] = data;

Q_tail = next(t); Q_head = next(h);

Figure 1: SP-SC Queue

AddWrap(x,n):
X += n;
if(x >= Qsize) x -= Qsize
return Xx;

SpacelLeft(h):
t = Q_tail;
if(h >= t) return t-h-1+Q_size;
else return t-h-1;

Q_put(data,N):
do {
h = Q_head;
h1l = AddWrap(h,N);
} while(Spaceleft(h) >= N
&& cas{Q_head,h,hl) == FAIL);
for(i=0; i<N; i++) {
Q_buf[AddWrap(h,i) 1 = datalil;
Q_flag[AddWrap(h,i) J = 1;
}

NOTE: cas(v,0ld,new) [compare-and-swap] performs the fol-
lowing operation atomically:
If(v == old) v = new; return OK; else return FAIL;

Figure 2: MP-SC Queue [Multiple Insert]

To argue the corretness of these queues, we need to
show that these queues do not lose any items being put
in or generate any items that has already been taken
out. To avoid lost updates in the SP-SC queue, we use
a variant of Code Isolation. Of the two variables being
written, Q_head is updated only by the producer and
Q-tail only by the consumer. To avoid taking ocut an
item repeatedly, we update Q.head at the last instruc-
tion during Q_put. Therefore, the consumer will not
detect an item until the producer has finished.

The difference between the SP-SC queue and the MP-
SC queue reduces to a single compare-and-swap instruc-
tion at the end plus the retry loop, to ensure the syn-
chronization of multiple producers. (Larger critical sec-
tions may require more sophisticated synchronization.)
A more interesting queue (shown in Figure 2) imple-
ments atomic inserts of many items (up to the size of
the queue). Now we have two problems to consider:
the multiple producer synchronization, solved by the
compare-and-swap, and the atomic insert of multiple
items, which we explain now.

To minimize the synchronization among the produc-

ers, each of them increments atomically the Q.head
pointer by the number of iterus to be wserted, “staking
a claim” to its space in the queue. The producer then
proceeds to fill the space, at the same time as other pro-
ducers are filling theirs. But now the consumer may not
trust Q_head as a reliable indication that there is data
in the queue. We fix this with a separate array of flag
bits, one for each queue element. As the producers fill
each queue element, they also set a flag in the associated
array indicating to the cousumer that the data item is
valid. The consumer clears an item’s flag as it is taken
out of the queue.

To give an idea of relative costs, the current imple-
mentation of MP-SC has a normal execution path length
of 11 instructions (on the MC68020 processor) through
Q_put. In the case where two threads are trymg to write
an item to a sufficiently empty queue, they will either
both succeed (if they attempt to increment Q.head at
different times), or one of them will succeed as the other
fails. The thread that succeeds consumes 11 instruc-
tions. The failing thread goes once around the retry
loop for a total of 20 instructions.

4 Threads
4.1 Synthesis Threads

Synthesis threads are light-weight processes. Each Syn-
thesis thread (called simply “thread” fromn now on) exe-
cutes in a context, defined by the TTE. The thread state
is completely described by its TTE (see figure 3) con-
taining: the register save area; the vector table. which
points to four kinds of procedures (thread-specific sys-
tem calls, interrupt handlers, error traps and signal vec-
tors); the address map tables; and the context-switch-in
and context-switch-out procedures.

Kernel code generated for a thread goes into a pro-
tected area to avoid user tampering. The kernel proce-
dure bodies that make up part of the thread are:

e the signal, start, stop, step and destroy
thread calls;

¢ the customized I/O system calls, synthesized by
open (see Section 5):

o the synthesized interrupt handlers. such as for
queue buffering (see Section 5.4);

e the specialized error trap handlers and the signal-
me procedures (see Section 4.3).

When a Synthesis thread makes a kernel call, we say -

that the thread is executing in the kernel mode: this
is in contrast to having a kernel server process run the
kernel call on the behalf of the client thread. The trap
instruction switches the thread into the supervisor state
and makes the kernel quaspace accessible in addition to
the user quaspace. Consequently, the kernel call may
move data between the user quaspace and the kernel
quaspace. Since the other quaspaces are outside the
kernel quaspace, were the thread to attempt access to
an illegal address, the thread will take a bus-fault ex-
ception, even in the kernel mode.

194

If a thread is not running, it is watling. A waiting
thread is blocked for some event or resource. Each re-
source hias its own waiting queue. For example, a thread
waiting for CPU is sitting in the ready queue; when
the thread blocks for characters from a tty driver, it is
chained to the tty driver queue. Spreading the waiting
threads makes blocking and unblocking faster. Since
we have eliminated the general blocked queue, we do
not have to traverse it for insertion at blocking or to
search it for deletion at unblocking. A waiting thread’s
unblocking procedure is chained to the end of the inter-
rupt handling, so each waiting queue has reduced syn-
chronization due to Code Isolation.

4.2 Context Switches

Context switches are expensive in traditional systems
like UNIX because they always do the work of a complete
switch: save the registers in a system area, setup the C
run-time stack, find the current proc-table and copy the
registers into proc-table, start the next process, among
other complications (summarized from source code [1}).
A Synthesis context-switch is shorter for two reasons.
First, we switch only the part of the context being used,
not all of it. Second, we use executable data structures
to minimize the critical path.

In two instances we can optimize context switch by
moving data only when they are used. The first is the
handling of floating point registers and the second is the
MMU address space switch. Most of Synthesis threads
do not use the floating point co-processor. If we were
to save all the floating point co-processor information
at each context switch, the hundred-plus bytes of infor-
mation takes about 10 microseconds to save to memory,
which is comparable to the 11 microseconds needed to
do an entire context switch without the floating point
(see Section 6.3 for more data). Since most threads
will not use the floating point co-processor, we gener-
ate the default context switch code without it. When
the thread executes its first floating point instruction,
an illegal instruction trap happens. Then the Synthe-
sis kernel resynthesizes the context switch procedures to
iclude the floating point co-processor. This way, only
users of the floating point co-processor will pay for the
added overhead.

There is no “dispatcher” procedure in Synthesis. Fig-
ure 3 shows that the ready-to-run threads (waiting for
CPU) are chained in an executable circular queune. A
jmp instruction in each context-switch-out procedure
of the preceding thread points to the context-switch-
in procedure of the following thread. Assume thread-0
is currently running. When its time quantum expires,
the terrupt is vectored to thread-0’s context-switch-
out procedure {sw_out). This procedure saves the CPU
registers into thread-0’s register save area (TTO.reg}.
The jmp instruction then directs control flow to one of
two entry points of the next thread’s (thread-1) context-
switch-in procedure, sw-in or sw_inaumu. Control flows
to sw_in_mmu when a change of address space is required,
otherwise control flows to sw_in. The context-switch-
in procedure then loads the CPU’s vector base register

Thread 0 Thread 1
Thread Table Thread Table
. R TT1.reg: :
TT0.reg: General Registers General Registers
ed Sy
.vbr: | dress error C
TTO.vbr:| Error |_Address error =4 TT1.¥ Error —%?\Tdcs% <1y . .
Divide by 0 > i [s) Synthesized
&) Synthesized Traps
Traps o Code 9] 5 [Code
<a
Read [ca Read
System [yre] System Fwiie sl
Calls o ™™ Calls S
g_/_) To tty service oo o—-/\)ny
o routine Disk o .
Interrupts [Risk — g—\ Interrupts | Disk_— H——> disk
) [)
- To disk service SW oul: <
o - routine ™ ma d0-d7,a0-a7>,TT1.re
movem.! <d0-d7,a0-a7>,TT0.reg fnovem.l < 8 ,TTl.reg
jop jmp
i sW_in_mmu:
sW_in_mmu: o
" move TT0.map, mmu_ctl ‘move TT1.map, mmu_ctl
i sw_in:
sw_in;]
" move TTO.vbr, a0 move ':;I'i;br, a0
move a0,vbr move A
move TTO.reg, <d0-d7,a0-a7> move TTlreg, <d0-d7,a0-a7>
e re
Thread3
Shread N = Thread2
X3 ce o/ = =3

Figure 3: Thread Context

with the address of thread-1’s vector table, restores the
CPU general registers, and resumes execution of thread-
1. The context switch takes about 11 microseconds (see
Table 4). This is a striking example of what can be
achieved with optimization through synthesized code.

4.3 Thread Operations

As a quaject, the thread supports several operations.
Some of these operations are invoked by the hardware;
the error trap handlers and the interrupt handlers fall
nto this category. Some of the operations are invoked
by other threads; these are signal, start, stop, and
step. We will introduce briefly these operations here
and describe mterrupt handling in Section 5.3.

In Synthesis (as in many other systems), a signal is
an asynchronous soft ware interrupt sent by a thread (or
interrupt handler) to another thread. A synthesized
signal system call (the signal-me procedure) in the re-
ceiving thread calls the signal handler procedure. To
run the signal handler in user mode and user quaspace,
the signal system call alters the general registers area
of the receiving thread’s TTE to make the receiving
thread call the signal handler when activated.

Thread control and debugger support is implemented

195

with three synthesized system calls: stop, start, and
step. The stop system call suspends execution of a
thread by removing the thread’s TTE from the ready
queue. The start system call puts the TTE back when
invoked. The step system call causes a stopped thread
to execute a single machine instruction and then stop
again. The debugger runs as an asynchronous thread
that shares the quaspace being debugged.

An error trap is a synchronous hardware interrupt
generated by illegal operations such as referencing non-
existent memory or dividing by zero. Like other
hardware interrupts, error trap handlers run in kernel
mode. Unlike other hardware interrupts, error traps are
synchronous since they occur immediately after each il-
legal operation. Each thread may have its own error
trap handlers. To allow arbitrarily complex error han-
dling in user mode, we send an error signal to the inter-
rupted thread itself. The error signal handler then runs
in user mode (as described above). To send this error
signal, the error trap handler copies the kernel stack
frame onto the user stack, modifies the return address
on the kernel stack to the user error signal procedure,
and executes a return from exception which takes the
thread into the user error signal procedure. Synthesized

for each thread at creation time, these error trap han-
dlers consume about 5 machine instructions, support-
ing efficient emulation of unimplemented kernel calls or
machine instructions. The UNIX emulator used for per-
formance measurement is implemented with traps.

4.4 Scheduling

Currently, the Synthesis scheduling policy is round-
robin with an adaptively adjusted CPU quantum per
thread. Instead of priorities, Synthesis uses fine-grain
scheduling, which assigns larger or smaller quanta to
threads based on a “need to execute” criterion. A de-
tailed explanation on fine-grain scheduling is beyond the
scope of this paper; the idea and its implementation in
Synthesis are described in detail in another paper [3].
Here, we only give a brief informal summary.

In our directed graph model of computation {Section
2.1), a thread’s “need to execute” is determined by the
rate at which 1/0 data flows into and out of its qua-
space. Since CPU time consumed by the thread is an
increasing function of the data flow, the faster the 1/0O
rate the faster a thread needs to run. Therefore, our
scheduling algorithm assigns a larger CPU quantum to
the thread. This kind of scheduling must have a fine
granularity since the CPU requirements for a given I/0O
rate and the I/O rate itself may change quickly, requir-
ing the scheduling policy to adapt to the changes.

Effective CPU timie received by a thread is determined
by the quantum assigned to that thread divided by the
sum of quanta assigned to all threads. Priorities can
be simulated and preferential treatment can be given to
certain threads in two ways: we may raise a thread’s
CPU quantum, and we may reorder the ready queue
when threads block and unblock. As an event unblocks
a thread, its TTE is placed at the front of the ready
queue, giving it immediate access to the CPU. This way
we minimize response time to events. To minimize time
spent context switching, CPU quanta are adjusted to be
as large as possible while maintaining the fine granular-
ity. A typical quantum is on the order of a few hundred
microseconds.

5 Input/Output

In Synthesis, I/O means more than device drivers. 1I/0O
includes all data flow among hardware devices and
quaspaces. Data move along logical channels we call
streams, which connect the source and the destination
of data flow. The details of the stream model of I/O will
be described in a separate paper {4]. Here we describe
how the streams are implemented using the building
blocks described in Section 2.3.

5.1 I/0 Device Servers

Physical I/O devices are encapsulated in quajects called
device servers. Typically, the device server interface
supports the usual I/O operations such as read and
write. In general, write denotes data flow in the same
direction of control flow (from caller to callee}, and read
denotes data flow in the opposite direction of control
flow (from callee back to caller).

196

Each device server may have its own threads or not.
A polling I/0 server would run continuously on its own
thread. An interrupt-driven server would block after
its initialization. The server without threads wakes up
when its physical device generates an interrupt.

High-level servers may be composed from more basic
servers. At boot time, the kernel creates the servers for
the raw physical devices. A simple example pipelines
the output of a raw server into a filter. Concretely, the
Synthesis equivalent of UNIX cooked tty driver is a filter
that processes the output from the raw tty server and
interprets the erase and kill control characters. This
filter rcads characters from the raw keyboard server
through a dedicated queue. To send characters to the
screen, however, the filter writes to an optimistic queue,
since output can come from both a user program or the
echoing of input characters.

The default file system server is composed of several
filter stages. Connected to the disk hardware we have a
raw disk device server. The next stage in the pipeline
is the disk scheduler, which contains the disk request
queue, followed by the default file system cache man-
ager, which contains the queue of data transfer buffers.
Directly connected to the cache manager we have the
synthesized code to read the currently open files. The
other file systems that share the same physical disk unit
would connect to the disk scheduler through a monitor
and switch. The disk scheduler then will redirect the
data flow to the appropriate stream. With synthesized
code, this pipeline has a very low overhead, shown by
the measurements in Section 6.

5.2 Producer/Consumer

The implementation of the stream model of 1/0 in Syn-
thesis can be summarized using the well-known pro-
ducer/consumer paradigm. Each stream has a control
flow that directs its data flow. There are three cases of
producer/consumer relationships, which we shall con-
sider in turn.

Perhaps the simplest case is an active producer and
a passive consumer (or vice-versa). This case, called
active-passive, has simple implementations. When there
is only one producer and one consumer (single-single),
a procedure call does the job. If there are multiple pro-
ducers or consumers (multiple-single), we attach a mon-
itor to the end with multiple participants to serialize
their access.

But the normal producer/consumer problem has both
an active producer and an active consumer. This case,
called active-active, requires a queue to mediate the two.
For the single-single case, an SP-SC queue suffices. For
the multiple-single case, we may attach a monitor to the
multiple end, resulting in MP-SC or MP-MC queues.
Each queue may be synchronous (blocking) or asyn-
chronous (using signals) depending on the situation.

The last case is a passive producer and a passive con-
sumer. One example is the xclock program that has
the clock producer ready to provide a reading at any
time and a display consumer that accepts new pixels
to be painted on the screen. In these cases, we use a

pump quaject that reads (the clock time) from the pro-
ducer and writes the information (new pixels) to the
consumer. This works for multiple passive producers
and consumers as well.

In summary, we have an efficient implementation for
each case of the producer/consumer problem. Since the
stream model of 1/O can be easily described as a com-
position of producers and consumers through the three
building blocks (switches, monitors, and queues), we
have shown the generality of the Synthesis implemen-
tation. In practice, composing a new device server with
these building blocks is straightforward.

5.3 Interrupt Handling

At the heart of an I/O device server is the interrupt
handler. Interrupt processing combines some elements
of procedure calls and others of context switches. Like
a procedure call, an interrupt pushes the currently ex-
ecuting stack and the return address. When the inter-
rupt handling finishes, the execution resumes from the
interrupted instruction in the current thread. Like a
context switch, an interrupt is unexpected and unre-
lated to the current thread. Furthermore, the interrupt
handler temporarily changes the program counter and
some general registers of the current thread, without re-
ceiving any arguments from or returning any results to
the current thread.

Synthesis interrupt handling differs from some tradi-
tional OS’s (such as UNIX) in that each thread in Syn-
thesis synthesizes its own interrupt handling routine, as
well as system calls. These customized interrupt han-
dlers and system calls may run much faster than general-
purpose equivalents. Two examples of synthesized inter-
rupt handlers are the timer interrupt to context switch
out the current thread (Section 4.2) and the analog to
digital (A/D) buffered queue (Section 5.4).

One way to increase the concurrency in the kernel is
to push the bulk of interrupt processing (e.g., a charac-
ter arrives at /dev/tty, to be inserted into the queue)
into a separate thread which is created by the interrupt
handler. However, in most cases the separate thread is
uneconoinical, since normal interrupts require very lit-
tle processing. For the simple cases the interrupt han-
dler could run under the currently executing thread to
avold context switch. We only have to take care to save
and restore the few registers that the interrupt handler
will use. During the (short) interrupt processing, higher
level interrupts may happen and as long as the interrupt
handling is stimple, the scenario repeats until eventually
the highest level interrupt processing completes and re-
turns to the next level. Ultimately the entire stack of
interrupts is handled.

Even though the thread running the simple inter-
rupt handler can take care of recursive interrupts, sig-
nals may cause synchronization problems. We have two
choices to handle a signal in the middle of an interrupt:
either we create a new thread to finish the interrupt,
or we delay the processing of the signal. Delaying the
signal costs less, since it bypasses the creation of a new
thread, and it does not degrade system performance sig-

197

nificantly, since the current interrupt handling should
be quick. We use Procedure Chaining to delay the sig-
nal, linking the signal processing routine to the end of
interrupt handler.

Each Synthesis thread has its own vector table, which
points to routines servicing hardware interrupts, error
traps, and system calls. Although in principle each
thread may have a completely different set of interrupt
handlers, currently the majority of them are shared by
all threads. System calls, however, are frequently cus-
tomized for each thread. In particular, I/O operations
such as read and write are synthesized by the open
operation. As new quajects are opened (such as files,
devices, threads, and others), the thread’s system call
vectors are changed to point to the synthesized proce-
dures. At its creation, a thread’s vector table is filled
with a default set of system calls and error vectors that
help debugging.

5.4 Optimizations

At boot time, the kernel uses Collapsing Layers to op-
timize the device servers. For example, instead of com-
municating to the raw sty through a pipe (as in the con-
ceptual model) the cooked tty makes a procedure call to
the raw tty to get the next character. This transforms
a combination of active-passive producer/consuner patr
into a procedure call. Down the pipeline, the cooked tty
actively reads and the tty device itself actively writes,
forming an active-active pair connected by an SP-SC
optimistic queue.

Another optimization is the buffered queune. Usually,
queue operations are cheap (a dozen instructions) com-
pared to the processing time of each element in the
queue., However, 1 the kernel we have cases of data
movement that do very little work for each queue op-
eration, thus the queue operations become the main
overhead. Buffered queues use kernel code synthesis
to generate several specialized queue insert operations
(a couple of instructions); each moves a chunk of data
into a different area of the same queue element. This
way, the overhead of a queue insert is amortized by the
blocking factor. For example, the A/D device server
handles 44,100 (single word) interrupts per second by
packing eight 32-hit words per queue element (hardware
described in Section 6.1).

6 Measurements

6.1

The current implementation of Synthesis runs on an
experimental machine (called the Quamachine), which
is similar to a SUN-3: a Motorola 68020 CPU, 2.5 MB
no-wait state main memory, 390 MB hard disk, 31 inch
floppy drive. In addition, it has some unusual I/O de-
vices: two-channel 16-bit analog output, two-channel
16-bit analog input, a compact disc player interface, and
a 2Kx2Kx8-bit framebuffer with graphics co-processor.

The Quamachine is designed and instrumented to aid
systems research. Measurement facilities include an in-
struction counter, a memory reference counter, hard-
ware program tracing, and a microsecond-resolution in-

Environment

====Raw Sun Data=== Sun Synthesis Synthesis
No Descr user sys tot watch U+S Emulator Ratio thruput
1 Compute 19.8 0.5 20 20.9 20.3 21.42 0.95
2 R/W pipe 1 0.4 9.6 10 10.2 1¢.0 0.18 56. 100KB/s
3 R/W pipe 1024 0.5 14.6 15 15.3 15.1 2.42 6.2 8MB/sec
4 R/W pipe 4096 0.7 37.2 38 38.2 37.9 9.64 3.9 8MB/sec
5 R/W file 0.5 20.1 21 23.4 20.6 2.91 7.1 6MB/sec
6 open null/close 0.5 17.3 17 17.4 17.8 0.69 26.
7 open tty/close 0.5 42.1 43 43.1 42.6 0.88 48.

Table 1: Measured UNIX System Calls (in seconds)

terval timer. The CPU can operate at any clock speed
from 1 MHz up to 50 MHz. Normally we run the Qua-
machine at 50 MHz. By setting the CPU speed to 16
MHz and introducing 1 wait-state into the memory ac-
cess, the Quamachine can closely emulate the perfor-
mance of a SUN-3/160.

We also have written a UNIX emulator running on
top of the Synthesis kernel, which 1s capable of servicing
SUNOS kernel calls. In the simplest case, the emulator
translates the UNIX kernel call into an equivalent Syn-
thesis kernel call. Otherwise, multiple Synthesis primi-
tives are combined to emulate a UNIX call. With both
hardware and software emulation, we run the same ob-
ject code on equivalent hardware to achieve a [air com-
parison between Synthesis and SUNOS.

All benchmark programs were compiled on the SUN
3/160, using cc ~0 under SUNOS release 3.5. The exe-
cutable a. out was timed on the SUN, then brought over
to the Quamachine and executed under the UNIX em-
ulator. To validate our emulation, the first benchmark
program is a compute-bound test of similarity between
the two machines. This test program implements a func-
tion producing a chaotic sequence [2]. It touches a large
array at non-contiguous points, which ensures that we
are not just measuring the “in-the-cache” performance.

6.2 Comparing Synthesis with SUNOS

The purpose of making the Synthesis hardware and soft-
ware emulate the SUN 3/160 is to compare Synthesis
with SUNOS kernel calls. Since the executables are the
same, the comparison is direct. In table 1 we sum-
marize and compare the results of the measurements.
The columns under “Raw SUN data” were obtained
with the time command and also with a stopwatch.
The SUN was unloaded during these measurements, as
time reported more than 99% CPU available for them.
The Synthesis emulator data were obtained by using
the microsecond-resolution real-time clock on the Qua-
machine, rounded to hundredths of a second. These
times were also verified with stopwatch (sometimes run-
ning each test 10 times to obtain a more easily measured
time interval).

The source code for the programs numbered 1 to 7 are
included in appendix A. Program 1 is the computation-
intensive calibration function to validate the hardware
emulation. The calibration program shows the Synthe-
sis emulator to be roughly 5% slower than a SUN 3/160.

198

Recently we learned that the SUN 3/160 runs actually
at 16.7 MHz, which is about 5% faster than 16 MHz.

Programs 2, 3, and 4 write and then read back data
from a pipe in chunks of 1, 1K and 4K bytes. They show
a remarkable speed advantage (56 times) for single-byte
read/write operations. This is due to a combination
of synthesized kernel calls, which are very short, and
fine-grain scheduling, which reduces the average queue
operation costs. When the chunk grows to page size,
the difference is still very significant (4 to 6 times). The
generated code loads long words from one quaspace into
registers and stores them back in the other quaspace.
With unrolled loops this achieves the data transfer rate
of about 8MB per second. Program 5 reads and writes
a file (cached in main memory) in chunks of 1K bytes.
This is the same program used in an earlier measure-
ment of Synthesis [5] and shows some improvement in
the current implementation of Synthesis.

We include the programs 6 and 7, which open/close
/dev/null and /dev/tty, to show that Synthesis ker-
nel code generation is very efficient. The open and close
operations synthesize code for later read and write, yet
they are 20 to 40 times faster than the UNIX open with-
out code generation. Although this Synthesis file system
15 entirely memory-resident, the 10000 loops must have
kept all the data pages in the SUNOS memory buffers,
mintimizing this difference. Table 2 contains more de-
tails of file system operations that are discussed in the
next section.

6.3 Synthesis Kernel Calls

To obtain direct timings of Synthesis keruel call times
(in microseconds), we use the Synthesis kernel monitor
execution trace, which records in memory the instruc-
tions executed by the current thread. Using this trace,
we can calculate the exact kernel call times by counting
the memory references and each instruction execution
time. Tables 2 to 5 show the timings calculated for SUN
emulation mode. (When running full speed at 50 MHz,
the actual performance is about three times faster.)

In table 2 we have more file and device I/O oper-
ations. These operations are the native Synthesis file
and device calls. A comparison of the native mode and
the emulator mode shows the cost of UNIX emulation
in Synthesis. Worth noting in Table 2 is the cost of
open. The simplest case, open (/dev/null), takes 49
microseconds, of which about 60% are used to find the

native Unix

operation time (usec) emulation (usec)
emulation trap overhead - 2

open (/dev/null) 43 49

open (/dev/tty) 62 68

open (file) 73 85

close 18 22

read 1 char from file 9 (*) 10 (*)
read N chars from file 9+N/8 (%) 10+N/8 (*)
read N from /dev/null 6 8

(*) Data already in kernel queues or buffer cache.

Table 2: File and Device I/O (in microseconds)

operation time (usec)

Ccreate 142

destroy 11

stop 8

start 8

step 37

signal 8 (thread to thread)

Table 3: Thread Operations (in microseconds)

file (hashed string names stored backwards) and 40%
for code synthesis (read and write null}. The additional
19 microseconds in opening /dev/tty come from gener-
ating real code to read and write. Finally, opening a file
implies synthesizing more sophisticated code and buffer
allocations (17 additional microseconds).

In table 3, we see that Synthesis threads are light-
weight ~ less than 150 microsecond creation time.
Of these, about 100 are needed to fill approximately
1KBytes in the TTE and the rest are used by code syn-
thesis. The short time to start, stop, and step a thread
makes it possible to trace and debug threads in a highly
interactive way.

In table 4 we see the context switch times consumed
by the dispatcher. Again we note that these timings are
achieved with generated code (executable data struc-
tures, in this case). The separation between using and
not using the floating point co-processor is to shorten
the main critical path (explained in Section 4.2). Table
5 shows some timings for interrupt handling, alarm set-
ting and handling, and signaling. For example, raw tty

operation time (usec)

Full context switch 11 (*)

Full context switch 21 (with FP registers)
Partial context switch 3 :
Block thread 4

Unblock thread 4

(%} If the thread does not use the Iloating Point co-
processor.

Table 4: Dispatcher/Scheduler (in microseconds)

199

operation time (usec)

Service raw TTY interrupt 16

Service raw A/D interrupt 3

Set alarm 9

Alarm interrupt 7

Chain to a procedure 4 (if no re-try)
Chain to a procedure 7 (with 1 re-try)
Chain (signal) a thread 9 (delayed interrupt)

Table 5: Interrupt Handling (in microseconds)

interrupt handling simply picks up the character.

Atlentive readers would have noticed that our mea-
surement figures are faster than traditional run-time
library routines. For example, naive implementations
ol memory allocation, block copy, and string compari-
son would have slowed down our system considerably.
In Synthesis, the memory allocation routine is an exe-
cutable data structure implementing a fast-fit heap [6]
with randomized traversal added. The block copy as
used in read has been outlined in Section 6.2. The
string comparison was mentioned as part of the open
earlier in this section.

6.4 Kernel Size

The Synthesis kernel s written in 68020 assembly lan-
guage, which is used as a fast prototyping language.
This may sound peculiar, since usually people use high-
level programming languages for fast prototyping. How-
ever, given the lack of support for efficient dynamic code
synthesis in particular and efficient static code genera-
tion in general, we were unable to find a suitable com-
piler. We are actively pursuing the design and imple-
mentation of a high-level programming language for the
development of the next-generation Synthesis.

A rough breakdown of the kernel shows about 3000
lines of code for the raw device drivers (TTY, disk, A/D
and D/A, graphics), 1000 lines for the quaject creator
and interfacer, 1000 lines for the templates used in code
synthesis (e.g. queues, threads, files), 1000 lines for util-
ities and shared library (e.g. print{), and about 5000
lines for the kernel monitor with high-level debugging
and programming tools. The whole kernel assembles to
64K Bytes, of which 32KB are the kernel monitor.

There is some concern on kernel size when using code
generation since many little functions can add up to a
lot of memory. However, there are space advantages to
code generation. While it is true that a synthesis kernel
running several hundred threads each having many open
files can use more memory than a UNIX system running
a similar load, such heavily loaded systems are not nor-
mally seen. On a lightly loaded system, the static kernel
size dominates any space allocated dynamically. This is
where Synthesis excels. With 3 processes running, the
Svnthesis kernel occupies only 32IK. As more threads are
created and more files opened, the space requirements
go up. However, the small static space required for the
kernel means that you can run Synthesis on small, PC-
like computers and embedded industrial controllers, two

application areas that are unlikely to have much more
than a few tens of threads running simultaneously. On
the other hand, if you have a machine that can run
300 jobs concurrently, then you probably have the ex-
tra memory space to run them well.

7 Conclusion

We expect the techniques described here to be useful to
operating system implementors. Specifically, we have
used kernel code synthesis, optimistic synchronization,
and fine-grain scheduling to increase OS kernel concur-
rency and efficiency in the implementation of the Syn-
thesis kernel support for threads and input/output.

To achieve very high performance in Synthesis, we re-
peatedly apply the principle of frugality, which says that
we should use the simplest abstraction and the cheap-
est implementation for each case. Given the level of ab-
straction of Synthesis kernel interface (all references to
kernel data structures or algorithms eliminated), we can
then use sophisticated algorithms to implement this in-
terface. Although we use many different tricks to speed
up the Synthesis kernel, their common theme is the sim-
plification of the normal case, as dictated by the princi-
ple of frugality.

Kernel code synthesis shortens the normal execution
path by binding the system state early; subsequent ker-
nel calls simply jump into the generated routines, avoid-
ing the system state traversal repetition. At code gen-
eration titne, we also apply known compiler optimiza-
tion techniques, such as constant folding and common
sub-expression elimination. This is applied throughout
Synthests, including threads and input/output.

Reduced synchronization shortens the critical path
by careful set-up and exception handling. For exam-
ple, we have implemented queue operations using only
Optimistic Synchronization. Since almost all of Synthe-
sis kernel data structures are queues, the kernel basi-
cally runs without any inter-locking. We expect this to
be especially important when we move Synthesis to a
multi-processor, as it is designed for.

Combining kernel code synthesis and optimistic syn-
chronization we have achieved very high performance
compared to mature, commercial systems. For exam-
ple, using a UNIX emulator running on a hardware em-
ulator of SUN 3/160 to run the same binary executable,
Synthesis performance (for I/O and threads) is several
times or several dozen times better than SUNOS. Since
optimistic synchronization is best suited for a multi-
processor and fine-grain scheduling for a distributed sys-
tem, we expect more performance gains when we run
Synthesis on those environments.

8 Acknowledgments

This work is partially funded by the New York State
Center for Advanced Technology on Computer and
Information Systems under the grant NYSSTF CU-
0112580, by the AT&T Foundation under a Special Puz-
pose Grant, and by the National Science Foundation
under the grant CDA-88-20754. We gladly acknowl-

200

edge the hardware parts contributed by AT&T, Hitachi,
IBM. and Motorola. Finally, very special thanks go to
John Qusterhout. our “shepherd” SOSP program com-
mittee member, who helped shape both the style and
the content of this paper.

References

[1] Anonymous et al.

SUNOS release 3.5 source code.

SUN Microsystems Source License, 1988.

Douglas Hofstadter.

Gadel, Escher, Bach: an eternal golden braid.

Basic Books, 1979.

H. Massalin and C. Pu.

Fine-grain scheduling.

In Procecdings of the Workshop on Experience in
Building Distributed Systems, Asilomar, Calilfor-
nia, October 1989.

C. Pu and H. Massalin.

Model of computation in Synthesis.

Technical Report CUCS-383-88, Department of
Computer Science, Columbia University, In
preparation.

C. Pu, H. Massalin, and J. Ioannidis.

The Synthesis kernel.

Computing Systems, 1(1):11-32, Winter 1988.

C.J. Stephenson.

Fast fits.

In Proceedings of the Ninth ACM Symposium on Op-
eraling Systems Principles, pages 30-32, Octo-
ber 1983.

W.A. Wulf, E. Colhen, W. Corwin, A. Jones,
R. Levin, C. Pierson, and F. Pollack.

Hydra: The kernel of a multiprocessing operating
system.

Communications of ACM, 17(6):337-345, June
1974.

2

(3]

A Measurement Programs

/*Test #1, "compute" */

#define N 500000
int x[N];
main()
{

int i;

for(i=5; i--;)

gQ;

printf ("%d\n%d\n", x{N-2], x[N-1]);
}
g()
{

int i3

x[0] = x[1] = 1;

for(i=2; i<N; i++)

x[{i] = x[i-x[i-1]] + x[i-x[i-2]];

}
/* Test #2,"R/W pipe 1" Test #3,"R/W pipe 1024" Test #4,"R/W pipe 4096" */
#define N 1024 /* or 1 or 4096 *x/
char x[N];
main()
{

int fdl2],i;

pipe(£d);

for (i=10000; i--;) {
write(£d4[1], x, N);
read(£d{0], x, N);

}

/% Test 5,"R/W file" */
#include <sys/file.h>
#define N 1024

char x[¥};
main()
{
int £,1,5;

f = open("file", D_RDWR | O_CREAT | O_TRUNC, 0666);
for (3=1000; j--;) {
1seek(f, OL, L_SET);
for(i=10; i--;)
write(f, x, N);
lseek(f, OL, L_SET);
for(i=10; i--;)
read(f, x, N);
}
close(f);
}

/% Test #6,"open null" Test #7,"open tty" */
#include <sys/file.h>

#define D */dev/null" /* or /dev/tty */
main()
{

int f,1;

for (i=10000; i--;) {
f = open("/dev/null', O_RDONLY);
close(f);

201

