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Abstract This systems challenge is magnified by three trends that increase
the generality of services. First, services themselves are becoming
more complex, with static content replaced by dynamic content that
involves extensive computation and I/O. Second, service logic tends to
change rapidly, which increases the complexity of engineering and de-
ployment. Third, services are increasingly hosted on general-purpose
facilities, rather than on platforms that are carefully engineered for a
aparticular service. As these trends continue, we envision that a rich
array of novel services will be authored and pushed into the infrastruc-
ture where they may become successful enough to scale to millions
of users. Several investigations are addressing the high-level aspects
of service authorship, including naming, lookup, composition, and ver-
sioning [16, 21, 22, 53, 55]. We focus here on the performance aspect of
the problem: achieving robust performance on a wide range of services

We propose a new design for highly concurrent Internet services, which
we call thestaged event-driven architectuf8EDA). SEDA is intended
to support massive concurrency demands and simplify the construc-
tion of well-conditioned services. In SEDA, applications consist of a
network of event-driverstagesconnected by explicijueues This ar-
chitecture allows services to be well-conditioned to load, preventing
resources from being overcommitted when demand exceeds service ¢
pacity. SEDA makes use of a set d@fnamic resource controller®
keep stages within their operating regime despite large fluctuations in
load. We describe several control mechanisms for automatic tuning
and load conditioning, including thread pool sizing, event batching, and
adaptive load shedding. We present the SEDA design and an implemen
tation of an Internet services platform based on this architecture. We ™~ "~ L . . . ;
evaluate the use of SEDA through two applications: a high-performanceSUbJeCt Fo h.UQG. variations in load, whﬂg preserving ease of authorshlp.
HTTP server and a packet router for the Gnutella peer-to-peer file shar-, Replication is a key_ aspect Qf service scalability. G!ven a service
ing network. These results show that SEDA applications exhibit higher instance that can sustain a ce_rtaln Ieve_l of performance, it must be repli-
performance than traditional service designs, and are robust to hugec"’.1t6d tosustain a m_any-fo_ld INCrease in load. _Scala_lble clusters are now
variations in load. widely used to obtain replication within a service site [18], and wide-
area replication is increasingly employed for specific services, such as
. content distribution networks [1, 3, 19]. However, because the peak
1 Introduction load may be orders of magnitude greater than the average, it is not
The Internet presents a computer systems problem of unprecedente@ractical to replicate most services to handle the maximum potential
scale: that of supporting millions of users demanding access to serviceglemand. Therefore, we expect large spikes in the load experienced by
that must be responsive, robust, and always available. The number ofach node. Our goal is to develop a general framework for authoring
concurrent sessions and hits per day to Internet sites translates into aRighly concurrent and well-conditioned service instances that handle
even higher number of /O and network requests, placing enormousload gracefully.
demands on underlying resources. Yahoo! receives over 1.2 billion ~ Unfortunately, traditional operating system designs and widely pro-
page views daily [62], and AOL's Web caches service over 10 billion moted models of concurrency do not provide this graceful management
hits a day [2]. Moreover, Internet services experience huge variations inof load. Commodity operating systems focus on providing maximal
service load, with bursts coinciding with the times that the service has transparency by giving each process the abstraction of a virtual machine
the most value. The well-documented “Slashdot Effect” shows that it is With its own CPU, memory, disk, and network. This goal is somewhat at
not uncommon to experience more than 100-fold increases in demand)dds with the needs of Internet services, which demand massive concur-
when a site becomes popular [58]. As the demand for Internet services'€ncy and extensive control over resource usage. Processes and threads
grows, new system design techniques must be used to manage this loadire well-supported models of concurrent programming, but often entail
high overhead in terms of context-switch time and memory footprint,
For more information as well as a source-code re- Which limits concurrency. Transparent resource virtualization prevents
lease of the software described in this paper, please see applications from making informed decisions, which are vital to man-
http://iwww.cs.berkeley.edu/"mdw/proj/seda/ . aging excessive load.
Much work has focused on performance and robustness for specific
services [4, 24, 44, 63]. However, with services becoming increas-
To appear in the Eighteeth Symposium on Operating Systems Principles ingly dynamig and flexi.ble, this engineering burden becomes excessive.
(SOSP-18), Chateau Lake Louise, Canada, October 21-24, 2001. Few tools exist that aid the development of hlgh|y concurrent, well-
conditioned services; our goal is to reduce this complexity by providing
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We propose a new design framework for highly concurrent server $ @
applications, which we call thestaged event-driven architecture
(SEDA)! SEDA combines aspects of threads and event-based program-
ming models to manage the concurrency, I/O, scheduling, and resource
management needs of Internet services. In SEDA, applications are con-
structed as a network stageseach with an associatéacoming event
queue Each stage represents a robust building block that may be indi-

dispatch % send result| |+ vork
vidually conditioned to load by thresholding or filtering its event queue.
In addition, making event queues explicit allows applications to make

%
informed scheduling and resource-management decisions, such as re-

ordering, filtering, or aggregation of requests. SEDA makes usly-of : @
namic resource throttlingp control the resource allocation and schedul-
ing of application components, allowing the system to adapt to overload
conditions.

This paper describes the design, architecture, and implementatio
of a SEDA-based Internet services platform. This platform provides
efficient, scalable I/O interfaces as well as several resource control
mechanisms, including thread pool sizing and dynamic event schedul-
ing. We evaluate the framework through two applications — a high-
performance HTTP server and a packet router for the Gnutella peer-

Figure 1:Threaded server design:Each incoming request is dispatched to a
separate thread, which processes the request and returns a result to the client.
Edges represent control flow between components. Note that other I/O opera-
r}ions, such as disk access, are not shown here, but would be incorporated into
each threads’ request processing.

model, shown in Figure 1, each accepted request consumes a thread to
. . -~ process it, with synchronization operations protecting shared resources.
to-peer file-sharing network. We present performance and scalablllty-l-he operating system overlaps computation and 1/O by transparently
results for these applications, demonstrating that SEDA achieves ro'switching among threads

bus@ness over huge variations in load and outperforms other service Although relatively easy to program, the overheads associated with
designs. Our Java-based SEDA HTTP server outperforms wo pOpu'threading — including cache and TLB misses, scheduling overhead,

lar Web servers implemented in C, as described in Section 5.1. We,nq |40k contention — can lead to serious performance degradation
argue that using SEDA, highly concurrent applications are easier 0 \vhen the number of threads is large. As a concrete example, Figure 2

build, more efﬂmept, and.more robust to load. W'th thg right S'.et. of N* shows the performance of a simple threaded server as the number of

terfaces, appllcatlor] designers can focus on application-specific Ioglc'threads increases. Although the effective thread limit would be large

rather than the details of concurrency and resource management. for general-purpose timesharing, it is not adequate for the tremendous
concurrency requirements of an Internet service.

2 Background and Related Work Threads and processes are primarily designed to support multipro-

SEDA draws together two important lines of research: the use of thread-gramming, and existing OSs strive to virtualize hardware resources in a
based concurrency models for ease of programming and event-base#ay thatis transparent to applications. Applications are rarely given the
models for extensive concurrency. This section develops the lineage ofoPportunity to participate in system-wide resource management deci-
this approach by outlining the key contributions and problems in the Sions, or given indication of resource availability in order to adapt their
steps leading to the SEDA design. behavior to changing conditions. Virtualization fundamentally hides
Intuitively, a service iswell-conditionedif it behaves like a sim-  the fact that resources are limited and shared [61]. _
ple pipeline, where the depth of the pipeline is determined by the path A number of systems have attempted to remedy this problem by
through the network and the processing stages within the service it-XP0osing more control to applications. ~Scheduler activations [3],
self. As the offered load increases, the delivered throughput increasegPplication-specific handlers [59], and operating systems such as
proportionally until the pipeline is full and the throughput saturates; ad- SPIN [11], Exokernel [28], and Nemesis [34] are all attempts to aug-
ditional load should not degrade throughput. Similarly, the response Ment limited operating system interfaces by giving applications the
time exhibited by the service is roughly constant at light load, because @bility to specialize the policy decisions made by the kernel. However,
it is dominated by the depth of the pipeline. As load approaches satura-the design of these systems is still based on multiprogramming, as the
tion, the queueing delay dominates. In the closed-loop scenario typica|focus continues to be on safe and eff|_0|ent resource virtualization, rather
of many services, where each client waits for a response before deliv-than on graceful management and high concurrency.
ﬁzpngbg;eopsﬁér:?guest, response time should increase linearly with the2-2 Bounded thread pOO|S
The key property of a well-conditioned servicegsceful degra- To avoid the overuse of threads, a number of systems adopt a coarse
datiort as offered load exceeds capacity, the service maintains highform of load conditioning that serves to bound the size of the thread
throughput with a linear response-time penalty that impacts all clients pool associated with a service. When the number of requests in the
equally, or at least predictably according to some service-specific pol- server exceeds some fixed limit, additional connections are not ac-
icy. Note that this is not the typical Web experience; rather, as load cepted. This approach is used by Web servers such as Apache [6],
increases, throughput decreases and response time increases dramditiS [38], and Netscape Enterprise Server [42], as well as application

cally, creating the impression that the service has crashed. servers such as BEA Weblogic [10] and IBM WebSphere [25]. By lim-
iting the number of concurrent threads, the server can avoid throughput
2.1 Thread-based concurrency degradation, and the overall performance is more robust than the uncon-

d_strained thread-per-task model. However, this approach can introduce

per-request model, as embodied in RPC packages [52], Java Remotglgriatdde?' ofinfairesso clients: V‘_'heﬂ all servelr(tfhreads are buZy or
Method Invocation [54], and DCOM [37]. This model is well sup- °2/0¢ked, client requests queue up in the network for servicing. As we

ported by modern languages and programming environments. In thisWi” show in Section 5.1, this can cause clients to experience arbitrarily
' large waiting times.

1Sedais also the Spanish word fsilk. When each request is handled by a single thread, it is difficult to

The most commonly used design for server applications is the threa
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Figure 2: Threaded server throughput degradation: This benchmark mea- execution through the system. The key source of complexity in this design is the
event scheduler, which must control the execution of each FSM.

sures a simple threaded server which creates a single thread for each task in the
pipeline. After receiving a task, each thread performs an 8 KB read from a disk
file; all threads read from the same file, so the data is always in the buffer cache.
Threads are pre-allocated in the server to eliminate thread startup overhead the Flash [44], thttpd [4], Zeus [63], and JAWS [24] Web servers, and
from the measurements, and tasks are generated internally to negate networkh€ Harvest [12] Web cache. In Flash, each component of the server
effects. The server is implemented in C and is running on a 4-way 500 MHz responds to particular types of events, such as socket connections or
Pentium Il with 2 GB of memory under Linux 2.2.14. As the number of con- filesystem accesses. The main server process is responsible for contin-
current tasks increases, throughput increases until the number of threads growsually dispatching events to each of these components, which are imple-
large, after which throughput degrades substantially. Response time becomedNented as library calls. Because certain I/O operations (in this case,
unbounded as task queue lengths increase; for comparison, we have shown thfilesystem access) do not have asynchronous interfaces, the main server

ideal linear response time curve (note the log scale onithgis). process handles these eve_nts by diSpa_tching thelmelfer processes
via IPC. Helper processes issue (blocking) 1/0 requests and return an

event to the main process upon completion. Harvest's structure is very

identify internal performance bottlenecks in order to perform tuning Similar: itis single-threaded and event-driven, with the exception of the
and load conditioning. Consider a simple threaded Web server in which FTP protocol, which is implemented by a separate process.
some requests are inexpensive to process (e.g., cached static pages) and The tradeoffs between threaded and event-driven concurrency mod-
others are expensive (e.g., large pages not in the cache). With manyels have been studied extensively in the JAWS Web server [23, 24].
concurrent requests, it is likely that the expensive requests could be theJAWS provides a framework for Web server construction allowing the
source of a performance bottleneck, for which it is desirable to perform concurrency model, protocol processing code, cached filesystem, and
load shedding. However, the server is unable to inspect the internalother components to be customized. Like SEDA, JAWS emphasizes
request stream to implement such a policy; all it knows is that the thread the importance of adaptivity in service design, by facilitating both static
pool is saturated, and must arbitrarily reject work without knowledge of and dynamic adaptations in the service framework. To our knowledge,
the source of the bottleneck. JAWS has only been evaluated under light loads (less than 50 concur-

Resource containers [7] and the conceppathsfrom the Scout op- rent clients) and has not addressed the use of adaptivity for conditioning
erating system [41, 49] are two techniques that can be used to boundinder heavy load.
the resource usage of tasks in a server. These mechanisms apply ver- Event-driven systems tend to be robust to load, with little degrada-
tical resource management to a set of software modules, allowing thetion in throughput as offered load increases beyond saturation. Figure 4
resources for an entire data flow through the system to be managed as ghows the throughput achieved with an event-driven implementation of
unit. In the case of the bottleneck described above, limiting the resourcethe service from Figure 2. As the number of tasks increases, the server
usage of a given request would avoid degradation due to cache misseshroughput increases until the pipeline fills and the bottleneck (the CPU

but allow cache hits to proceed unabated. in this case) becomes saturated. If the number of tasks in the pipeline is
. increased further, excess tasks are absorbed in the server’s event queue.
2.3 Event-driven concurrency The throughput remains constant across a huge range in load, with the

The scalability limits of threads have led many developers to eschew latency of each task increasing linearly.
them almost entirely and employ an event-driven approach to manag- An important limitation of this model is that it assumes that event-
ing concurrency. In this approach, shown in Figure 3, a server consistshandling threads do not block, and for this reason nonblocking 1/O
of a small number of threads (typically one per CPU) that loop continu- mechanisms must be employed. Although much prior work has in-
ously, processing events of different types from a queue. Events may bevestigated scalable 1/O primitives [8, 9, 33, 46, 48], event-processing
generated by the operating system or internally by the application, andthreads can block regardless of the I/O mechanisms used, due to inter-
generally correspond to network and disk I/O readiness and completionrupts, page faults, or garbage collection.
notifications, timers, or other application-specific events. The event-  Event-driven design raises a number of additional challenges for the
driven approach implements the processing of each task as a finite statepplication developer. Scheduling and ordering of events is probably
machine, where transitions between states in the FSM are triggered bythe most important concern: the application is responsible for deciding
events. In this way the server maintains its own continuation state for when to process each incoming event and in what order to process the
each task rather than relying upon a thread context. FSMs for multiple flows. In order to balance fairness with low response
The event-driven design is used by a number of systems, includingtime, the application must carefully multiplex the execution of multiple
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o s o 20708 1048576 as the inherent difficulties of adapting to load in a thread-based model,
Number of tasks in pipeline without an explicit request queue.

Figure 4: Event-driven server throughput: This benchmark measures an 3 The Staged Event-Driven Architecture

event-driven version of the server from Figure 2. In this case, the server uses
a single thread to process tasks, where each task reads 8 KB from a single diskin this section we propose a new software architecturesttgged event-

file. Although the filesystem interface provided by the operating system useddriven architectur SEDA), which is designed to enable high concur-
here (Linux 2.2.14) is blocking, because the disk data is always in the cache, thisréncy, load conditioning, and ease of engineering for Internet services.
benchmark estimates the best possible performance from a nonblocking disk /OSEDA decomposes an application into a networlstaigesseparated

layer. As the figure shows, throughput remains constant as the load is increasedoy event queueand introduces the notion afynamic resource con-

to a very large number of tasks (note the change in the horizontal axis scale fromtrollers to allow applications to adjust dynamically to changing load.
An overview of the SEDA approach to service design is shown in Fig-

ure 5.
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Figure 2), and response time is linear (note the log scale oncthris).

FSMs. The choice of an event scheduling algorithm is often tailored 3-1 ~ Goals
to the specific application, and introduction of new functionality may The primary goals for SEDA are as follows:

require the algorithm to be redesigned. Also, modularity is difficult . . .
to achieve, as the code implementing each state must be trusted not t&upport massive concurrency: To avoid performance degradation

block or consume a large number of resources that can stall the eventdue to threads, SEDA makes use of event-driven execution wherever
possible. This also requires that the system provide efficient and scal-

handling thread.
able I/O primitives.

2.4 Structured event queues o _ 3 _
) . ) Simplify the construction of well-conditioned services: To reduce
Several variants on the standard event-driven design have been prog,q complexity of building Internet services, SEDA shields application
posed to counter the problems outlined above. A common aspect ofy o qrammers from many of the details of scheduling and resource man-
these designs is to structure an event-driven application using & set oL gement. The design also supports modular construction of these appli-
event queues to improve code modularity and simplify application de- c4tions, and provides support for debugging and performance profiling.

sign.

The Click modular packet router [40] is one such example. In Click, Enable introspection: Applications should be able to analyze the re-
packet processing stages are implemented by separate code modulegiest stream to adapt behavior to changing load conditions. For exam-
with their own private state. Click is optimized to improve per-packet ple, the system should be able to prioritize and filter requests to support

latency through the router, allowing a single thread to call directly degraded service under heavy load.

through multiple packet-processing stages. This design is targeted at )
a specific application (routing) and a single thread services all eventSupport self-tuning resource management: Rather than mandate

queues. Click makes the assumption that modules have bounded pro@ Priori knowledge of application resource requirements and client load

cessing times, leading to a relatively static resource-management poli-characteristics, the system should adjust its resource management pa-

cies. Qieet al.[47] also describe techniques for scheduling and load rameters dynamically to meet performance targets. For example, the

conditioning in a software-based router; like SEDA, their design makes humber of threads allocated to a stage can be determined automatically

use of controllers to adjust runtime parameters dynamically based onbased on perceived concurrency demands, rather than hard-coded by
the programmer or administrator.

load.
Gribble’s Distributed Data Structures (DDS) [20] layer also makes 3.2 Stages as robust building blocks

use of a structured event-processing framework. In DDS, storage

servers emulate asynchronous network and disk I/O interfaces by mak-The fundamental unit of processing within SEDA is 8tage A stage

ing use of fixed-size thread pools, and software components are com-s a self-contained application component consisting oéwent han-
Work dler, anincoming event queyand athread pooj as depicted in Fig-

posed using either explicit event queues or implicit upcalls.
Crews [56] and the TSS/360 queue scanner [35] are other examples ofire 6. Each stage is managed bgantroller that affects scheduling

systems that make use of structured event queues and limited numberand thread allocation, as described below. Stage threads operate by
of threads to manage concurrency. In each of these systems, the uspulling a batch of events off of the incoming event queue and invok-

of an event queue decouples the execution of two components, whiching the application-supplied event handler. The event handler processes
each batch of events, and dispatches zero or more events by enqueuing

improves modularity and robustness.
StagedServer [31] is another system that makes use of modules comthem on the event queues of other stages.
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by thresholding its event queue. For simplicity, some event paths and stages have been elided from this figure.
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Figure 7:SEDA resource controllers: Each stage has an associateahtroller

that adjusts its resource allocation and behavior to keep the application within
Figure 6: A SEDA Stage: A stage consists of aimcoming event queyea its operating regime. Thehread pool controlleadjusts the number of threads
thread poaland an application-suppliedvent handler The stage’s operation ~ executing within the stage, and thatching controlleradjusts the number of

is managed by theontroller, which adjusts resource allocations and scheduling €vents processed by each iteration of the event handler.

dynamically.

Controller

first obtaining a handle to that stage’s incoming event queue (through a

Threads are the basic concurrency mechanism within SEDA, yet system-provided lookup routine), and then invokingeaueuepera-
their use is limited to a small number of threads per stage, rather thantion on that queue.
a single thread per task in the system. Moreover, the use of dynamic  Animportant aspect of event queues in SEDA is that they mdi¢ be
control (see Section 3.4) can automatically tune the number of threadsnite: that is, an enqueue operation may fail if the queue wishes to reject
allocated to each stage based on denfaffthis design allows stages  new entries, say, because it has reached a threshold. Applications may
to run in sequence or in parallel, or a combination of the two, depend- make use of backpressure (by blocking on a full queue) or load shed-
ing upon the characteristics of the thread system and scheduler. In thisding (by dropping events) when enqueue operations fail. Alternately,
paper we assume preemptive, OS-supported threads in an SMP envirorthe application may wish to take some service-specific action, such as
ment, although this choice is not fundamental to the SEDA design. For sending an error to the user, or performing an alternate function, such
example, a thread system could be designed which is cognizant of theas providing degraded service.
staged structure of the application and schedules threads accordingly.  Figure 5 illustrates the structure of a SEDA-based application, in this
We return to this issue in Section 3.4. case the Haboob Web server described in Section 5.1. The application

The core logic for each stage is provided by the event handler, the consists of a number of application-specific stages to process HTTP re-
input to which is a batch of multiple events. Event handlers do not quests, implement a page cache, and so forth, as well as several generic
have direct control over queue operations or threads. By separating corgtages provided by the runtime to support asynchronous I/O. These in-
application logic from thread management and scheduling, the stage iserfaces are described further in Section 4.
able to control the execution of the event handler to implement various  The introduction of a queue between stages decouples their execu-
resource-management policies. For example, the number and orderingion by introducing an explicit control boundary. This model constrains
of events passed to the event handler can be controlled externally by thenhe execution of a thread to a given stage, as a thread may only pass data
runtime environment. However, the application may also implement its a¢ross the control boundary by enqueuing an event. A basic question is
own scheduling policy by filtering or reordering the event batch passed yhether two code modules should communicate by means of a queue,

toit. or directly through a subroutine call. Introducing a queue between two
33 Applicati twork of st modules provides isolation, modularity, and independent load manage-
. pplications as a network or stages ment, but may increase latency. For example, a third-party code module

A SEDA application is constructed as a network of stages, connected bycan be isolated in its own stage, allowing other stages to communicate
event queues. Event handlers may enqueue events onto another stage jth it through its event queue, rather than by calling it directly.

2Rather than allocating a separate thread pool per stage, it is possible to have The SEDA design facilitates debugging and performance analysis

multiple stages share the same thread pool. To simplify the discussion, we de-Of services, which has traditionally been a challenge for complex multi-

scribe SEDA in terms of a private thread pool per stage. Note also that the threaded servers. The decomposition of application code into stages and

number of stages in an application is typically much smaller than the number €xplicit event delivery mechanisms facilitates inspection; for example,
of threads that the system can support, so a separate thread pool per stage &debugging tool can trace the flow of events through the system and vi-
reasonable. sualize the interactions between stages. Because stages interact through
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Figure 8: SEDA thread pool controller: This graph shows the operation of ~ Figure 9: SEDA batching controller: This graph shows the operation of the
the thread pool controller during a run of the Haboob Web server, described in batching controller for a simple benchmark consisting of a single stage gener-
Section 5.1. The controller adjusts the size of each stage’s thread pool basedating events at an oscillating rate. This causes the measured output rate of the
on the length of the corresponding event queue. In this run, the queue lengthstage to vary as shown in the top portion of the figure. While the output rate
was sampled every 2 seconds and a thread was added to the pool if the queuéncreases, the controller decreases the batching factor. When the output rate de-
exceeded 100 entries (with a maximum per-stage limit of 20 threads). Threadscreases, the controller increases the batching factor. The batching factor is reset
are removed from the pool when they are idle for more than 5 seconds. Theto its maximum value after a sudden drop in the output rate.
asyncFilestage uses a controller threshold of 10 queue entries to exaggerate the
controller’'s behavior.
put. It operates by observing the output rate of events from a stage (by
maintaining a moving average across many samples) and decreases the
an event-dispatch protocol instead of a traditional AP, it is straightfor- batching factor until throughput begins to degrade. If throughput de-
ward to interpose proxy stages between components for debugging angrades slightly, the batching factor is increased by a small amount. The
performance profiling. Using this mechanism, our prototype of SEDA controller responds to sudden drops in load by resetting the batching
is capable of generating a graph depicting the set of application stagegactor to its maximum value. Figure 9 shows the batching controller at
and their relationship. The prototype can also generate temporal vi-work.
sualizations of event queue lengths, memory usage, and other system These mechanisms represent two simple examples of dynamic con-

properties that are valuable in understanding performance. trol in SEDA. It is possible to introduce more complex controllers into
. the system; for example, a controller might adjust thread pool sizes
3.4 Dynamic resource controllers based on a global notion of stage priority, or to keep the number of

Akey goal of enabling ease of service engineering is to shield program- threads in the entire system below some threshold. Another option is
mers from the complexity of performance tuning. In order to keep each t0 adjust thread scheduling parameters based on the stage’s progress, as
stage within its operating regime, SEDA makes use of a sessufurce  Proposed by Steer al.[51]. The SEDA asynchronous sockets library,
controllers which automatically adapt the resource usage of the stage described in the next section, contains an optional controller that throt-
based on observed performance and demand. Abstractly, a controllefl€s the rate at which packets are read from the network. In Section 5.1
observes runtime characteristics of the stage and and adijusts allocatioMe describe an application-specific controller that adaptively sheds load
and scheduling parameters to meet performance targets. Controllers caf Meet a response time target. SEDA's structure facilitates inspection
operate either with entirely local knowledge about a particular stage, or @nd control of the underlying application, and a range of control strate-

work in concert based on global state. gies are possible in this model. ) ) )
We have implemented several resource controllers in SEDA, two of  An important aspect of dynamic control in SEDA is that it allows
which are shown in Figure 7. The first is ttiread pool controlley the application to adapt to changing conditions despite the particular

which adjusts the number of threads executing within each stage. Thedlgorithms used by the ur_lderlying operating system. In some sense,
goal is to avoid allocating too many threads, but still have enough SEDA's controllers are naive about the resource mana.gement policies
threads to meet the concurrency demands of the stage. The controllePf the OS. For example, the SEDA batching controller is not aware of
periodically samples the input queue and adds a thread when the queuEhe OS thread scheduling pc_Jllcy; rather,_lt |n_f|uences thread scheduling
length exceeds some threshold, up to a maximum number of threadg?ased on exterr_1a| observatlons of application performance. Although
per stage. Threads are removed from a stage when they are idle for 4" SOme cases it may be desirable to exert more control over the un-
specified period of time. Figure 8 shows the effect of the thread pool derlying OS — for example, to provide quality of service guarantees to
controller operating within the Web server described in Section 5.1; the Particular stages or threads — we believe that the basic resource man-
controller operation is discussed in more detail in Section 4.2. agement mechanisms provided by commodity operating systems, sub-
The second is thbatching controlley which adjusts the number of ject Fo application-level control, are adequate for the needs of Internet
events processed by each invocation of the event handler within a stag&€rvIces.
(the batching facto). It has been observed [31] that processing many .
events at once increases throughput, as cache locality and task aggre;z"5 Sandstorm: A SEDA prototype
gation can be performed. However, a large batching factor can also in-We have implemented a SEDA-based Internet services platform, called
crease response time. The controller attempts to trade off these effectSandstorm Sandstorm is implemented entirely in Java, and makes use
by searching for the smallest batching factor that sustains high through-of a set of native libraries for nonblocking socket I/O (described in Sec-



tion 4). Using the latest Java implementations, coupled with judicious
use of Java’s language features, we have found the software engineer- —
ing and robustness benefits of using Java have more than outweighed \=\
the performance tradeoffs. For instance, we rely on Java’s automated

memory management to garbage-collect “expired” events as they pass
through the system; this greatly simplifies the code as components are 2¥Ynecientsocket

Application

asyncServerSocket

not responsible for tracking the lifetime of events. The performance Read New Lr‘:;j’;st
gap between Java and statically compiled languages is also closing; in foauest  Packet 7 e gonneetion
fact, our Java-based SEDA Web server outperforms two popular Web request
servers implemented in C, as described in Section 5.1. @ @ i @
In Sandstorm, each application module implements a simple event ‘ ‘
handler interface with a single method calandleEvents() , @ @ @
which processes a batch of events pulled from the stage’s incoming T Read ready TW’“‘* ready T Connect pending

event queue. Applications do not create or manage threads; this is the l
responsibility of the runtime system and associated controllers. Sand-
storm provides a thread manager interface that can be tailored to im-Figure 10: SEDA-based asynchronous sockets layeffhe Sandstorm sock-
plement various thread allocation and scheduling policies; the versionets interface consists of three stagesad write, and listen Thereadstage
described here manages a pool of threads for each stage and relieesponds to network I/O readiness events and reads data from sockets, pushing
upon the underlying OS for scheduling. Sandstorm provides APIs for new packets to the application stage. Tnete stage accepts outgoing packets
naming, creating, and destroying stages, performing queue operationsand schedules them for writing to the appropriate socket. It also establishes new
controlling queue thresholds, as well as profiling and debugging. The outgoing socket connections. Tlisenstage accepts new TCP connections and
socket and file I/O mechanisms described in the next section are pro-pushes connection events to the application.
vided as standard interfaces.

The Sandstorm runtime consists of 19934 lines of code with 7871

non-commenting source statements (NCSS). Of this, 3023 NCSS ar&rom the operating system. The thread within each stage alternately ser-

Operating System ‘

devoted to the core runtime and 2566 to the I/O facilities. vices each queue, using a simple timeout mechanism to toggle between
the two. The I/O event queue is implemented as a library that causes

4 Asynchronous 1/0O Primitives dequeue operations to invoke the appropriate OS call to retrieve 1/O
events. Our currentimplementation supports the standard pNIR)

To meet SEDA's goal of supporting high concurrency requires efficient, gy stem call as well as thdevipoll  [46] interface for event delivery.
robust /O interfaces. This section describes how the SEDA conceptsa pative library is used to provide nonblocking socket calls in Java [60].
are used to implement these interfaces using existing OS primitives. Wetq increase fairness across sockets. each stagomizeghe order in
describe an asynchronous network socket layer that makes use of nonghich it processes 1/0 events delivered by the operating system. This

blocking I/0 as provided by the operating system, and an asynchronousg pecessary because the OS generally returns socket events in a fixed
file 1/0 layer that uses blocking OS calls and a thread pool to expose gyqer (e.g., in increasing order by file descriptor).

nonblocking behavior. Both of these layers are implemented as a set
of SEDA stages that can be used by applications to provide fast asyn-
chronous I/O.

readStageoperates by performing a socket read whenever an 1/O
readiness event indicates that a socket has data available. It reads
at most 16 KB into a pre-allocated buffer and enqueues the resulting
acket onto the event queue provided by the user. In case of an I/O er-
4.1 Asynchronous socket I/O Eor (e.g., because the ?Jeer hgs closed tyhe connection), the stage closes
The Sandstorm asynchronous soclayficSockgtlayer provides an the socket and pushes an appropriate notification event to the user. Each
easy-to-use nonblocking sockets interface for services. Applicationssocket read requires the allocation of a new packet buffer; while this can
create instances of the classasyncClientSocke&ind asyncServer- potentially cause a great deal of garbage collection overhead, we have
Socketto initiate outgoing and incoming socket connections. When a not found this to be a performance issue. Note that because this sys-
connection is established, asyncConnectioabject is pushed ontothe  tem is implemented in Java, no explicit deallocation of expired packets
event queue provided by the user (typically the queue associated withiS necessaryreadStagealso provides an optional rate controller that
the requesting stage). Incoming packets are enqueued onto the usergan throttle the rate at which packets are read from the network; this
event queue, andsyncConnectioimplements a queue interface onto  controller is useful for performing load shedding during overload con-
which outgoing packets can be placed. Each outgoing packet may alsdlitions. The controller is implemented by calculating a moving average
have an associated event queue onto which a completion event is pushe@f the incoming packet rate and introducing artificial delays into the
when the packet is transmitted. Error and other notification events areevent-processing loop to achieve a certain rate target.
passed to the user in a similar way. writeStagereceives packet write requests from the user and en-
Internally, the asyncSocket layer is implemented using three stagesgueues them onto an internal queue associated with the particular
which are shared across all sockets, as shown in FigureebdStage socket. When the OS indicates that a socket is ready for writing, it
reads network packets and responds to user requests to initiate packeittempts to write the next packet on that socket’s outgoing queue. As
reading on a new socketwriteStagewrites packets to the network  described in Section 5.2, the socket queue may be thresholded to pre-
and establishes new outgoing connectionistenStageaccepts new vent “slow” sockets from consuming too many resources in the server.
TCP connections and responds to user requests to listen on a new port. To evaluate the performance of asyncSocket, we implemented a sim-

Each operation on aasyncConnectigrasyncClientSockebr async- ple server application that accepts bursts of 8KB packets from a num-
ServerSockés converted into a request and placed onto the appropriate ber of clients, responding with a single 32-byte ACK for each burst of
stage’s request queue. 1000 packets. This somewhat artificial application is meant to stress

Each asyncSocket stage services two separate event queues: a réie network layer and measure its scalability as the number of clients
quest queue from the user, and an I/O readiness/completion event queuicreases. Figure 11 shows the aggregate throughput of the server as



250 : . . . . . familiar interfacegead write, seek stat andclose Each of these op-
erations translates into a request being placed on the asyncFile stage’s
event queue. asyncFile threads dequeue each request and perform the
corresponding (blocking) I/O operation on the file. To ensure that mul-
175 . tiple 1/0 requests on the same file are executed serially, only one thread
may process events for a particular file at a time. When an 1/O re-
"h. quest completes, a corresponding completion event is enqueued onto
"5 the user’s event queue.
100 The asyncFile stage is initialized with a single thread in its thread
(Can'trun beyond 400 connections) & pool. The SEDA thread pool controller is responsible for dynamically
adjusting the size of the thread pool based on observed concurrency
50 demand. Figure 8 shows the thread pool controller at work during a
25 SEBK ssyrchanoUS Sosket e e run of the SEDA-based Web server described in Section 5.1. The runis
Thread-based asynchronous socket layer === broken into three periods, each corresponding to an increasing number
h 4 1 " 56 1004 4096 16384 of clients; note that client load is extremely bursty. As bursts of file
Number of connections accesses arrive, the controller adds threads to each stage’s thread pool
Figure 11: Asynchronous sockets layer performance:This graph shows until saturating at a maximum of 20 thread;. Betwegn periods, there is
the performance of the SEDA-based asynchronous socket layer as a functionrlO demand f.or /O, and th.e thread pool shrlnks._WhlleRageQache
andCacheMissstages require more threads with increasing client load,

of the number of simultaneous connections. Each client opens a connection to

the server and issues bursts of 8KB packets; the server responds with a sin-_the number of threads needed to service file /O actually decreases. This

gle 32-byte ACK for each burst of 1000 packets. All machines are connectedIS because the underlying filesystem buffer cache is warming up, and is

via switched Gigabit Ethernet and are running Linux 2.2.14. The SEDA-based .able fo service disk requests more rapidly. The thread poal contraller

server makes use of nonblocking I/O primitives provided by the operating system.'nfers that fewer threads are needed to manage the disk concurrency,

Performance is compared against a compatibility layer that makes use of block- and avoids creating threads that are not needed.
ing sockets and multiple threads to emulate asynchronous I/O. The thread-based . . .

layer was unable to accept more than 400 simultaneous connections, becausd App“C&thﬂS and Evaluation

the number of threads required would exceed the per-user thread limit in Linux.

150

125

Bandwidth, Mbit/sec

75

In this section we present a performance and load-conditioning evalu-
ation of two applicationsHabooh® a high-performance HTTP server;

) . . and a packet router for the Gnutella peer-to-peer file sharing network.
the number of clients increases from 1 to 8192. The server and clientyyhereas Haboob typifies a “closed-loop” server in which clients issue
machines are all 4-way 500 MHz Pentium IIl systems interconnected g ests and wait for responses, the Gnutella packet router is an exam-

using Gigabit Ethernet running Linux 2.2.14 and I1BM JDK 1.3. ple of an “open-loop” server in which the server performance does not
Two implementations of the socket layer are shown. The SEDA- ¢t as a limiting factor on offered load.

based layer makes use of nonblocking I/O provided by the OS and the
/dev/poll _ __event-delivery mechanis_m [46]. This is compared against 5.1 Haboob: A high-performance HTTP server
a compatibility layer that uses blocking sockets and a thread pool for
emulating asynchronous I/O. This layer creates one thread per connec¥Veb servers form the archetypal component of scalable Internet ser-
tion to process socket read events and a fixed-size pool of 120 thread¥ices. Much prior work has investigated the engineering aspects of
to handle socket writes. This compatibility layer was originally devel- building high-performance HTTP servers, but little has been said about
oped to provide asynchronous 1/O under Java, which does not provideload conditioning, robustness, and ease of construction. One benefit
this functionality directly. of studying HTTP servers is that a variety of industry-standard bench-
The nonblocking implementation clearly outperforms the threaded Marks exist to measure their performance. We have chosen the load
version, which degrades rapidly as the number of connections increasesnodel from the SPECweb99 benchmark suite [50] as the basis for our
In fact, the threaded implementation crashes when receiving over 400measurements, with two important modifications. First, we measure
connections, as the number of threads required exceeds the per-uséily the performance of static Web page accesses (which constitute
thread limit in Linux. The slight throughput degradation for the non- 70% of the SPECweb99 load mix). Second, we keep the Web page
blocking layer is due in part to lack of scalability in the Linux network ~file set fixed at 3.31 GB of disk files, corresponding to a SPECweb99
stack; even using the highly-optimizédev/poll mechanism [46] target load of 1000 connections. Files range in size from 102 to 921600
for socket I/0 event notification, as the number of sockets increases thedytes and are accessed using a Zipf-based request distribution mandated
overhead involved in polling readiness events from the operating systemPy SPECweb99. More details can be found in [50].

increases significantly [29]. 511 Haboob architecture

4.2 Asynchronous file I/0 The overall structure of Haboob is shown in Figure 5. The server con-

The Sandstorm file /CayncFilg layer represents a very different de-  SIStS 0f 10 stages, 4 of which are devoted to asynchronous socket and

sign point than asyncSocket. Because the underlying operating systenfiSk /O, as described in the previous section. HupParsestage is re-

does not provide nonblocking file I/O primitives, we are forced to make SPOnsible for accepting new client connections and for HTTP protocol

use of blocking 1/0 and a bounded thread pool to implement this fayer. Processing for incoming packets. ThittpRecvstage accepts HTTP

Users perform file /O through amsyncFileobject, which supports the ~ ¢Onnection and request events and passes them onteageCache

stage (if they represent disk files) or generates responses directly (for
3patches providing nonblocking file I/O support are available for Linux, but dynamic pages generated to gather server statisRagpCachémple-

are not yet part of standard distributions. Furthermore, these patches make usenents an in-memory Web page cache implemented using a hashtable

of a kernel-level thread pool to implement nonblocking file writes, over which

SEDA would have no control. 4A haboobis a large dust storm occurring in the desert of Sudan.




indexed by URL, each entry of which contains a response packet con-from [39]° All benchmarks were run with warm filesystem and Web
sisting of an HTTP header and Web page payload. TheheMiss page caches. Note that the file set size of 3.31 GB is much larger
stage is responsible for handling page cache misses, using the asyrthan physical memory, and the static page cache for Haboob and Flash
chronous file 1/0 layer to read in the contents of the requested pagewas set to only 200 MB; therefore, these measurements include a large
from disk. Finally, HttpSendsends responses to the client and han- amount of disk 1/O.

dles some aspects of connection management and statistics gatherin% .

An additional stage (not shown in the figure) generates dynamic Web.1.3  Performance analysis

pages from HTML templates with embedded code written in the Python Figure 12 shows the performance of Haboob compared with Apache

scripting language [36]. This feature provides general-purpose server-ang Flash in terms of aggregate throughput and response time. Also

side scripting, akin to Java Server Pages [26]. shown is the Jain fairness index [27] of the number of requests com-
The page cache attempts to keep the cache size below a given threstpieted by each client. This metric is defined as

old (set to 204800 KB for the measurements provided below). It ag-

gressively recycles buffers on capacity misses, rather than allowing old flz) = > z;)?

buffers to be garbage-collected by the Java runtime; we have found this N> x?

approach to yield a noticeable performance advantage. The cache stage ) ) )

makes use of application-specific event scheduling to increase perfor-VNeréz: is the number of requests for eachifclients. A fairmess

mance. In particular, it implements shortest connection first (SCF) [15] INdex of 1 indicates that the server is equally fair to all clients; smaller

scheduling, which reorders the request stream to send short cache er}(alues indicate Iess.falrness. IntU|t|ver]<:|bu.t of N cllepts receive an

tries before long ones, and prioritizes cache hits over misses. Becaus&du@! share of service, and the ottiér—  clients receive no service,

SCF is applied only to each set of events provided by the batching con-th€ Jain fairness index is equalltgzﬁ]\{. _
troller, starvation across requests is not an issue. As Figure 12(a) shows, Haboob'’s throughput is stable as the number

Constructing Haboob as a set of stages greatly increased the modugf clients increases, sustaining over 200 Mbps for 1024 clients. Flash

larity of the design, as each stage embodies a robust, reusable softwar@nd Apache also exhibit stable throughput, although slightly less than

component that can be individually conditioned to load. We were able Haboob. bThisd r:sulthmight seemdsurpgsing, an we would exk;])ect thE
to test different implementations of the page cache without any modifi- process-based Apache server to degrade Iin performance as the number

cation to the rest of the code; the runtime simply instantiates a different of clients becomes large. Recall, however, that Apache accepts no more

stage in place of the original page cache. Likewise, another developert‘haﬂ %150 cc;]nnectiqns at any tirt?e, fgr which is nOth\jliEiCUIthto sust)ain ¢
who had no prior knowledge of the Haboob structure was able to replace 9 throughput using process-based concurrency. Wnen t. € nUmMber o
Haboob’s use of the asynchronous file layer with an alternate filesystemCIIentS exqeeds th!s amount, all pther clients must wait for increasingly

interface with little effort. Not including the Sandstorm platform, the ONger periods of time before being accepted into the system. Flash has

Web server code consists of only 3283 non-commenting source state? similar prob!em: i.t caps the number O.f simulta}neous conneciions to
ments, with 676 NCSS devoted to the HTTP protocol processing li- 506, due to a limitation in the number of file descriptors that can be used
brary. ' with theselect()system call. When the server is saturated, clients must

wait for very long periods of time before establishing a connection.
5.1.2 Benchmark configuration .This_ eff_ect _is demonstrated i_n Figure 12(b), which s_hows the cumu-
lative distribution of response times for each server with 1024 clients.
For comparison, we present performance measurements from the poprere, response time is defined as the total time for the server to respond
ular Apache [6] Web server (version 1.3.14, as shipped with Linux Red tg a given request, including time to establish a TCP connection if one
Hat 6.2 systems) as well as the Flash [44] Web server from Rice Univer- has not already been made. Although all three servers have approxi-
sity. Apache makes use of a fixed-size process pool of 150 processesmately the samaverageresponse times, the distribution is very differ-
each process manages a single connection at a time, reading file datant. Apache and Flash show a greater distribution of low response times
from disk and sending it to the client in 8 KB chunks, using block- than Haboob, but have very long tails, exceeding tens of seconds for a
ing I/0 operations. Flash uses an efficient event-driven design, with asjgnificant percentage of requests. Note that the use of the log scale
single process handling most request-processing tasks. A set of helpef the figure underemphasizes the length of the tail. The maximum re-
processes perform (blocking) disk I/0, pathname resolution, and othersponse time for Apache was over 93 seconds, and over 37 seconds for
operations. The maximum size of the Flash static page cache was set|ash. The long tail in the response times is caused by exponential back-
to 204800 KB, the same size as in Haboob. Both Apache and Flash aref in the TCP retransmission timer for establishing a new connection,
implemented in C, while Haboob is implemented in Java. which under Linux can grow to be as large as 120 seconds.

All measurements below were taken with the server runningona4-  With Apache, if a client is “lucky”, its connection is accepted
way SMP 500 MHz Pentium Ill system with 2 GB of RAM and Linux  quickly and all of its requests are handled by a single server process.
2.2.14. 1BM JDK v1.3.0 was used as the Java platform. 32 machines ofMoreover, each process is in competition with only 149 other processes,
a similar configuration were used for load generation, with each client which is a manageable number on most systems. This explains the large
machine using a number of threads to simulate many actual clients. Allnumber of low response times. However, if a client is “unlucky” it will
machines are interconnected via switched Gigabit Ethernet. Althoughhave to wait for a server process to become available; TCP retransmit
this configuration does not simulate wide-area network effects, our in- packoff means that this wait time can become very large. This unequal
terest here is in the performance and stability of the server under heavy
load. SNote that most Web servers are configured to use a much higher limit on

The client load generator loops, continually requesting a Web pagethe number of HTTP requests per connection, which is unrealistic but provides

(using a distribution specified by the SPECweb99 suite), reading the'mproveOI benchmark results.

esult. and sleeping for a fixed time of 20 milliseconds before request- 61t is worth noting that both Apache and Flash were very sensitive to the
resutt, and sieeping for a fix : fHiseconds reé request- o chmark configuration, and our testing revealed several bugs leading to seri-

ing the next page. To more closely simulate the connection behavior g\ gegraded performance under certain conditions. For example, Apache’s
of clients in the wide area, each client closes the TCP connection af-throughput drops considerably if the server, rather than the client, closes the

ter 5 HTTP requests, and reestablishes the connection before continHTTP connection. The results presented here represent the most optimistic re-
uing. This value was chosen based on observations of HTTP traffic sults from these servers.
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Haboob || 208.09 Mbps| 112.44 ms 1220 ms 0.99 201.42 Mbps| 547.23 ms 3886 ms 0.98

Figure 12:Haboob Web server performance:This figure shows the performance of the Haboob Web server compared to Apache and Flash. (a) shows the throughput
of each server using a fileset of 3.31 GBytes as the number of clients increases from 1 to 1024. Also shown is the Jain fairness index delivered by each server. A fairn
index of 1 indicates that the server is equally fair to all clients; smaller values indicate less fairness. (b) shows the cumulative distribution function of response times fo
1024 clients. While Apache and Flash exhibit a high frequency of low response times, there is a heavy tail, with the maximum response time corresponding to seve
minutes.

treatment of clients is reflected in the lower value of the fairness metric Apache, this was implemented as a Perl module that runs in the con-
for Apache. text of an Apache server process. In Flash, the provided “fast CGI”
With Flash, all clients are accepted into the system very quickly, interface was used, which creates a number of (persistent) server pro-
and are subject to queueing delays within the server. Low responsecesses to handle dynamic requests. When a CGl request is made, an idle
times in Flash owe mainly to very efficient implementation, including a server process is used to handle the request, or a new process created if
fast HTTP protocol processing library; we have performed few of these none are idle. In Haboob, the bottleneck was implemented as a separate
optimizations in Haboob. However, the fact that Flash accepts only 506 stage, allowing the number of threads devoted to the stage processing to
connections at once means that under heavy load TCP backoff becomebe determined by the thread pool controller, and the use of thresholding
an issue, leading to a long tail on the response time distribution. on the stage’s incoming event queue to reject excess load. Because of
In contrast, Haboob exhibits a great degree of fairness to clients differences between these three implementations, the amount of work
when overloaded. The mean response time was 547 ms, with a maxperformed by the dynamic page generation was calibrated to cause a
imum of 3.8 sec. This is in keeping with our goal of graceful degra- server-side delay of 40 ms per request.
dation — when the server is overloaded, it should not unfairly penal-  Figure 13 shows the cumulative distribution of response times for
ize waiting requests with arbitrary wait times. Haboob rapidly accepts the three servers with 1024 clients. Apache and Haboob each exhibit
new client connections and allows requests to queue up within the ap-large response times, but for different reasons. Apache’s response time
plication, where they are serviced fairly as they pass between stagestail is caused by TCP retransmit backoff, as explained above, and with
Because of this, the load is visible to the service, allowing various load only 150 concurrent processes the queueing delay within the server is
conditioning policies to be applied. For example, to provide differenti- minimal. In Haboob, up to 1024 concurrent requests are queued within
ated service, itis necessary to efficiently accept connections for inspec+the server at any given time, leading to a large queueing delay at the
tion. The tradeoff here is between low average response time versushottleneck. Flash’s apparent low response time is due to a bug in its CGI
low variance in response time. In Haboob, we have opted for the latter. processing code, which causes it to close connections prematurely when
. . it is unable to fork a new CGI process. With 1024 clients, there may be
5.1.4 Adaptive load shedding up to 1024 CGl processes in tr?e system at one time; along with the )c/>ther
In this section, we evaluate the behavior of Haboob under overload, andFlash processes, this exceeds the per-user process limit in Linux. When
demonstrate the use of an application-specific controller that attemptsthe fork fails, Flash closes the client connection immediately, without
to keep response times below a given threshold through load sheddingreturning any response (even an error message) to the client. In this run,
In this benchmark, each client repeatedly requests a dynamic Web pag@ver 74% of requests resulted in a prematurely closed connection.
that requires a significant amount of 1/0 and computation to generate.  This mechanism suggests an effective way to bound the response
By subjecting each server to a large number of these “bottleneck” re-time of requests in the server: namely, to adaptively shed load when the
guests we can induce a heavier load than is generally possible wherserver detects that it is overloaded. To demonstrate this idea, we con-
serving static Web pages. structed an application-specific controller within the bottleneck stage,
For each request, the server performs several iterations of a loop thatvhich observes the average response time of requests passing through
opens a file, reads data from it, and generates a sum of the data. Aftethe stage. When the response time exceeds a threshold of 5 sec, the
this processing the server returns an 8 KB response to the client. Incontroller exponentially reduces the stage’s queue threshold. When the
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search for files being served by other Gnutella hagtgryhitsis a re-
09 sponse to a query; amushis used to allow clients to download files
through a firewall. The packet router is responsible for broadcasting
08 ] ; . ; ’
/ receivedping and query messages to all other neighbors, and routing

3

X 07 / pong queryhits andpushmessages along the path of the correspond-
é 06 Haboob with control \/\J ing ping or querymessage. Details on the message formats and routing
s 7 / I /\Hatoub. o control protocol can be found in [19].
2 05
5 o /Y 5.2.1 Architecture
3 03 Apache — M The SEDA-based Gnutella packet router is implemented using 3 stages,
& / ” /é/ Flash in addition to those of the asynchronous socket I/O layer. The code con-
02 / // sists of 1294 non-commenting source statements, of which 880 NCSS
0.1 / are devoted to Gnutella protocol processing. GmtellaServestage
o accepts TCP connections and processes packets, passing packet events
10 100 1000 10000 100000 1e+06 to theGnutellaRoutestage, which performs actual packet routing and
Response time, msec maintenance of routing table&nutellaCatcheiis a helper stage used

Figure 13: Response time controller: This graph shows the effect of an [0 join the Gnutella network by contacting a well-known site to receive
application-specific controller that sheds load in order to keep response times & list Of hosts to connect to. It attempts to maintain at least 4 simulta-
below a target value. Here, 1024 clients are repeatedly requesting a dynamic N€OUS connections to the network, in addition to any connections estab-
Web page that requires both I/0 and computation to generate. Apache and Ha-liShed by other wide-area clients. Joining the “live” Gnutella network
boob (with no control) process all such requests, leading to large response times.2Nd routing packets allows us to test SEDA in a real-world environment,
Flash rejects a large number of requests due to a bug in its CGI processing code; 25 Well as to measure the traffic passing through the router. During one
clients are never informed that the server is busy. With the response-time con-37-hour run, the router processed 24.8 million packets (with an average
troller enabled, Haboob rejects requests with an error message when the average®f 179 packets/sec) and received 72,396 connections from other hosts
response time exceeds a threshold of 5 sec. on the network, with an average of 12 simultaneous connections at any
given time. The router is capable of sustaining over 20,000 packets a
second.

response time is below the threshold, the controller increases the queu% 22 Protection from slow sockets
threshold by a fixed amount. When tH&pRecwstage is unable to en- e
gueue a new request onto the bottleneck stage’s event queue (becaug@ur original packet router prototype exhibited an interesting memory
the queue threshold has been exceeded), an error message is returnedl&ak: after several hours of correctly routing packets through the net-
the client. Note that this is just one example of a load shedding policy; work, the server would crash after running out of memory. Observing
alternatives would be to send an HTTP redirect to another node in athe various stage queue lengths allowed us to easily detect the source
server farm, or to provide degraded service. of the problem: a large number of outgoing packets were queueing up
Figure 13 shows the cumulative response time distribution with the for certain wide-area connections, causing the queue length (and hence
response-time controller enabled. In this case, the controller effectively memory usage) to become unbounded. We have measured the average
reduces the response time of requests through the server, with 90% opacket size of Gnutella messages to be approximately 32 bytes; a packet
requests exhibiting a response time below 11.8 sec, and a maximum rerate of just 115 packets per second can saturate a 28.8-kilobit modem
sponse time of only 22.1 sec. In this run, 98% of requests were rejectedink, still commonly in use by many users of the Gnutella software.
from the server due to queue thresholding. Note that this controller is ~ The solution in this case was to impose a threshold on the outgoing
unable toguaranteea response time below the target value, since bursts packet queue for each socket, and close connections that exceed their
occurring when the queue threshold is high can induce spikes in thethreshold. This solution is acceptable because Gnutella clients auto-

response time experienced by clients. matically discover and connect to multiple hosts on the network; the
redundancy across network nodes means that clients need not depend
5.2 Gnutella packet router upon a particular host to remain connected to the network.

We chose to implement a Gnutella packet router to demonstrate the P .
use of SEDA for non-traditional Internet services. The Gnutella router 5.2.3 Load conditioning behavior
represents a very different style of service from an HTTP server: that To evaluate the use of SEDA's resource controllers for load condition-
of routing packets between participants in a peer-to-peer file shar-ing, we introduced a deliberate bottleneck into the Gnutella router, in
ing network. Services like Gnutella are increasing in importance as which every query message induces a servicing delay of 20 ms. This is
novel distributed applications are developed to take advantage of theaccomplished by having the application event handler sleep for 20 ms
well-connectedness of hosts across the wide area. The peer-to-peaenvhen a query packet is received. We implemented a load-generation
model has been adopted by several distributed storage systems such adient that connects to the server and generates streams of packets ac-
Freenet [14], OceanStore [30], and Intermemory [13]. cording to a distribution approximating that of real Gnutella traffic. In
Gnutella [19] allows a user to search for and download files from our Gnutella traffic model, query messages constitute 15% of the gen-
other Gnutella users. The protocol is entirely decentralized; nodeserated packets. With a single thread performing packet routing, it is
running the Gnutella client form an ad-hoc multihop routing network clear that as the number of packets flowing into the server increases,
layered over TCP/IP, and nodes communicate by forwarding receivedthis delay will cause large backlogs for other messages.
messages to their neighbors. Gnutella nodes tend to connect to several Figure 14(a) shows the average latencies for ping and query pack-
(typically four or more) other nodes at once, and the initial discovery ets passing through the server with an offered load increasing from 100
of nodes on the network is accomplished through a well-known host. to 1000 packets/sec. Both the client and server machines use the same
There are five message types in Gnutghiag is used to discover other  configuration as in the HTTP server benchmarks. Packet latencies in-
nodes on the networkpongis a response to a pingjueryis used to crease dramatically when the offered load exceeds the server’s capacity.
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Figure 14: Gnutella packet router latency: These graphs show the average latency of ping and query packets passing through the Gnutella packet router with
increasing incoming packet rates. Query packets (15% of the packet mix) induce a server-side delay of 20 ms. (a) shows the latency with a single thread processi
packets. Note that the latency increases dramatically as the offered load exceeds server capacity; at 1000 packets/sec, the server ran out of memory before a late
measurement could be taken. (b) shows the latency with the thread pool controller enabled. Note that for 100 and 200 packets/sec, no threads were added to
application stage, since the event queue never reached its threshold value. This explains the higher packet latencies compared to 400 and 1000 packets/sec, for wi
2 threads were added to the stage. (c) showsGhetellaRoutequeue length over time for a load of 1000 packets/sec, with the thread pool controller active. The
controller added a thread to the stage at each of the two points indicated.

In the case of 1000 packets/sec, the server crashed (due to running outhe notion of stages connected by explicit event queues. SEDA makes
of memory for buffering incoming packets) before a latency measure- use of a set of dynamic controllers to manage the resource usage and
ment could be taken. scheduling of each stage; we have described several controllers, includ-
At this point, several load conditioning policies may be employed. A ing two that manage thread allocation across stages and the degree of
simple policy would be to threshold each stage’s incoming event queuebatching used internally by a stage. We have also presented an analysis
and drop packets when the threshold has been exceeded. Alternatelgf two efficient asynchronous I/O components, as well as two applica-
an approach similar to that used in Random Early Detection (RED) tions built using the SEDA design, showing that SEDA exhibits good
congestion avoidance schemes [17] could be used, where packets arperformance and robust behavior under load.
dropped probabilistically based on the length of the input queue. Al-  The SEDA model opens up new questions in the Internet services
though these policies cause many packets to be dropped during overdesign space. The use of explicit event queues and dynamic re-
load, due to the lossy nature of Gnutella network traffic this may be an source controllers raise the potential for novel scheduling and resource-
acceptable solution. An alternate policy would be admit all packets into management algorithms specifically tuned for services. As future work
the system, but have the application event handler filter out query pack-we plan to implement a generalized flow-control scheme for commu-
ets (which are the source of the overload). Yet another policy would nication between stages; in this scheme, each event requires a certain
be to make use of thasyncSockeinput rate controller to bound the  number of credits to enqueue onto the target stage’s event queue. By
incoming rate of packets into the system. assigning a variable number of credits to each event, interesting load-
An alternate approach is to make use of SEDA’s resource controllersconditioning policies can be implemented.
to overcome the bottleneck automatically. In this approach, the thread = We believe that measurement and control is the key to resource man-
pool controller adds threads to ti@&nutellaRouterstage when it de- agement and overload protection in busy Internet services. This is in
tects that additional concurrency is required; this mechanism is similar contrast to long-standing approaches based on resource containment,
to dynamic worker allocation in the cluster-based TACC [18] system. which assign fixed resources to each task (such as a process, thread, or
Figure 14(b) shows the average latencies in the Gnutella router withserver request) in the system, and strive to contain the resources con-
the SEDA thread pool controller enabled. As shown in Figure 14(c), sumed by each task. Although these techniques have been used with
2 threads were added to ti@nutellaRoutetthread pool, allowing the some success in providing differentiated service within Internet ser-
server to handle the increasing packet loads despite the bottleneck. Thigices [57], containment typically mandatesaapriori assignment of re-
number matches the theoretical value obtained from Little’s result: If sources to each task, limiting the range of applicable load-conditioning
we model the stage as a queueing system withreads, an average  policies. Rather, we argue that dynamic resource control, coupled with
packet arrival rate ok, a query packet frequency pf and a query ser- application-specific adaptation in the face of overload, is the right way
vicing delay ofL seconds, then the number of threads needed to main-to approach load conditioning.
tain a completion rate ok is n = ApL = (1000)(0.15)(20 ms) = Two new challenges arise when control is considered as the basis
3 threads. for resource management. The first is detecting overload conditions:
many variables can affect the delivered performance of a service, and
: : : determining that the service is in fact overloaded, as well as the cause,
6 Discussion and Conclusion is an interesting problem. The second is determining the appropriate
Internet services give rise to a new set of systems design requirementsgontrol strategy to counter overload. We plan several improvements to
as massive concurrency must be provided in a robust, easy-to-progranthe resource controllers in our current implementation, as well as new
manner that gracefully handles vast variations in load. SEDA is a stepcontrollers that optimize for alternate metrics. For example, to reduce
towards establishing design principles for this regime. In this paper resource consumption, it may be desirable to prioritize stages that free
we have presented the SEDA design and execution model, introducingresources over those that consume them. Under SEDA, the body of



work on control systems [43, 45] can be brought to bear on service [7]
resource management, and we have only scratched the surface of the
potential for this technique.

A common concern about event-driven concurrency models is ease
of programming. Modern languages and programming tools support (8]
the development and debugging of threaded applications, and many
developers believe that event-driven programming is inherently more
difficult. The fact that most event-driven server applications are often [©
quite complex and somewhatl hocin their design perpetuates this
view. In our experience, programming in the SEDA model is easier
than both multithreaded application design and the traditional event- [10]
driven model. When threads are isolated to a single stage, issues such as
thread synchronization and race conditions are more straightforward tol]
manage. Message-oriented communication between stages establishes
explicit orderings; in the traditional event-driven design it is much more
difficult to trace the flow of events through the system. We view SEDA [12]
as an ideal middle ground between threaded and event-driven designs,
and further exploration of the programming model is an important di-
rection for future work.

While SEDA facilitates the construction of well-conditioned ser-
vices over commodity operating systems, the SEDA model suggests
new directions for OS design. We envision an OS that supports the[14)
SEDA execution model directly, and provides applications with greater
control over scheduling and resource usage. This approach is simi-
lar to that found in various research systems [5, 11, 28, 34] that en-
able application-specific resource management. Even more radically,[15]
a SEDA-based operating system need not be designed to allow multi-
ple applications to share resources transparently. Internet services are
highly specialized and are not designed to share the machine with othef16]
applications: it is generally undesirable for, say, a Web server to run [17]
on the same machine as a database engine (not to mention a scientific
computation or a word processor). Although the OS may enforce pro-
tection (to prevent one stage from corrupting the state of the kernel or[18]
another stage), the system need not virtualize resources in a way that
masks their availability from applications.
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