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Abstract

NetDispatcher is a software router of TCP connections that supports load
sharing across multiple TCP servers. It consists of the Executor, an operating
system kernel extension that supports fast IP packet forwarding, and a user
level Manager process that controls it. The Manager implements a novel dy-
namic load-sharing algorithm for allocation of TCP connections among servers
according to their real-time load and responsiveness. This algorithm produces
weights that are used by the Executor to quickly select a server for each new
connection request. This allocation method was shown to be highly e�cient
in real tests, for large Internet sites serving millions of TCP connections per
day. The Executor forwards client TCP packets to the servers without per-
forming any TCP/IP header translations. Outgoing server-to-client packets
are not handled by NetDispatcher and can follow a separate network route to
the clients. Depending on the workload tra�c, the performance bene�t of this
half-connection method can be signi�cant. Prototypes of NetDispatcher were
used to scale up several large and high-load Internet sites.



1 Introduction

As the global Internet and Intranet tra�c increases, many sites are often unable to
serve their TCP/IP workload, particularly during peak periods of activity. The main
objective of NetDispatcher is to enable scalable TCP/IP server clusters that can han-
dle millions of TCP connections per hour. This goal is achieved by routing incoming
TCP connections to a set of servers, so that they share the workload e�ciently.

NetDispatcher supports a collection of Virtual IP Addresses (VIPAs) that it shares
with a set of hosts in a LAN. Each VIPA is shared by NetDispatcher and a \Virtual
Encapsulated Cluster" (VEC), a collection of hosts that provide the same function
and serve equivalent content. The hosts of a VEC may have di�erent hardware archi-
tecture and operating systems, as long as they support equivalent TCP/IP services.
NetDispatcher assumes that each VIPA represents a VEC, but does not enforce this.
It is the responsibility of the system administrators to ensure that equivalent function
and content is provided by each of the VEC hosts.

For example, a simple VEC may consist of 10 hosts sharing the same VIPA and
supporting only TCP port 80. Each of these hosts will execute Web server code
accepting TCP connections on port 80 and delivering equivalent content. When a
Web browser access a page, it may open several concurrent TCP connections, each
of them may be routed to another VEC host. Hosts can be dynamically added or
removed from each VEC via NetDispatcher con�guration commands.

NetDispatcher uses a load-sharing algorithm that allocates connections in inverse
proportion to the current load of each VEC server. This algorithm is implemented by
two interacting components that work in tandem but at di�erent rates. The Executor
is a kernel-level extension to the TCP/IP stack, and the Manager is a user-level
management tool.

Surges in Internet tra�c tend to occur in waves, with intervals of heavy usage
in which tra�c peaks tend to cluster [Sta97]. The service time and the amount of
server resources and network bandwidth consumed by each TCP connection request
varies widely. To address these workload characteristics, NetDispatcher establishes
a dynamic feedback control loop with the servers. The Manager dynamically mon-
itors the current performance of the servers, evaluates a con�gurable estimate of
each server's load, and computes in real-time the proportional allocations for each
server. The Executor allocates new TCP connections proportionally to the Manager-
computed weights, and then forwards following packets of each connection to the
corresponding server.

We designed and implemented a NetDispatcher prototype running on RS6000
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AIX 4.1 that supports heterogeneous networks and servers. This code was used to
scale up several large Web sites, including the o�cial Atlanta 1996 Olympic Web site.
Laboratory tests and live measurements indicate that our initial prototype can handle
over 200 million TCP connections per day (over 2300 connections per second). This
prototype has been ported to other platforms and many performance optimizations
have been implemented.

From several experiences using this tool to build large scale TCP/IP service sites,
we found the following bene�ts. First, there are signi�cant performance advantages in
avoiding the header translations done by other tools. Second, dynamic load sharing
enables e�cient allocation of resources and reduces the service time of the requests.
Third, con�gurable load metrics evaluated in real-time are necessary to provide cus-
tomized feedback for each site.

The rest of this paper is organized as follows. Section 2 describes how NetDis-
patcher is used in TCP/IP networks. Section 3 describes the Executor's packet for-
warding operation, the method to allocate new connections, and the internal instru-
mentation. Section 4 describes the design of the Manager, its dynamic feedback
load sharing algorithm, the types of load metrics, and their con�guration. Section
5 outlines our initial prototype implementation and its performance characteristics
in supporting scalable Web sites. Section 6 describes some alternative approaches
to solve the scalability problem, including client-based, 2 connections, DNS-based,
packet forwarding, TCP header translations, and HTTP redirection. Section 7 dis-
cusses some current work and planned future enhancements, and Section 8 concludes.

2 Using NetDispatcher in a TCP/IP Network

This section outlines how NetDispatcher is used. The administrator of NetDispatcher
must de�ne the VIPAs, ports and servers of each VEC. All of this con�guration infor-
mation can be changed dynamically. The VIPAs become known via DNS and ARP,
so that all IP packets for a VEC will be delivered to NetDispatcher. In contrast to
DNS-based solutions, the private IP addresses of each server do not need to be prop-
agated beyond NetDispatcher, where external hackers could use them for pernicious
purposes.
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2.1 Con�guring the Servers

Each VIPA that a server supports must be aliased on an interface so that the local
TCP stack will accept the corresponding incoming IP packets to that address. How-
ever, the servers may not export the VIPAs via ARP, since that would create LAN
con
icts. Non-exported IP aliasing can be achieved in several ways. One method
is aliasing the shared IP address to a non ARP-exported interface, like the loopback
interface. These methods require the con�guration of VEC server interfaces, (e.g. per-
forming ifconfig commands). However, in contrast with other tools, these methods
do not require the installation of any software nor O/S upgrades at the servers.

2.2 Network Con�guration

NetDispatcher can be con�gured within one or several networks. Figure 1 shows
a typical 2-network con�guration of NetDispatcher. The internal network connects
NetDispatcher (ND) to the servers (S1, S2, S3) and is used for NetDispatcher-to-
server packets only. In this �gure, the external network is used for both incoming
client-to-NetDispatcher packets and for outgoing server-to-client packets. The client-
to-NetDispatcher tra�c could also be con�gured to arrive via a network interface that
is connected directly to the IP router.

For instance, the internal network could be an Ethernet where only NetDispatcher
introduces packets for the servers, the external network could be a Token Ring where
servers forward their tra�c, and the packets could arrive into NetDispatcher from an
ATM link. In Figure 1 NetDispatcher has the VIPA 129.34.129.8 on the interface
that connects it to the \external" network, and a private IP address 9.2.254.64 in the
internal network. In S1, S2, and S3, the VIPA 129.34.129.8 has been aliased to their
loopback interface.

2.3 Forwarding Packets

For each IP packet that represents a new TCP connection request, NetDispatcher
chooses a server from the target VEC, and then forwards the packet to that server.
Subsequent client-to-server IP packets for an existing connection are forwarded to the
corresponding server. Outgoing server-to-client packets do not need to 
ow through
NetDispatcher, but may follow a separate route, as illustrated by Figure 2. The target
servers must be on a LAN segment that is directly connected to NetDispatcher, i.e.,
without any intervening IP router. Future support for forwarding packets accross IP
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Figure 1: Sample network con�guration for 2 networks.

routers is described in Section 7.
For example, the primary 1996 Atlanta Olympic Games Web site used 2 separate

networks for incoming and outgoing tra�c. A Token Ring was used for tra�c from
NetDispatcher to the servers, and ATM for tra�c from the servers to 4 IP Routers that
forwarded it via T3 links onto the Internet. Figure 3 illustrates the route taken by the
IP packets of one TCP connection in this con�guration. Bandwidth utilization can
be more e�cient by allowing the server-to-client IP packets to follow a separate route
through di�erent networks. This half-connection forwarding method is particularly
useful for TCP-based protocols like HTTP, that are characterized by small client
requests that may generate large server responses.

HTTP client packets are typically very short, e.g., requests to get a new page,
and acks for the data received. Server-to-client packets are larger, as they include
application content data. If the Web server delivers multimedia data, the ratio of
outgoing to incoming bits is very large. NetDispatcher processes only the incoming
packets. In contrast, header-translation tools (see Section 6.5) must process both
incoming and outgoing packets. Hence, this is an obvious performance advantage for
this type of tra�c.
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Figure 2: Example of NetDispatcher Tra�c

2.4 Other Features

Filtering Packets. NetDispatcher acts as a TCP �lter for the VIPAs by discarding
many types of IP packets. For instance, it discards all IP packets destined for ports
that have not been explicitly de�ned via con�guration commands. For example,
NetDispatcher can be con�gured to only allocate connections destined for TCP port
80, and discard all other packets.

Quiescing, and Co-location. NetDispatcher also supports quiescing servers. When
a server is quiesced the currently existing TCP connections are not broken, but no
new connections are assigned to the server. This feature is useful for dynamically
upgrading the software and/or content on the servers. VEC server processes may
also execute on the same host as NetDispatcher. This is very useful for low workload
periods, during which NetDispatcher may be con�gured to allocate most connections
locally.
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Figure 3: Overview of a NetDispatcher TCP connection route.

3 The Executor TCP/IP Extension

The Executor is a kernel-level extension to the TCP/IP stack that forwards TCP
packets to VEC servers. The Executor code inserts itself between TCP and IP in the
protocol stack, by taking over (and saving) the TCP input entry in the protocol stack
switch table. Its main data structures are illustrated in Figure 4.

For each VEC, the Executor maintains a port table of all its active TCP ports.
Each port P in a port table references a server table. Each entry in the server table
represents a server S which is serving the port P for the VEC. Each server host entry
is identi�ed by a private IP address, and has a current weight valueWP (S) � 0, which
is used to proportionally allocate new connections for port P as described below. Any
server with WP (S) = 0 is \quiesced" and will not receive any new connections.

A connection record is kept for each connection in a global hash table, the con-
nection table. Each entry in this table is indexed by the source IP address and source
port, and also includes the target server, a state indication (active or �nished), and
a time-stamp.
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Figure 4: Main Data Structures of the Executor.

3.1 Packet Processing and Forwarding

All packets accepted by IP and destined for TCP are processed by the Executor.
Each packet can be either (1) discarded, (2) handled by the local TCP stack, or (3)
forwarded to a server for a new or existing connection. If the target port is not de�ned
for the VEC, or if there are no servers currently con�gured for that port, the packet
is discarded. If the packet's target IP address is not the same as one of the VECs,
the packet is passed to the local TCP stack for processing.

3.1.1 Existing Connections

For each incoming packet, a hash function is computed on the source (client) IP
address and source port to �nd an existing TCP connection in the connection table.
Because of this, the hash computation must be very e�cient, and should result in a
low collision rate. The inlined hash function is computed using only shifts, ANDs,
and ORs instructions. The input of the hash function is a subset of the bits of the
source port and source IP address. At a popular Internet site that served some 40
million TCP connections per day, we observed a collision rate of 2% with a hash table
of 16K entries.

If the TCP packet is for an existing connection, the Executor checks the 
ags
of the TCP header. If the RST 
ag is set, the connection entry is purged from the
connection table. If the SYN (FIN) 
ag is set, the state of the connection is changed
to active (�nished). Then the packet is forwarded to the corresponding server. If no
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connection is found and the packet does not have the SYN 
ag set (new connection
request), it is discarded. If a TCP packet has both the SYN and FIN 
ags set, the
connection is created and then marked �nished.

3.1.2 New Connections

AWeighted Round-Robin (WRR) algorithm (see Section 3.2) is used to select a target
server for a new TCP connection request. For each port P , served by a sequence of
n servers fSng, WRR uses a sequence of n weights WP (Sn), that are concurrently
computed by the Manager (see Section 4). WRR distributes connections based on
a ratio of the weights. For instance, assume that WP (SA) = w and WP (SB) = 2w.
Then, while the ratio WP (SB)=WP (SA) is maintained, SB will get twice as many new
connections to port P as SA. After the connection table entry is made, the packet is
forwarded to the indicated server.

3.1.3 Packet Forwarding

The Executor uses the private IP address of the selected server to �nd the network
interface on which each IP packet should be forwarded. If no interface is found for that
IP address, the packet is discarded. Otherwise, the Executor constructs a network
frame for transmission to the indicated interface, by invoking existing O/S services,
without examining the contents of the packet. If the IP packet is too large to �t in
one frame of the target network, the packet is fragmented. The forwarded frame has
the MAC address of the network interface of the selected server.

3.1.4 Port Speci�c Handling

There are some TCP-based protocols that require special attention, since they im-
plicitly create sessions that consist of multiple TCP connections between a single
client and a single server. For example, FTP spans two ports, the control and data
port, and both connections should be routed to the same server. The Executor allows
for speci�c handling of these cases, which are identi�ed by their port numbers. For
FTP control connections, the Executor does the connection lookup based only on
the client's IP address, so that all the connections from a given client to the same
VIPA are routed to the same FTP server. When a connection request arrives for the
FTP data port, the Executor �rst checks to see if a control connection exists from
the same client to any server. If it does, the new FTP data connection is routed to
the same server as the control connection, otherwise it is handled like any other TCP
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connection. There are many other protocols that require client a�nity to the same
server, e.g. SSL.

3.2 Weighted Round-Robin Allocation of New Connections

The Weighted Round-Robin (WRR) is a simple and e�cient algorithm for selecting a
new server. For each active port P in a VEC, WRR uses the following data structures:
(1) an ordered circular list of host servers L = (S1; S2; :::; Sn), (2) an index i to the
last selected server in L, (3) a maximum weight variable (mw > 0), and (4) the
current weight (0 �cw� mw), �rst initialized to mw. If 8i; WP (Si) = 0, there are no
available servers, and all incoming TCP connection requests for port P are discarded.

The main WRR loop starts by incrementing i. Whenever i = 1 (the \�rst" server
in L), cw  cw � 1. If cw = 0, cw  mw. If WP (Si) � cw, return Si as the
selected server to allocate the next connection, (and cw remains unchanged for the
next invocation of WRR). Otherwise, (WP (Si) < cw), i i+ 1 mod jLj, and WRR
loops. This loop will always terminate, because mw > 0, and at least one server S
has WP (S) = mw.

If the weight changes are infrequent, and/or jLj is large, the above algorithm can
be improved as follows. First, the servers in L should be maintained in decreasing
order by weight (mw = WP (S1) � WP (S2) � ::: � WP (Sn)). Second, when the
weights are changed by the Manager, the algorithm is reset by i 0 and cw mw.
Third, if WP (Si) < cw, then i 0 and cw cw � 1.

3.3 Connection Termination

Because the Executor sees only the client-to-server half of each TCP connection,
connection termination cannot be completely determined. Hence, both client initiated
\active" closes and client failures can result in accumulation of stale entries in the
connection table. Let us examine each of this two cases:

� When the client closes the conversation before the server, (\active close") the
connection should not be closed immediately. A client's active close implies a
request that the server close its half of the conversation after sending all the
requested data. ACK packets from the client to the server must continue to

ow through NetDispatcher. Therefore, the connection record should not be
purged when NetDispatcher �rst observes a client's FIN.
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� If a client looses connectivity to NetDispatcher (e.g. crashes) there may be
no FIN or RST on the connection. The server will eventually time-out this
connection, but the connection table will still have this stale connection entry
in active state.

Both active-close and stale connections have con�gurable time-out periods. These
timeouts specify the minimum idle time period since the current connection time-
stamp, before a connection in �nished or active state can be purged. Both client
initiated \active" closes and client failures can result in accumulation of stale con-
nection table entries. The Executor handles the problem of accumulation of stale
connection table entries by time stamping the connection records each time a packet

ows through them, and by garbage collecting them when they have been idle for a
con�gurable amount of time. The garbage collector thread is activated in the back-
ground by the TCP slow timer.

3.4 Instrumentation Counters and Gauges

The Executor maintains two gauges and two counters for each server. These variables
can be queried by the Manager (see Section 4.3) to estimate the current load on the
servers. The gauges keep the current number of connections that are in active and
�nished state. The counters keep count of the total number of connections a server
has received and the total number of connections that have been completed.

For diagnostic purposes the Executor also keeps packet counters, such as the num-
ber of packets that were received, too short, discarded, forwarded, and erroneous.
Also, for each VEC similar counters are kept, including the number of SYN packets
received on active (�nished) connections, and the number of packets dropped. These
counters were used to monitor the e�ects of the di�erent time-out values on the oper-
ation of the Executor. These counters could be used by a private MIB (Management
Information Base) to support SNMP management of NetDispatcher.

4 Managing Load in NetDispatcher

The Manager component of NetDispatcher de�nes the policy of dynamic load-sharing
connections among the VEC servers. The load sharing policy takes into account the
real-time load and responsiveness of the servers. Figure 5 illustrates the relationships
between the Manager, Executor, Advisors, and servers. Advisor processes collect and
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Figure 5: The NetDispatcher Manager

order load information from the VEC servers. The Manager uses the load measure-
ments provided by the Executor and the Advisors to compute a con�gurable Load
Metric Index (LMI) value for each service port. Using present and past LMI values
and the current weights, the Manager computes a new set of weights. If these weights
di�er by more than a threshold from the current weights, they are assigned to the
Executor's data structures to be used by the WRR algorithm.

This Section �rst motivates the need for real-time dynamic feedback load sharing
by describing how the imbalance in request processing time can often cause skewed
utilization of the cluster resources. We then outline the di�erences between load
balancing and load-sharing, describe the types of load metrics used, and how the
LMIs and weights are computed, and discuss the e�ectiveness of the load-sharing
method.

4.1 Dispatching TCP Connections

TCP connections are used by remote clients (e.g., Web browsers) to request services
from VEC servers (e.g. Web Servers). The service time and the amount of resources
consumed by each request varies widely and depends on several factors, such as the
type of service being provided, the speci�c content involved in each request, the
current network bandwidth available, and others. For instance, a complex database
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query will probably take orders of magnitude more time than providing a static, text-
only, pre-loaded HTML page. Some \heavy" requests perform long transactions that
involves computational intensive searches, database access, and/or very long response
data streams. Lighter requests may involve fetching an HTML page from cache or
performing a trivial computation.

This imbalance in request processing time often causes skewed utilization of the
server cluster. For instance, consider an application that opens 4 concurrent con-
nections to retrieve 4 graphic �les, A, B, C, and D, one of which (D) is very large.
Assume that several independent clients execute the same code. It is possible that
some of the cluster servers will be running at capacity while others are mostly idle.
As an extreme example, all the D �le requests may arrive at the same server. If one
or more connections are queued on a busy server, the client application may time out.

Simple Allocation of TCP Connections. A na��ve distribution of TCP connec-
tions among the back-end servers can (and often does) produce a skewed allocation
of the cluster resources. In the previous example, a simple round-robin allocation
scheme may result in many requests being queued up on servers that are currently
serving heavy requests. For instance, if there were 4 servers in the cluster, one of
them would always receive the request for the large �le (D). Such an allocation policy
can cause a severe underutilization of the cluster resources, as some servers may stay
relatively idle while others are overloaded. This condition, in turn, will also produce
longer observed delays for the remote clients.

Actual TCP/IP tra�c patterns. Surges in network tra�c tend to occur in
waves, with long periods of little tra�c followed by intervals of heavy usage in which
tra�c peaks tend to cluster [Sta97]. This self-similarity of network tra�c has been
shown to apply to both WANs and LANs in general, and to particular subsets, e.g.,
Web tra�c [CB95]. Some form of dynamic feedback control is therefore necessary
to enable appropriate reaction to the actual tra�c patterns and the state of the
servers. This feedback could be used by the clients, the servers, or an intermediary
like NetDispatcher to more evenly utilize the cluster resources. Implementing this in
NetDispatcher has the advantage of being transparent to both clients and servers.
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4.2 Load Sharing with Dynamic Feedback

Load Balancing and Load Sharing. NetDispatcher needs some guidance in order
to allocate the TCP-connections in a way that utilizes the cluster resources e�ciently.
There are two techniques for improving performance using load distribution among
several servers: load-balancing and load-sharing [ELZ86]. Load-balancing strives to
equalize the servers workload, while load-sharing attempts to smooth out transient
peak overload periods on some nodes [KK92]. Load-balancing strategies typically
consume many more resources than load-sharing, and the cost of these resources
often outweigh their potential bene�ts [KL87].

The TCP/IP workload that we observed at several heavy load Internet sites was
characterized by having many very short transactions and a few long ones. This was
the case for the Olympic Games Web site. For this type of workload, NetDispatcher
used a load-sharing method that proved to be very e�cient, and also achieved a
relatively uniform distribution of the workload. If the workload characteristics were
to change signi�cantly, so that longer transactions dominate, load balancing should
be applied to achieve a more uniform distribution of the workload.

Load Sharing. NetDispatcher implements a load-sharing allocation policy for new
TCP connections, which is driven by a dynamic feedback control loop with the VEC
servers. The Manager monitors and evaluates the current load on each server using
combinations of load metrics, as described in Section 4.3 below. The Manager uses
this data to compute the weights associated with each port server instance in the Ex-
ecutor's WRR algorithm. The computed weights tend to proportionally increase (de-
crease) the allocation of new TCP connections to underutilized (overutilized) servers.

By controlling the assignment of these weights, the Manager can implement dif-
ferent allocation policies for spreading the incoming TCP connections. For instance,
an allocation policy may assign 8i 6= j; Wp(Si) = 0 ;Wp(Sj) = 1. In this case, all
the tra�c for port p will be sent to host j. By choosing j to be the least-loaded
host, the Manager can implement a best server allocation policy. Such a policy may
be very e�cient during periods of relatively low load. Also, an administrator may
decide to quiesce a server ( Wp(Si) = 0) while doing some maintenance on it, or when
discovering that its application state is corrupted.
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4.3 Load Metric Index

The Manager computes a con�gurable Load Metric Index (LMI) value for each ser-
vice port. This computation estimates the current state of each server using multi-
ple load metrics and administrator con�gurable parameters such as time thresholds.
Load metrics are classi�ed into three classes, according to the way in which they are
computed: input, host, and forward. Input metrics are computed locally at the Net-
Dispatcher host. Host metrics are computed at each server host, and forward metrics
are computed via network interactions between NetDispatcher and each server host.
These metrics could be further combined to provide a health index [GY93] for network
management purposes.

4.3.1 Input Metrics

Input metrics provide a current estimate of the state of the VEC servers, as seen
from NetDispatcher. These metrics are derived from the counters and gauges that
the Executor collects (as described in Section 3.4). For example, the number of new
connections received in the last t seconds is an input metric. To compute this metric
the Manager periodically retrieves the values of the corresponding Executor counters.
By subtracting two counters of a server polled at times T1 and T2, the Manager
computes a metric variable that represents the number of connections received during
the interval T1�T2. The aggregation of such input metrics provides an approximation
to the current rate of new connection requests for each server and each port service.

4.3.2 Host Metrics

Host metrics represent the load of a server's host. The total number of active
processes, or the total number of allocated mbufs in a given server are examples
of host metrics. Host metrics are typically computed at each host server by an agent
process that executes command scripts. These scripts return numerical values which
are reported to a corresponding Advisor process at the NetDispatcher host. The Ad-
visor collects and orders the reports from all the hosts and periodically presents them
to the Manager.

If a metric report is not received within a policy-speci�c threshold time, then the
corresponding host metric is given a special \unreacheable" value. The Manager may
then decide to temporarily quiesce that host, h, by assigning Wp(Sh)  0 for all its
active ports, so that no new connections are forwarded to it.
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For the Olympic Games Web site, NetDispatcher used a con�gurable Advisor
to collect host metrics. For example, the \number of active processes" metric was
computed by the command \ ps -ef | wc -l." This string, together with a time
value representing the period between computations, and a list of hosts and other
con�guration values could be given to an Advisor process. The Advisor sent the
command string and its con�guration parameters to all the corresponding host agents.

The main advantage of this method is the ability to tailor the script to measure
very speci�c load metrics. The Olympic Games Web site used several di�erent scripts
for di�erent workloads. For example, for a given memory intensive workload we
measured the utilization of memory bu�ers (mbufs) for network connections.

The main disadvantage of the scripting method is its potentially high overhead,
particularly when the metrics must be updated very frequently and when the hosts
have very high CPU utilization. This overhead includes the computational cycles
spent in the frequent execution of the scripts at the servers, and the network band-
width spent on exchanging metric reports.

4.3.3 Forward Metrics

Forward metrics are computed by sending messages from NetDispatcher to a speci�c
host service. For instance, the time required to retrieve an HTML page from a
Web server to the NetDispatcher host is a forward metric. An HTTP Advisor at the
NetDispatcher host can send an HTTP "GET /" request to eachWeb server in a VEC,
and measure their corresponding delays. Such a metric measures an approximation
of the retrieval time that includes all the relevant factors: the actual instruction path
through the service application, the time that the request spends in the di�erent
queues at the server host, LAN access time, and so forth.

If a request is not answered by a con�gurable time-out, the corresponding service is
marked as temporarily not receiving new requests of the particular service type. The
Manager can then decide that a service at a particular host is temporarily unreachable,
and hence no more new connections of this type should be forwarded to it.

4.4 LMI Con�guration and Computation

Host metrics typically take longer to acquire than forward metrics, which take longer
than input metrics. The relative importance of each load metric can depend on the
workload and services, which can change over time. Hence, the Manager enables
dynamic con�guration of relative metric weights R(i), (

P
R(i) = 1), to be associated
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with each load metric l(i). R(i) de�nes the relative importance of each l(i) metric for
the Manager's load allocation algorithm. The combination of all the weighted metric
instances is an aggregate load metric index LP (S) =

P
R(i) � l(i), for each server S

and port P .
For instance, a network administrator may con�gure the algorithm for port 80 to

give 20% relative weight to a given host metric A, 40% to a service metric B, and
30% and 10% to two distinct input metrics C and D. Hence, for each server S, its
computed LMI for port 80 is L80(S) = 0:2 �A+ 0:4 �B + 0:3 � C + 0:1 �D.

The R(i) con�guration weights can be changed at any time. Ideally this should
be done by an automated management tool. The \best" allocation depends on in-
stallation speci�c parameters which are dynamically tuned to the changing nature
of the system workload. Network administrators can dynamically adjust many of
the parameters of the algorithm to compute the LMI. For example, administrators
may dynamically change the R(i) weights to raise the in
uence of a host metric (e.g.
bu�er utilization) while lowering the in
uence of a forward metric (e.g. HTTP page
retrieval). We found this feature to be extremely useful during the Olympic games.
As the workload and the content of the servers changed, we were able to compose a
more useful LMI.

4.5 Weights Computation

The weight assignments are computed at a con�gurable periodic interval (e.g. 5
seconds), and whenever a signi�cant event occurred (e.g., when a new server was
added). The �rst step is the normalization of all the LMIs and the current weights.
For each active server instance, it takes the previous and present LMIs, and the
current weights, and computes their proportion of the total.

The second step actually computes a new vector of weights using a replaceable
Weight Computation Function (WCF). The WCF takes as input all the above pro-
portions, and some additional parameters (e.g. a smoothing factor used to prevent
strong oscillations). The third step is to compute an (absolute) aggregate of all the
weight changes for each port service. If the aggregate is more than a con�gurable
\sensitivity" threshold, the new assignments are committed, that is, they are assigned
to the Executor's tables. If the weight changes are less than the threshold, we avoid
the overhead of interrupting the Executor.
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4.6 Discussion

Because the Manager implements a load sharing algorithm, at any particular point
in time there may be some imbalance in the utilization state of the servers. This is
unavoidable for many types of Internet service workloads (e.g. Web pages), as these
\transactions" typically complete very quickly, before the relevant feedback can reach
NetDispatcher. In other words, the delay in the feedback loop is too long compared
with the average transaction size to enable e�ective load balancing.

The load sharing algorithm was su�ciently sensitive to host overload at the
Olympic Web site. The Manager provided a very e�ective combination of the di�er-
ent types of metrics. Its algorithm converged rapidly, did not create oscillations, and
resulted in overall lower average wait time for requests. Whenever a host h became
overloaded, the input metrics indicated an abnormal number of connections. This,
in turn, resulted in a high number for the combined load metric for that host. When
this occurred the host was quickly quiesced, i.e., its weight was automatically set to 0.
During this \cool-down" period, most hosts were able to resolve whatever temporary
resource allocation problem they had. By then the host metrics indicated that the
host was underutilized, lowering the combined load metric. At this time the Manager
automatically assigned a positive weight to h, reintroducing it to the VEC working
set.

Notice that any host that becomes overloaded can have an impact on the externally
perceived quality of service of the site, as requests to that host may stay queued up
for long periods of time. Quiescing the hosts in the above fashion prevents incoming
request from hitting temporary unresponsive servers (e.g. \Connection Refused").

5 Implementation and Performance

5.1 Background

An early version of the IP packet forwarding technology in the Executor was devel-
oped as part of the Encapsulated Cluster (EC) project [AS92]. In the EC project,
incoming IP packets were forwarded to the cluster servers by rewriting the packet
headers. The corresponding outgoing packets had their headers rewritten so that
they appeared to come from a single IP address. They also described [AS94] and
partially prototyped a version that supported half-connection tra�c. A prototype
implementation kernel extension TCP connection router, called the (\TCP-Router"),
was based on a subset of the EC code. This prototype supported only one shared IP
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address, and used a simple round-robin method to allocate TCP connections. This
code was integrated into a prototype parallel Web server that required a separate
internal network. A simulation analysis of the expected performance of that Web
server is given in [DKMT96].

5.2 NetDispatcher

We started the NetDispatcher project by de�ning the basic requirements to support
large scale TCP/IP service sites. Among them, support for multiple VIPAs and ports,
dynamic real-time load management based on the actual state of the servers, fast allo-
cation of connections and IP packet forwarding, and extensive dynamic con�guration
support. Parts of the Executor re-used some C source code from the original TCP/IP
stack, the EC project, and the TCP-Router. This involved restructuring the software,
�xing bugs, and performance optimizations of the TCP-Router. NetDispatcher added
signi�cant functionality in this kernel extension, a new control interface, dynamic
real-time load management, and extensive dynamic con�guration support. Among
the enhancements that we introduced to the kernel extensions are:

� complete support of half-connection tra�c via NetDispatcher,

� the WRR algorithm for real-time weight-based allocation of connections,

� e�cient hashing functions,

� garbage collection,

� monitoring counters,

� support for multiple VIPAs, each with its own set of ports, and each port with
its own set of servers, and

� support for client a�nity on a speci�c port.

5.3 Implementations

A prototype of NetDispatcher running on a RS6000 AIX 4.1 was used to implement
several large scale Web sites since early in 1996. This prototype has been used with
Ethernet, Token Ring, FDDI, and ATM networks, supporting heterogeneous servers,
including OS/2, several Unix platforms, and Windows NT. An early prototype of
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NetDispatcher was available in late 1996 for Internet downloading from the Alpha-
Works site, in www.alphaworks.ibm.com. Since then, the NetDispatcher code has
become part of IBM's Interactive Network Dispatcher product 1, and has been ported
to other platforms, including Windows NT, Solaris, and two hardware IP routers.

5.4 Prototype Performance

Olympic Web Site. In the o�cial Atlanta 1996 Summer Olympic Web site, one
NetDispatcher host supported 5 VECs on some 50+ SP/2 nodes. This Web site was
geographically distributed among 5 locations in the USA, Europe and Asia, each lo-
cation containing one NetDispatcher host. During the games, this prototype handled
over 190 million TCP connections (HTTP hits) at the main location in Southbury.

At this site it executed on an RS6000 model 39H (67Mhz POWER2 processor). It
was connected to two 16MB Token Rings, one for incoming Internet tra�c from the
IP routers, and the other for spreading the packets to the servers. Response packets
from the servers were sent via ATM links to IP Routers that forwarded them via
four T3 links onto the Internet. This topology took advantage of the half-connection
method of NetDispatcher to better utilize the available network bandwidth.

During peak activity periods, NetDispatcher handled over 500 HTTP TCP con-
nections per second with low CPU utilization (under 5%) The additional latency
overhead involved for each connection was negligible, particularly when compared
with the latency of typical HTTP Internet connections.

Netscape. At the Netscape Web site during the summer of 1996, the prototype
handled an average of 40 million TCP connections per day on an 8 node SP/2 us-
ing Ethernet and an SP/2 switch. In this popular Internet site collision rates of
approximately 2% for a hash table of 16K entries were observed.

Laboratory tests. A series of laboratory measurements were conducted using Web-
stone [TS95] and running NetDispatcher on a similar processor and using an SP/2
switch [MM96]. In this study, NetDispatcher supported over 8 million HTTP requests
(TCP connections) per hour (almost 200 million per day) for small �le requests. These
measurements indicate that one NetDispatcher host can support hundreds of TCP
servers.

1See http://www.ics.raleigh.ibm.com/netdispatch/ .
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Optimizations. Since the above measurements were taken, signi�cant optimiza-
tions on the Executor have been implemented. Initial measurements of this improved
code suggest a signi�cant speed-up on the kernel's packet processing, resulting in only
20% of the CPU cycles previously used on packet processing. Hence we expect higher
throughput and also lower latency in the latest implementation.

6 Alternative Approaches

Alternative solutions to the scaling problem can be classi�ed into the following main
categories:

1. Client-based choice of server by the end-user or implicitly by the software.

2. Splitting each TCP connection into two TCP connections.

3. DNS-based, which enable clients to implicitly choose a server;

4. Simple forwarding of IP packets, source-based or by LAN broadcasting.

5. Packet forwarding with TCP/IP header translation.

6. HTTP speci�c methods like client redirection or TCP connection hopping.

In the following we outline the main characteristics of these methods, and some of
the tools that implement them.

6.1 Client Based Methods

Client-based schemes require the client software or the user to choose an appropriate
server. They can be divided into 3 main groups, explicit by the end-user, implicit
using pre-de�ned addresses, and specialized clients.

6.1.1 Explicit by End-User

For example, some Web pages present a list of servers and ask the user to choose one
by clicking on the corresponding link, e.g.,
Please select one of the following: s1.c.com, s2.c.com,...., sn.c.com.
Of course, there is no way to predict that end-users will produce a fair distribution
of requests accross the servers. In practice, it is likely that this distribution will be
very skewed towards a few servers (e.g. the �rst and last on the list).
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6.1.2 Implicit with Pre-de�ned Addresses

Some client software (e.g. Netscape's Web browser) automatically chooses a random
server from a given collection. This requires built-in knowledge, in the client, of the
set of IP addresses of the available servers. Obviously, this method can only work for
a limited set of sites and servers. Neither the explicit nor the implicit method takes
into consideration the current load or availability of the servers. Hence, they are not
su�cient solutions to the scaling problem.

6.1.3 Specialized Clients

The Smart Client project [YCE+97] implemented specialized client software (telnet,
ftp, and chat) that can select the servers. Applets provide service-speci�c customiza-
tions that choose a server for each new connection. These applets collect data about
server load at several sites by making explicit requests. Remote measuring provides
a delayed approximation of the current state of the servers. A potential drawback
of this scheme is the amount of Internet tra�c required to measure the state of the
servers.

6.2 Two TCP Connections

Another method of distributing load among a set of servers is to create a second
connection for each TCP connection. For example, Songerwala and Levy [SL96]
prototyped a broker tool that accepts each TCP connection and allocates a second
TCP connection between itself and a Web server host. Walker's pWEB [Wal96] follows
a similar approach using a forwarding agent that accepts client TCP connections,
appropriately labels the incoming messages, forwards them to servers, receives the
responses from the servers and forwards them back to the appropriate client.

Two connection schemes have been used in the past for other purposes, such as
to bridge wired and wireless networks and to implement proxy servers. The main
advantage of the two-connection approach is its ease of implementation and porta-
bility. Its main disadvantage is its performance, in both latency overhead and lower
throughput. Furthermore, such a scheme may violate the intended semantics of a
TCP connection, since a client may get acknowledgments for packets that have not
been actually received by the server [Tan96].
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6.3 DNS extensions for Load Balancing

Many Internet sites rely on DNS [Moc87] based techniques to share load across several
servers. A primary example is the NCSA Web site [KBM94]. These techniques
include modi�cations to the DNS BIND code, like Beecher's Shu�e Addresses, Rose's
Round-Robin code (RR-DNS), Brisco's zone transfer changes [Bri95], and Schemers'
LBnamed [Sch95]. These techniques allow the DNS client to choose the IP address
of the target server.

There are several drawbacks to all DNS-based solutions. Mogul, observing a high-
tra�c 3 server Web site, found that DNS-based schemes do not balance the loads
over short periods of time. He suggested that \DNS-based technique cannot provide
linear scaling for server performance at peak request rates" [Mog95].

DNS may only disclose up to 32 IP addresses for each name, due to UDP packet
size constraints. Revealing these IP addresses may be problematic for some service
sites, since this information can be used by hackers and competitors. It also makes
it more di�cult to change the IP addresses of the servers when needed. Knowledge
of so many IP addresses also creates problems for clients (e.g., unnecessary reload of
Web pages in cache), and for network gateways (e.g. for �ltering rules in IP routers).

Any caching of IP addresses resolved via DNS creates skews in the distribution of
requests. For instance, consider the case of a large ISP proxy caching the IP address
of a server S for the DNS name D. All requests for D from that ISP will then be
forwarded to S. In general, whenever server IP addresses become known, the cluster
loses control on how many requests will reach each server.

While DNS allows servers to request that names expire immediately by setting
a very short or even 0 TTL value, this option is oftentimes ignored. If secondary
DNS servers cannot cache data, it results in (1) heavy tra�c of DNS queries between
the DNS servers, and (2) the primary DNS server becoming a single point of failure
[Chu96]. Furthermore, there is a potential for high delay in resolving these names
between the servers. Another problem of the DNS-based solutions is that they are
very slow (or unable) to detect server failures and additions of new servers. In these
cases, TCP clients will be refused connections while the cluster could have served
them. Finally, DNS records can be spoofed to mislead a client into going to a phony
server.

The simpler RR-DNS treats all servers equally, without regard to their power or
current capacity. Hence, in an heterogeneous environment, an underutilized Pentium
Pro server host may get as many requests as an overloaded 486 server. While the
server host may be running properly, the speci�c service software (e.g. httpd) may
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have failed. For example, a tool like LBnamed may see that a server is underloaded
(because the httpd demon failed), and then it will give it an even higher priority,
resulting in more requests going to a failed server. Furthermore, there may be a large
delay between the time of the actual measurements of load at the servers and the
time at which the DNS requests are resolved. By then, the load information may be
obsolete.

6.4 Simple IP Packet Forwarding

6.4.1 Source-based Forwarding

ONE-IP [DCH+97] supports IP packet forwarding based only on a hash function over
the source IP address, e.g. client-based a�nity. Notice that there is no guarantee
that the source IP addresses of the clients will be evenly distributed. In particular,
many clients may reuse an IP address associated with proxy servers or other �ltering
gateways. Such a scheme will have some of the same problems of skewing that were
described earlier for DNS based methods, and hence will not properly balance the
load. Its main advantage is that it does not need to keep track of the connections,
hence it requires less memory.

6.4.2 IP Packet Broadcasting

This method will forward all IP packets arriving for a VIPA to the broadcasting
address of the LAN. Filtering software at each server then decides whether or not to
accept the packets. The �ltering code must properly divide the IP address space so
that there are no overlapping across all the interfaces. This method was proposed by
[Chu96] and was also prototyped in ONE-IP [DCH+97].

6.5 TCP/IP Header Translation

Most packet forwarding tools are implemented as specialized hardware devices, e.g.,
Cisco's LocalDirector [CIS96]. These devices translate (rewrite) the TCP/IP headers
and recompute the checksums of all packets 
owing between clients and servers in
both directions. This is similar to Network Address Translation (NAT) [EF94], adding
the choice of the selected server. HydraWeb [Hyd96] is another similar device, but
also requires installing software agents at each server to analyze their load.

There are several performance disadvantages of the header-translation approach.
First, there is the latency overhead involved in processing all packets in both direc-
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tions. Second, there are the bandwidth constraints of the translator device which
becomes a main tra�c bottleneck. Third, since each return packet must return via
the translator device, it is not practical to have multiple devices working concurrently
with a common set of host servers.

In contrast to this approach, NetDispatcher half-connection method leaves the
incoming IP packets intact, and does not process the outgoing packets. The half-
connection method has some signi�cant performance advantages over the above header
translation. The latency overhead is smaller since the IP packet is left untouched,
and outgoing packets can follow several routes, which may have higher aggregate
bandwidth. Since each return packet does not need to return via the forwarding
NetDispatcher, it is very easy to have multiple NetDispatcher devices concurrently
serving tra�c to the same set of nodes. For example, 2 NetDispatcher devices can
provide high availability for each other, and also work concurrently supporting the
same set of host servers. Furthermore, the half connection method allows for passing
the packets to remote LANs, as described in Section 7.

Several other research projects have also reported similar features. The Magi-
crouter [APB96] maps kernel memory to user space and allows direct access to pack-
ets of Linux device drivers. It translates the TCP headers (addresses and checksums)
to forward the packets in both directions. It allocates connections using either round-
robin, random, or incremental system load methods. Yeom et al. [YHK96] proposed a
port-address translator gateway that assigns a di�erent port number to each connec-
tion. Its translation of IP addresses and ports brakes many protocols which require
a�nity between several connections.

6.6 HTTP Speci�c Methods

6.6.1 Connection Passing for HTTP

Resonate Dispatch [Res96] is a software tool that supports content-based allocation
of HTTP requests. TCP connections are accepted at the \Scheduler" host which
examines the URL and then transfers the TCP connection to a host based on ad-
ministrative rules. This method, however, requires modifying the IP stack of all the
(SPARC/Solaris) servers to support the TCP connection \hop".
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6.6.2 Selective HTTP Redirection

In this scheme, when a Web browser GET request reaches a specialized server, instead
of returning the requested data, the client is directed to create a second connection
to another server. Notice that a simple, \always redirect" policy can have a very high
latency overhead for most simple requests. Hence, HTTP clients should be redirected
to other servers only when the load in the original server is too high and the expected
redirection overhead is smaller than the expected gain in performance. Obviously, this
method is only useful for HTTP, and cannot address other legacy TCP/IP protocols.

SWEB [AYHI96] uses connection redirection in conjunction with RR-DNS to avoid
hot-spots. Genuity's Hopscotch [JH97] also uses HTTP redirect to point the client
to a di�erent server over their internal network. It uses traceroute to build a large
central database of network tra�c, in order to �nd an appropriate server for each
client request. Redirection may be very slow when a request comes from a previously
unknown domain, as it will take very long to choose a server.

7 Current and Future Work

There are several additional features that may be integrated in future versions of
these technology. Some of these features have been prototyped:

1. High availability (HA) enables clients to re-establish new connections to the
servers quickly after a failure of NetDispatcher; In the event of a failure, however,
HA will lose the currently active connections. HA scripts based on Phoenix
technology [IBM96b, IBM96a] were used for an IBM SP/2 cluster.

2. Fault tolerance supports complete recovery without (or with minimal) loss of
active connections. This scheme will enable recovery from a NetDispatcher
failure without losing connections.

3. Additional port-speci�c routing functions, to support di�erent a�nity require-
ments; SSL support has been implemented.

Other features have been designed but not fully implemented yet. These include:

1. Support for wide-area network routing of TCP connections. This is done by
tunneling incoming IP packets to a remote NetDispatcher that delivers them to
hosts in its LAN. Return packets will go directly to the client.
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2. Support to identify and properly respond to SYN 
ood denial of service attacks.
An installation may have some servers which can properly handle such an attack
(set A), while some other servers (set B) can not. Hence, an administrator may
produce a policy that requires that set B hosts should not receive any TCP
connections whenever a SYN 
ood attack is suspected.

8 Conclusions

Many popular Internet and Intranet sites need to scale-up to serve their ever increas-
ing TCP/IP workload. Client-based and DNS-based methods, by themselves, have
been shown to be insu�cient ways to scale-up heavily used server sites, particularly
during peak periods of activity. In general, whenever server IP addresses become
known, the site loses control of the allocation of requests to each server. Load alloca-
tion decisions should be made in real time, as each request arrives, in close proximity
to the cluster, and based on the current state of the servers.

NetDispatcher supports the sharing of a virtual IP address by several servers,
and properly distributes the workload among them. Its method of forwarding in-
coming client-to-server TCP packets unchanged is more e�cient and scales-up better
than alternative TCP header-translator tools. For many TCP-based protocols (like
HTTP), incoming request packets are typically smaller than the response packets.
Outgoing server-to-client tra�c can follow a separate network route, and need not
be processed by NetDispatcher. Hence, its half-connection method provides a per-
formance advantage over address translation in terms of bandwidth utilization and
latency. Depending on the workload tra�c, the performance bene�t can be signi�-
cant.

NetDispatcher supports dynamic, real-time feedback to properly react to the cur-
rent tra�c pattern. Instead of trying to �nd a server for every connection as the
requests arrive, NetDispatcher uses an e�cient user-level and kernel-extension com-
bination load-sharing algorithm based on a con�gurable Load Metric Index value for
each service port. This load-sharing scheme was shown to be e�cient in real life tests,
for large Internet sites with millions of TCP connections per day, such as the Summer
Olympic Web site. In laboratory tests, an early prototype supported over 200 million
TCP connections per day.
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