
Lottery Scheduling: Flexible Proportional-Share Resource Management

Carl A. Waldspurger � William E. Weihl �

MIT Laboratory for Computer Science
Cambridge, MA 02139 USA

Abstract

This paper presents lottery scheduling, a novel randomized
resource allocation mechanism. Lottery scheduling provides ef-
ficient, responsive control over the relative execution rates of
computations. Such control is beyond the capabilities of conven-
tional schedulers, and is desirable in systems that service requests
of varying importance, such as databases, media-based applica-
tions, and networks. Lottery scheduling also supports modular
resource management by enabling concurrent modules to insulate
their resource allocation policies from one another. A currency ab-
straction is introduced to flexibly name, share, and protect resource
rights. We also show that lottery scheduling can be generalized
to manage many diverse resources, such as I/O bandwidth, mem-
ory, and access to locks. We have implemented a prototype lottery
scheduler for the Mach 3.0 microkernel, and found that it provides
flexible and responsive control over the relative execution rates
of a wide range of applications. The overhead imposed by our
unoptimized prototype is comparable to that of the standard Mach
timesharing policy.

1 Introduction

Scheduling computations in multithreaded systems is a
complex, challenging problem. Scarce resources must be
multiplexed to service requests of varying importance, and
the policy chosen to manage this multiplexing can have an
enormous impact on throughput and response time. Accu-
rate control over the quality of service provided to users
and applications requires support for specifying relative
computation rates. Such control is desirable across a wide
spectrum of systems. For long-running computations such
as scientific applications and simulations, the consumption
of computing resources that are shared among users and ap-
plications of varying importance must be regulated [Hel93].
For interactive computations such as databases and media-
based applications, programmers and users need the ability

�E-mail: fcarl, weihlg@lcs.mit.edu. World Wide Web:
http://www.psg.lcs.mit.edu/. The first author was supported
in part by an AT&T USL Fellowship and by a grant from the MIT X Con-
sortium. Prof. Weihl is currently supported by DEC while on sabbatical
at DEC SRC. This research was also supported by ARPA under contract
N00014-94-1-0985, by grants from AT&T and IBM, and by an equipment
grant from DEC. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. government.

to rapidly focus available resources on tasks that are cur-
rently important [Dui90].

Few general-purpose schemes even come close to sup-
porting flexible, responsive control over service rates.
Those that do exist generally rely upon a simple notion of
priority that does not provide the encapsulation and modu-
larity properties required for the engineering of large soft-
ware systems. In fact, with the exception of hard real-time
systems, it has been observed that the assignment of pri-
orities and dynamic priority adjustment schemes are often
ad-hoc [Dei90]. Even popular priority-based schemes for
CPU allocation such as decay-usage scheduling are poorly
understood, despite the fact that they are employed by nu-
merous operating systems, including Unix [Hel93].

Existing fair share schedulers [Hen84, Kay88] and mi-
croeconomic schedulers [Fer88, Wal92] successfully ad-
dress some of the problems with absolute priority schemes.
However, the assumptions and overheads associated with
these systems limit them to relatively coarse control over
long-running computations. Interactive systems require
rapid, dynamic control over scheduling at a time scale of
milliseconds to seconds.

We have developed lottery scheduling, a novel ran-
domized mechanism that provides responsive control over
the relative execution rates of computations. Lottery
scheduling efficiently implements proportional-share re-
source management — the resource consumption rates of
active computations are proportional to the relative shares
that they are allocated. Lottery scheduling also provides
excellent support for modular resource management. We
have developed a prototype lottery scheduler for the Mach
3.0 microkernel, and found that it provides efficient, flexible
control over the relative execution rates of compute-bound
tasks, video-based applications, and client-server interac-
tions. This level of control is not possible with current
operating systems, in which adjusting scheduling parame-
ters to achieve specific results is at best a black art.

Lottery scheduling can be generalized to manage many
diverse resources, such as I/O bandwidth, memory, and
access to locks. We have developed a prototype lottery-
scheduled mutex implementation, and found that it provides
flexible control over mutex acquisition rates. A variant of
lottery scheduling can also be used to efficiently manage
space-shared resources such as memory.

In the next section, we describe the basic lottery schedul-
ing mechanism. Section 3 discusses techniques for modular
resource management based on lottery scheduling. Imple-
mentation issues and a description of our prototype are
presented in Section 4. Section 5 discusses the results of
several quantitative experiments. Generalizations of the
lottery scheduling approach are explored in Section 6. In
Section 7, we examine related work. Finally, we summarize
our conclusions in Section 8.

2 Lottery Scheduling

Lottery scheduling is a randomized resource allocation
mechanism. Resource rights are represented by lottery
tickets.1 Each allocation is determined by holding a lot-
tery; the resource is granted to the client with the winning
ticket. This effectively allocates resources to competing
clients in proportion to the number of tickets that they hold.

2.1 Resource Rights

Lottery tickets encapsulate resource rights that are ab-
stract, relative, and uniform. They are abstract because they
quantify resource rights independently of machine details.
Lottery tickets are relative, since the fraction of a resource
that they represent varies dynamically in proportion to the
contention for that resource. Thus, a client will obtain
more of a lightly contended resource than one that is highly
contended; in the worst case, it will receive a share propor-
tional to its share of tickets in the system. Finally, tickets
are uniform because rights for heterogeneous resources can
be homogeneously represented as tickets. These properties
of lottery tickets are similar to those of money in computa-
tional economies [Wal92].

2.2 Lotteries

Scheduling by lottery is probabilistically fair. The ex-
pected allocation of resources to clients is proportional to
the number of tickets that they hold. Since the scheduling
algorithm is randomized, the actual allocated proportions
are not guaranteed to match the expected proportions ex-
actly. However, the disparity between them decreases as
the number of allocations increases.

The number of lotteries won by a client has a binomial
distribution. The probability p that a client holding t tickets
will win a given lottery with a total of T tickets is simply
p = t=T . Aftern identical lotteries, the expected number of
wins w is E[w] = np, with variance �2

w
= np(1� p). The

coefficient of variation for the observed proportion of wins
is �w=E[w] =

p
(1� p)=np. Thus, a client’s throughput

is proportional to its ticket allocation, with accuracy that
improves with

p
n.

1A single physical ticket may represent any number of logical tick-
ets. This is similar to monetary notes, which may be issued in different
denominations.

The number of lotteries required for a client’s first win
has a geometric distribution. The expected number of
lotteries n that a client must wait before its first win is
E[n] = 1=p, with variance �2

n
= (1 � p)=p2. Thus, a

client’s average response time is inversely proportional to
its ticket allocation. The properties of both binomial and
geometric distributions are well-understood [Tri82].

With a scheduling quantum of 10 milliseconds (100 lot-
teries per second), reasonable fairness can be achieved over
subsecond time intervals. As computation speeds continue
to increase, shorter time quanta can be used to further im-
prove accuracy while maintaining a fixed proportion of
scheduler overhead.

Since any client with a non-zero number of tickets will
eventually win a lottery, the conventional problem of star-
vation does not exist. The lottery mechanism also operates
fairly when the number of clients or tickets varies dynami-
cally. For each allocation, every client is given a fair chance
of winning proportional to its share of the total number of
tickets. Since any changes to relative ticket allocations are
immediately reflected in the next allocation decision, lottery
scheduling is extremely responsive.

3 Modular Resource Management

The explicit representation of resource rights as lot-
tery tickets provides a convenient substrate for modular
resource management. Tickets can be used to insulate the
resource management policies of independent modules, be-
cause each ticket probabilistically guarantees its owner the
right to a worst-case resource consumption rate. Since lot-
tery tickets abstractly encapsulate resource rights, they can
also be treated as first-class objects that may be transferred
in messages.

This section presents basic techniques for implementing
resource management policies with lottery tickets. Detailed
examples are presented in Section 5.

3.1 Ticket Transfers

Ticket transfers are explicit transfers of tickets from one
client to another. Ticket transfers can be used in any situ-
ation where a client blocks due to some dependency. For
example, when a client needs to block pending a reply from
an RPC, it can temporarily transfer its tickets to the server
on which it is waiting. This idea also conveniently solves
the conventional priority inversion problem in a manner
similar to priority inheritance [Sha90]. Clients also have
the ability to divide ticket transfers across multiple servers
on which they may be waiting.

3.2 Ticket Inflation

Ticket inflation is an alternative to explicit ticket transfers
in which a client can escalate its resource rights by creating
more lottery tickets. In general, such inflation should be

disallowed, since it violates desirable modularity and load
insulation properties. For example, a single client could
easily monopolize a resource by creating a large number of
lottery tickets. However, ticket inflation can be very use-
ful among mutually trusting clients; inflation and deflation
can be used to adjust resource allocations without explicit
communication.

3.3 Ticket Currencies

In general, resource management abstraction barriers are
desirable across logical trust boundaries. Lottery schedul-
ing can easily be extended to express resource rights in units
that are local to each group of mutually trusting clients. A
unique currency is used to denominate tickets within each
trust boundary. Each currency is backed, or funded, by
tickets that are denominated in more primitive currencies.
Currency relationships may form an arbitrary acyclic graph,
such as a hierarchy of currencies. The effects of inflation
can be locally contained by maintaining an exchange rate
between each local currency and a base currency that is
conserved. The currency abstraction is useful for flexibly
naming, sharing, and protecting resource rights. For exam-
ple, an access control list associated with a currency could
specify which principals have permission to inflate it by
creating new tickets.

3.4 Compensation Tickets

A client which consumes only a fraction f of its al-
located resource quantum can be granted a compensation
ticket that inflates its value by 1=f until the client starts its
next quantum. This ensures that each client’s resource con-
sumption, equal to f times its per-lottery win probability p,
is adjusted by 1=f to match its allocated share p. Without
compensation tickets, a client that does not consume its en-
tire allocated quantum would receive less than its entitled
share of the processor.

4 Implementation

We have implemented a prototype lottery scheduler
by modifying the Mach 3.0 microkernel (MK82) [Acc86,
Loe92] on a 25MHz MIPS-based DECStation 5000/125.
Full support is provided for ticket transfers, ticket inflation,
ticket currencies, and compensation tickets.2 The schedul-
ing quantum on this platform is 100 milliseconds.

4.1 Random Numbers

An efficient lottery scheduler requires a fast way to gen-
erate uniformly-distributed random numbers. We have im-
plemented a pseudo-random number generator based on the

2Our first lottery scheduler implementation, developed for the Prelude
[Wei91] runtime system, lacked support for ticket transfers and currencies.

10 2 5 1 2

total = 20
random [0 .. 19] = 15

Σ > 15?
Σ = 10

no

Σ = 12
Σ > 15?

Σ = 17
Σ > 15?

no yes

Figure 1: Example Lottery. Five clients compete in a list-based
lottery with a total of 20 tickets. The fifteenth ticket is randomly
selected, and the client list is searched for the winner. A running
ticket sum is accumulated until the winning ticket value is reached.
In this example, the third client is the winner.

Park-Miller algorithm [Par88, Car90] that executes in ap-
proximately 10 RISC instructions. Our assembly-language
implementation is listed in Appendix A.

4.2 Lotteries

A straightforward way to implement a centralized lot-
tery scheduler is to randomly select a winning ticket, and
then search a list of clients to locate the client holding that
ticket. This requires a random number generation andO(n)
operations to traverse a client list of length n, accumulating
a running ticket sum until it reaches the winning value. An
example list-based lottery is presented in Figure 1.

Various optimizations can reduce the average number of
clients that must be examined. For example, if the distri-
bution of tickets to clients is uneven, ordering the clients
by decreasing ticket counts can substantially reduce the av-
erage search length. Since those clients with the largest
number of tickets will be selected most frequently, a simple
“move to front” heuristic can be very effective.

For large n, a more efficient implementation is to use
a tree of partial ticket sums, with clients at the leaves.
To locate the client holding a winning ticket, the tree is
traversed starting at the root node, and ending with the
winning client leaf node, requiring onlyO(lg n) operations.
Such a tree-based implementation can also be used as the
basis of a distributed lottery scheduler.

4.3 Mach Kernel Interface

The kernel representation of tickets and currencies is
depicted in Figure 2. A minimal lottery scheduling interface
is exported by the microkernel. It consists of operations to
create and destroy tickets and currencies, operations to fund
and unfund a currency (by adding or removing a ticket from
its list of backing tickets), and operations to compute the
current value of tickets and currencies in base units.

Our lottery scheduling policy co-exists with the standard
timesharing and fixed-priority policies. A few high-priority
threads (such as the Ethernet driver) created by the Unix
server (UX41) remain at their original fixed priorities.

ticket

1000
base

amount

currency

currency

alice
300

active
amount

unique
name

...

... list of
issued
tickets

...

... list of
backing
tickets

Figure 2: Kernel Objects. A ticket object contains an amount
denominated in some currency. A currency object contains a
name, a list of tickets that back the currency, a list of all tickets
issued in the currency, and an active amount sum for all issued
tickets.

4.4 Ticket Currencies

Our prototype uses a simple scheme to convert ticket
amounts into base units. Each currency maintains an ac-
tive amount sum for all of its issued tickets. A ticket is
active while it is being used by a thread to compete in a
lottery. When a thread is removed from the run queue, its
tickets are deactivated; they are reactivated when the thread
rejoins the run queue.3 If a ticket deactivation changes a
currency’s active amount to zero, the deactivation propa-
gates to each of its backing tickets. Similarly, if a ticket
activation changes a currency’s active amount from zero,
the activation propagates to each of its backing tickets.

A currency’s value is computed by summing the value of
its backing tickets. A ticket’s value is computed by multi-
plying the value of the currency in which it is denominated
by its share of the active amount issued in that currency.
The value of a ticket denominated in the base currency is
defined to be its face value amount. An example currency
graph with base value conversions is presented in Figure 3.
Currency conversions can be accelerated by caching values
or exchange rates, although this is not implemented in our
prototype.

Our scheduler uses the simple list-based lottery with
a move-to-front heuristic, as described earlier in Section
4.2. To handle multiple currencies, a winning ticket value
is selected by generating a random number between zero
and the total number of active tickets in the base currency.
The run queue is then traversed as described earlier, except
that the running ticket sum accumulates the value of each
thread’s currency in base units until the winning value is
reached.

3A blocked thread may transfer its tickets to another thread that will
actively use them. For example, a thread blocked pending a reply from an
RPC transfers its tickets to the server thread on which it is waiting.

base
3000

2000
base

1000
base

bob
100

alice
200

200
alice

100
bob

thread4thread2 thread3

task2
500

task3
100

200
task2

300
task2

100
task3

thread1

100
alice

task1
 0

100
task1

Figure 3: Example Currency Graph. Two users compete for
computing resources. Alice is executing two tasks: task1 is cur-
rently inactive, and task2 has two runnable threads. Bob is exe-
cuting one single-threaded task, task3. The current values in base
units for the runnable threads are thread2 = 400, thread3 = 600,
and thread4 = 2000. In general, currencies can also be used for
groups of users or applications, and currency relationships may
form an acyclic graph instead of a strict hierarchy.

4.5 Compensation Tickets

As discussed in Section 3.4, a thread which consumes
only a fraction f of its allocated time quantum is automati-
cally granted a compensation ticket that inflates its value by
1=f until the thread starts its next quantum. This is consis-
tent with proportional sharing, and permits I/O-bound tasks
that use few processor cycles to start quickly.

For example, suppose threadsA andB each hold tickets
valued at 400 base units. Thread A always consumes its
entire 100 millisecond time quantum, while thread B uses
only 20 milliseconds before yielding the processor. Since
bothA andB have equal funding, they are equally likely to
win a lottery when both compete for the processor. How-
ever, thread B uses only f = 1=5 of its allocated time,
allowing thread A to consume five times as much CPU,
in violation of their 1 : 1 allocation ratio. To remedy this
situation, thread B is granted a compensation ticket valued
at 1600 base units when it yields the processor. When B
next competes for the processor, its total funding will be
400=f = 2000 base units. Thus, on average B will win
the processor lottery five times as often as A, each time
consuming 1=5 as much of its quantum as A, achieving the
desired 1 : 1 allocation ratio.

4.6 Ticket Transfers

The mach msg system call was modified to temporarily
transfer tickets from client to server for synchronous RPCs.
This automatically redirects resource rights from a blocked
client to the server computing on its behalf. A transfer is
implemented by creating a new ticket denominated in the
client’s currency, and using it to fund the server’s currency.
If the server thread is already waiting when mach msg
performs a synchronous call, it is immediately funded with
the transfer ticket. If no server thread is waiting, then the
transfer ticket is placed on a list that is checked by the
server thread when it attempts to receive the call message.4

During a reply, the transfer ticket is simply destroyed.

4.7 User Interface

Currencies and tickets can be manipulated via a
command-line interface. User-level commands exist to cre-
ate and destroy tickets and currencies (mktkt, rmtkt,
mkcur, rmcur), fund and unfund currencies (fund,
unfund), obtain information (lstkt, lscur), and to
execute a shell command with specified funding (fundx).
Since the Mach microkernel has no concept of user and we
did not modify the Unix server, these commands are setuid
root.5 A complete lottery scheduling system should pro-
tect currencies by using access control lists or Unix-style
permissions based on user and group membership.

5 Experiments

In order to evaluate our prototype lottery scheduler, we
conducted experiments designed to quantify its ability to
flexibly, responsively, and efficiently control the relative
execution rates of computations. The applications used
in our experiments include the compute-bound Dhrystone
benchmark, a Monte-Carlo numerical integration program,
a multithreaded client-server application for searching text,
and competing MPEG video viewers.

5.1 Fairness

Our first experiment measured the accuracy with which
our lottery scheduler could control the relative execution
rates of computations. Each point plotted in Figure 4 indi-
cates the relative execution rate that was observed for two
tasks executing the Dhrystone benchmark [Wei84] for sixty
seconds with a given relative ticket allocation. Three runs
were executed for each integral ratio between one and ten.

4In this case, it would be preferable to instead fund all threads capable
of receiving the message. For example, a server task with fewer threads
than incoming messages should be directly funded. This would accelerate
all server threads, decreasing the delay until one becomes available to
service the waiting message.

5The fundx command only executes as root to initialize its task cur-
rency funding. It then performs a setuid back to the original user before
invoking exec.

0 2 4 6 8 10

Allocated Ratio

0

5

10

15

O
bs

er
ve

d
It

er
at

io
n

R
at

io

Figure 4: Relative Rate Accuracy. For each allocated ratio, the
observed ratio is plotted for each of three 60 second runs. The
gray line indicates the ideal where the two ratios are identical.

With the exception of the run for which the 10 : 1 allocation
resulted in an average ratio of 13.42 : 1, all of the observed
ratios are close to their corresponding allocations. As ex-
pected, the variance is greater for larger ratios. However,
even large ratios converge toward their allocated values
over longer time intervals. For example, the observed ratio
averaged over a three minute period for a 20 : 1 allocation
was 19.08 : 1.

Although the results presented in Figure 4 indicate that
the scheduler can successfully control computation rates,
we should also examine its behavior over shorter time in-
tervals. Figure 5 plots average iteration counts over a se-
ries of 8 second time windows during a single 200 second
execution with a 2 : 1 allocation. Although there is clearly
some variation, the two tasks remain close to their allocated
ratios throughout the experiment. Note that if a schedul-
ing quantum of 10 milliseconds were used instead of the
100 millisecond Mach quantum, the same degree of fair-
ness would be observed over a series of subsecond time
windows.

5.2 Flexible Control

A more interesting use of lottery scheduling involves
dynamically controlled ticket inflation. A practical appli-
cation that benefits from such control is the Monte-Carlo
algorithm [Pre88]. Monte-Carlo is a probabilistic algorithm
that is widely used in the physical sciences for computing
average properties of systems. Since errors in the computed
average are proportional to 1=

p
n, where n is the number

of trials, accurate results require a large number of trials.
Scientists frequently execute several separate Monte-

Carlo experiments to explore various hypotheses. It is often
desirable to obtain approximate results quickly whenever a
new experiment is started,while allowing older experiments
to continue reducing their error at a slower rate [Hog88].

0 50 100 150 200

Time (sec)

0

10000

20000

30000
A

ve
ra

ge
 I

te
ra

ti
on

s
(p

er
 s

ec
)

Figure 5: Fairness Over Time. Two tasks executing the Dhry-
stone benchmark with a 2 : 1 ticket allocation. Averaged over the
entire run, the two tasks executed 25378 and 12619 iterations/sec.,
for an actual ratio of 2.01 : 1.

This goal would be impossible with conventional sched-
ulers, but can be easily achieved in our system by dynam-
ically adjusting an experiment’s ticket value as a function
of its current relative error. This allows a new experiment
with high error to quickly catch up to older experiments by
executing at a rate that starts high but then tapers off as its
relative error approaches that of its older counterparts.

Figure 6 plots the total number of trials computed by each
of three staggered Monte-Carlo tasks. Each task is based
on the sample code presented in [Pre88], and is allocated a
share of time that is proportional to the square of its relative
error.6 When a new task is started, it initially receives a
large share of the processor. This share diminishes as the
task reduces its error to a value closer to that of the other
executing tasks.

A similar form of dynamic control may also be useful
in graphics-intensive programs. For example, a rendering
operation could be granted a large share of processing re-
sources until it has displayed a crude outline or wire-frame,
and then given a smaller share of resources to compute a
more polished image.

5.3 Client-Server Computation

As mentioned in Section 4.6, the Mach IPC primitive
mach msg was modified to temporarily transfer tickets
from client to server on synchronous remote procedure
calls. Thus, a client automatically redirects its resource
rights to the server that is computing on its behalf. Multi-
threaded servers will process requests from different clients
at the rates defined by their respective ticket allocations.

6Any monotonically increasing function of the relative error would
cause convergence. A linear function would cause the tasks to converge
more slowly; a cubic function would result in more rapid convergence.

0 500 1000

Time (sec)

0

5

10

C
um

ul
at

iv
e

T
ri

al
s

(m
ill

io
ns

)

Figure 6: Monte-Carlo Execution Rates. Three identical
Monte-Carlo integrations are started two minutes apart. Each
task periodically sets its ticket value to be proportional to the
square of its relative error, resulting in the convergent behavior.
The “bumps” in the curves mirror the decreasing slopes of new
tasks that quickly reduce their error.

We developed a simple multithreaded client-server ap-
plication that shares properties with real databases and in-
formation retrieval systems. Our server initially loads a
4.6 Mbyte text file “database” containing the complete text
to all of William Shakespeare’s plays.7 It then forks off
several worker threads to process incoming queries from
clients. One query operation supported by the server is a
case-insensitive substring search over the entire database,
which returns a count of the matches found.

Figure 7 presents the results of executing three database
clients with an 8 : 3 : 1 ticket allocation. The server has
no tickets of its own, and relies completely upon the tickets
transferred by clients. Each client repeatedly sends requests
to the server to count the occurrences of the same search
string.8 The high-priority client issues a total of 20 queries
and then terminates. The other two clients continue to issue
queries for the duration of the entire experiment.

The ticket allocations affect both response time and
throughput. When the high-priority client has completed
its 20 requests, the other clients have completed a total of
10 requests, matching their overall 8 : 4 allocation. Over
the entire experiment, the clients with a 3 : 1 ticket alloca-
tion respectively complete 38 and 13 queries, which closely
matches their allocation, despite their transient competition
with the high-priority client. While the high-priority client
is active, the average response times seen by the clients are
17.19, 43.19, and 132.20 seconds, yielding relative speeds
of 7.69 : 2.51 : 1. After the high-priority client terminates,

7A disk-based database could use lotteries to schedule disk bandwidth;
this is not implemented in our prototype.

8The string used for this experiment was lottery, which incidentally
occurs a total of 8 times in Shakespeare’s plays.

0 200 400 600 800

Time (sec)

0

10

20

30

40

Q
ue

ri
es

 P
ro

ce
ss

ed

Figure 7: Query Processing Rates. Three clients with an
8 : 3 : 1 ticket allocation compete for service from a multithreaded
database server. The observed throughput and response time ratios
closely match this allocation.

the response times are 44.17 and 15.18 seconds,for a 2.91 : 1
ratio. For all average response times, the standard deviation
is less than 7% of the average.

A similar form of control could be employed by database
or transaction-processing applications to manage the re-
sponse times seen by competing clients or transactions.
This would be useful in providing different levels of ser-
vice to clients or transactions with varying importance (or
real monetary funding).

5.4 Multimedia Applications

Media-based applications are another domain that can
benefit from lottery scheduling. Compton and Tennen-
house described the need to control the quality of service
when two or more video viewers are displayed — a level of
control not offered by current operating systems [Com94].
They attempted, with mixed success, to control video dis-
play rates at the application level among a group of mutually
trusting viewers. Cooperating viewers employed feedback
mechanisms to adjust their relative frame rates. Inadequate
and unstable metrics for system load necessitated substan-
tial tuning, based in part on the number of active viewers.
Unexpected positive feedback loops also developed, lead-
ing to significant divergence from intended allocations.

Lottery scheduling enables the desired control at the
operating-system level, eliminating the need for mutually
trusting or well-behaved applications. Figure 8 depicts the
execution of three mpeg play video viewers (A, B, and
C) displaying the same music video. Tickets were initially
allocated to achieve relative display rates of A :B :C =
3 : 2 : 1, and were then changed to 3 : 1 : 2 at the time indi-
cated by the arrow. The observed per-second frame rates
were initially 2.03 : 1.59 : 1.06 (1.92 : 1.50 : 1 ratio), and
then 2.02 : 1.05 : 1.61 (1.92 : 1 : 1.53 ratio) after the change.

0 100 200 300

Time (sec)

0

200

400

600

C
um

ul
at

iv
e

F
ra

m
es

A

B

C

Figure 8: Controlling Video Rates. Three MPEG viewers are
given an initial A :B :C = 3 : 2 : 1 allocation, which is changed
to 3 : 1 : 2 at the time indicated by the arrow. The total number
of frames displayed is plotted for each viewer. The actual frame
rate ratios were 1.92 : 1.50 : 1 and 1.92 : 1 : 1.53, respectively, due
to distortions caused by the X server.

Unfortunately, these results were distorted by the round-
robin processing of client requests by the single-threaded
X11R5 server. When run with the -no display option,
frame rates such as 6.83 : 4.56 : 2.23 (3.06 : 2.04 : 1 ratio)
were typical.

5.5 Load Insulation

Support for multiple ticket currencies facilitates modu-
lar resource management. A currency defines a resource
management abstraction barrier that locally contains intra-
currency fluctuations such as inflation. The currency ab-
straction can be used to flexibly isolate or group users, tasks,
and threads.

Figure 9 plots the progress of five tasks executing the
Dhrystone benchmark. Let amount.currency denote a ticket
allocation of amount denominated in currency. Currencies
A and B have identical funding. Tasks A1 and A2 have
allocations of 100:A and 200:A, respectively. Tasks B1
andB2 have allocations of 100:B and 200:B, respectively.
Halfway through the experiment, a new task, B3, is started
with an allocation of 300:B. Although this inflates the total
number of tickets denominated in currency B from 300 to
600, there is no effect on tasks in currencyA. The aggregate
iteration ratio of A tasks to B tasks is 1.01 : 1 before B3 is
started, and 1.00 : 1 after B3 is started. The slopes for the
individual tasks indicate that A1 and A2 are not affected
by task B3, while B1 and B2 are slowed to approximately
half their original rates, corresponding to the factor of two
inflation caused by B3.

0

2000000

4000000

6000000
C

um
ul

at
iv

e
It

er
at

io
ns

A1+A2

A2

A1

0 100 200 300

Time (sec)

0

2000000

4000000

6000000

C
um

ul
at

iv
e

It
er

at
io

ns

B1+B2+B3

B2

B1

B3

Figure 9: Currencies Insulate Loads. Currencies A and B are
identically funded. Tasks A1 and A2 are respectively allocated
tickets worth 100:A and 200:A. TasksB1 andB2 are respectively
allocated tickets worth 100:B and 200:B. Halfway through the
experiment, task B3 is started with an allocation of 300:B. The
resulting inflation is locally contained within currency B, and af-
fects neither the progress of tasks in currency A, nor the aggregate
A :B progress ratio.

5.6 System Overhead

The core lottery scheduling mechanism is extremely
lightweight; a tree-based lottery need only generate a ran-
dom number and perform lgn additions and comparisons
to select a winner among n clients. Thus, low-overhead
lottery scheduling is possible in systems with a scheduling
granularity as small as a thousand RISC instructions.

Our prototype scheduler, which includes full support for
currencies, has not been optimized. To assess system over-
head, we used the same executables and workloads under
both our kernel and the unmodified Mach kernel; three sep-
arate runs were performed for each experiment. Overall,
we found that the overhead imposed by our prototype lot-
tery scheduler is comparable to that of the standard Mach
timesharing policy. Since numerous optimizations could be
made to our list-based lottery, simple currency conversion
scheme, and other untuned aspects of our implementation,
efficient lottery scheduling does not pose any challenging
problems.

Our first experiment consisted of three Dhrystone bench-
mark tasks running concurrently for 200 seconds. Com-
pared to unmodified Mach, 2.7% fewer iterations were ex-

ecuted under lottery scheduling. For the same experiment
with eight tasks, lottery scheduling was observed to be 0.8%
slower. However, the standard deviations across individual
runs for unmodified Mach were comparable to the abso-
lute differences observed between the kernels. Thus, the
measured differences are not very significant.

We also ran a performance test using the multithreaded
database server described in Section 5.3. Five client tasks
each performed 20 queries, and the time between the start
of the first query and the completion of the last query was
measured. We found that this application executed 1.7%
faster under lottery scheduling. For unmodified Mach, the
average run time was 1155.5 seconds; with lottery schedul-
ing, the average time was 1135.5 seconds. The standard
deviations across runs for this experiment were less than
0.1% of the averages, indicating that the small measured
differences are significant.9

6 Managing Diverse Resources

Lotteries can be used to manage many diverse resources,
such as processor time, I/O bandwidth, and access to locks.
Lottery scheduling also appears promising for scheduling
communication resources, such as access to network ports.
For example, ATM switches schedule virtual circuits to
determine which buffered cell should next be forwarded.
Lottery scheduling could be used to provide different levels
of service to virtual circuits competing for congested chan-
nels. In general, a lottery can be used to allocate resources
wherever queueing is necessary for resource access.

6.1 Synchronization Resources

Contention due to synchronization can substantially af-
fect computation rates. Lottery scheduling can be used to
control the relative waiting times of threads competing for
lock access. We have extended the Mach CThreads library
to support a lottery-scheduled mutex type in addition to the
standard mutex implementation. A lottery-scheduled mu-
tex has an associated mutex currency and an inheritance
ticket issued in that currency.

All threads that are blocked waiting to acquire the mutex
perform ticket transfers to fund the mutex currency. The
mutex transfers its inheritance ticket to the thread which
currently holds the mutex. The net effect of these transfers is
that a thread which acquires the mutex executes with its own
funding plus the funding of all waiting threads, as depicted
in Figure 10. This solves the priority inversion problem
[Sha90], in which a mutex owner with little funding could
execute very slowly due to competition with other threads

9Under unmodified Mach, threads with equal priority are run round-
robin; with lottery scheduling, it is possible for a thread to win several
lotteries in a row. We believe that this ordering difference may affect
locality, resulting in slightly improved cache and TLB behavior for this
application under lottery scheduling.

1
t8

t7
1

t3
1

t8
1

1
t3

1
t7

lock
1

t2

1
lock...

...

... ...

lock currency

lock owner

waiting threads
blocked on lock

Figure 10: Lock Funding. Threads t3, t7, and t8 are waiting
to acquire a lottery-scheduled lock, and have transferred their
funding to the lock currency. Thread t2 currently holds the lock,
and inherits the aggregate waiter funding through the backing
ticket denominated in the lock currency. Instead of showing the
backing tickets associated with each thread, shading is used to
indicate relative funding levels.

for the processor, while a highly funded thread remains
blocked on the mutex.

When a thread releases a lottery-scheduled mutex, it
holds a lottery among the waiting threads to determine the
next mutex owner. The thread then moves the mutex inheri-
tance ticket to the winner, and yields the processor. The next
thread to execute may be the selected waiter or some other
thread that does not need the mutex; the normal processor
lottery will choose fairly based on relative funding.

We have experimented with our mutex implementa-
tion using a synthetic multithreaded application in which
n threads compete for the same mutex. Each thread repeat-
edly acquires the mutex,holds it forhmilliseconds, releases
the mutex, and computes for another t milliseconds. Fig-
ure 11 provides frequency histograms for a typical experi-
ment with n = 8, h = 50, and t = 50. The eight threads
were divided into two groups (A, B) of four threads each,
with the ticket allocationA :B = 2 : 1. Over the entire two-
minute experiment, group A threads acquired the mutex a
total of 763 times, while group B threads completed 423
acquisitions, for a relative throughput ratio of 1.80 : 1. The
group A threads had a mean waiting time of � = 450 mil-
liseconds , while the group B threads had a mean waiting
time of � = 948 milliseconds, for a relative waiting time

0 1 2 3 4
0

50

100

M
ut

ex
 A

cq
ui

si
ti

on
s

Group B

0 1 2 3 4

Waiting Time (sec)

0

50

100

150

M
ut

ex
 A

cq
ui

si
ti

on
s

Group A

Figure 11: Mutex Waiting Times. Eight threads compete to
acquire a lottery-scheduled mutex. The threads are divided into
two groups (A, B) of four threads each, with the ticket allocation
A :B = 2 : 1. For each histogram, the solid line indicates the
mean (�); the dashed lines indicate one standard deviation about
the mean (�� �). The ratio of average waiting times is A :B =
1 : 2.11; the mutex acquisition ratio is 1.80 : 1.

ratio of 1 : 2.11. Thus, both throughput and response time
closely tracked the specified 2 : 1 ticket allocation.

6.2 Space-Shared Resources

Lotteries are useful for allocating indivisible time-shared
resources, such as an entire processor. A variant of lottery
scheduling can efficiently provide the same type of prob-
abilistic proportional-share guarantees for finely divisible
space-shared resources, such as memory. The basic idea
is to use an inverse lottery, in which a “loser” is chosen to
relinquish a unit of a resource that it holds. Conducting an
inverse lottery is similar to holding a normal lottery, except
that inverse probabilities are used. The probability p that a
client holding t tickets will be selected by an inverse lottery
with a total of n clients and T tickets is p = 1

n�1 (1� t=T).
Thus, the more tickets a client has, the more likely it is to
avoid having a unit of its resource revoked.10

For example, consider the problem of allocating a phys-
ical page to service a virtual memory page fault when all

10The 1
n�1 factor is a normalization term which ensures that the client

probabilities sum to unity.

physical pages are in use. A proportional-share policy based
on inverse lotteries could choose a client from which to se-
lect a victim page with probability proportional to both
(1 � t=T) and the fraction of physical memory in use by
that client.

6.3 Multiple Resources

Since rights for numerous resources are uniformly rep-
resented by lottery tickets, clients can use quantitative com-
parisons to make decisions involving tradeoffs between dif-
ferent resources. This raises some interesting questions re-
garding application funding policies in environments with
multiple resources. For example, when does it make sense
to shift funding from one resource to another? How fre-
quently should funding allocations be reconsidered?

One way to abstract the evaluation of resource manage-
ment options is to associate a separate manager thread with
each application. A manager thread could be allocated a
small fixed percentage (e.g., 1%) of an application’s overall
funding, causing it to be periodically scheduled while limit-
ing its overall resource consumption. For inverse lotteries,
it may be appropriate to allow the losing client to execute
a short manager code fragment in order to adjust funding
levels. The system should supply default managers for
most applications; sophisticated applications could define
their own management strategies. We plan to explore these
preliminary ideas and other alternatives for more complex
environments with multiple resources.

7 Related Work

Conventional operating systems commonly employ a
simple notion of priority in scheduling tasks. A task with
higher priority is given absolute precedence over a task
with lower priority. Priorities may be static, or they may
be allowed to vary dynamically. Many sophisticated prior-
ity schemes are somewhat arbitrary, since priorities them-
selves are rarely meaningfully assigned [Dei90]. The abil-
ity to express priorities provides absolute, but extremely
crude, control over scheduling, since resource rights do
not vary smoothly with priorities. Conventional priority
mechanisms are also inadequate for insulating the resource
allocation policies of separate modules. Since priorities are
absolute, it is difficult to compose or abstract inter-module
priority relationships.

Fair share schedulers allocate resources so that users
get fair machine shares over long periods of time [Hen84,
Kay88]. These schedulers monitor CPU usage and dynam-
ically adjust conventional priorities to push actual usage
closer to entitled shares. However, the algorithms used
by these systems are complex, requiring periodic usage
updates, complicated dynamic priority adjustments, and
administrative parameter setting to ensure fairness on a
time scale of minutes. A technique also exists for achiev-
ing service rate objectives in systems that employ decay-

usage scheduling by manipulating base priorities and var-
ious scheduler parameters [Hel93]. While this technique
avoids the addition of feedback loops introduced by other
fair share schedulers, it still assumes a fixed workload con-
sisting of long-running compute-bound processes to ensure
steady-state fairness at a time scale of minutes.

Microeconomic schedulers [Dre88, Fer88, Wal92] use
auctions to allocate resources among clients that bid mone-
tary funds. Funds encapsulate resource rights and serve as a
form of priority. Both the escalator algorithm proposed for
uniprocessor scheduling [Dre88] and the distributed Spawn
system [Wal89, Wal92] rely upon auctions in which bidders
increase their bids linearly over time. The Spawn system
successfully allocated resources proportional to client fund-
ing in a network of heterogeneous workstations. However,
experience with Spawn revealed that auction dynamics can
be unexpectedly volatile. The overhead of bidding also
limits the applicability of auctions to relatively coarse-grain
tasks.

A market-based approach for memory allocation has
also been developed to allow memory-intensive applica-
tions to optimize their memory consumption in a decen-
tralized manner [Har92]. This scheme charges applica-
tions for both memory leases and I/O capacity, allowing
application-specific tradeoffs to be made. However, unlike
a true market, prices are not permitted to vary with demand,
and ancillary parameters are introduced to restrict resource
consumption [Che93].

The statistical matching technique for fair switching in
the AN2 network exploits randomness to support frequent
changes of bandwidth allocation [And93]. This work is
similar to our proposed application of lottery scheduling to
communication channels.

8 Conclusions

We have presented lottery scheduling, a novel mecha-
nism that provides efficient and responsive control over the
relative execution rates of computations. Lottery schedul-
ing also facilitates modular resource management, and can
be generalized to manage diverse resources. Since lottery
scheduling is conceptually simple and easily implemented,
it can be added to existing operating systems to provide
greatly improved control over resource consumption rates.
We are currently exploring various applications of lottery
scheduling in interactive systems, including graphical user
interface elements. We are also examining the use of lot-
teries for managing memory, virtual circuit bandwidth, and
multiple resources.

Acknowledgements

We would like to thank Kavita Bala, Eric Brewer, Daw-
son Engler, Wilson Hsieh, Bob Gruber, Anthony Joseph,
Frans Kaashoek, Ulana Legedza, Paige Parsons, Patrick

Sobalvarro, and Debby Wallach for their comments and as-
sistance. Special thanks to Kavita for her invaluable help
with Mach, and to Anthony for his patient critiques of sev-
eral drafts. Thanks also to Jim Lipkis and the anonymous
reviewers for their many helpful suggestions.

References

[Acc86] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Teva-
nian, and M. Young. “Mach: A New Kernel Foundation
for UNIX Development,” Proceedings of the Summer
1986 USENIX Conference, June 1986.

[And93] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P.
Thacker. “High-Speed Switch Scheduling for Local-
Area Networks,” ACM Transactions on Computer Sys-
tems, November 1993.

[Car90] D. G. Carta. “Two Fast Implementations of the ‘Min-
imal Standard’ Random Number Generator,” Commu-
nications of the ACM, January 1990.

[Che93] D. R. Cheriton and K. Harty. “A Market Approach to
Operating System Memory Allocation,” Working Pa-
per, Computer Science Department, Stanford Univer-
sity, June 1993.

[Com94] C. L. Compton and D. L. Tennenhouse. “Collaborative
Load Shedding for Media-based Applications,” Pro-
ceedings of the International Conference on Multimedia
Computing and Systems, May 1994.

[Dei90] H. M. Deitel. Operating Systems, Addison-Wesley,
1990.

[Dre88] K. E. Drexler and M. S. Miller. “Incentive Engineer-
ing for Computational Resource Management” in The
Ecology of Computation, B. Huberman (ed.), North-
Holland, 1988.

[Dui90] D. Duis and J. Johnson. “Improving User-Interface Re-
sponsiveness Despite Performance Limitations,” Pro-
ceedings of the Thirty-Fifth IEEE Computer Society
International Conference (COMPCON), March 1990.

[Fer88] D. Ferguson, Y. Yemini, and C. Nikolaou. “Microeco-
nomic Algorithms for Load-Balancing in Distributed
Computer Systems,” International Conference on Dis-
tributed Computer Systems, 1988.

[Har92] K. Harty and D. R. Cheriton. “Application-Controlled
Physical Memory using External Page-Cache Manage-
ment,” Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, October 1992.

[Hel93] J. L. Hellerstein. “Achieving Service Rate Objectives
with Decay Usage Scheduling,” IEEE Transactions on
Software Engineering, August 1993.

[Hen84] G. J. Henry. “The Fair Share Scheduler,” AT&T Bell
Laboratories Technical Journal, October 1984.

[Hog88] T. Hogg. Private communication (during Spawn system
development), 1988.

[Kan89] G. Kane. Mips RISC Architecture, Prentice-Hall, 1989.

[Kay88] J. Kay and P. Lauder. “A Fair Share Scheduler,” Com-
munications of the ACM, January 1988.

[Loe92] K. Loepere. Mach 3 Kernel Principles. Open Software
Foundation and Carnegie Mellon University, 1992.

[Par88] S. K. Park and K. W. Miller. “Random Number Gener-
ators: Good Ones Are Hard to Find,” Communications
of the ACM, October 1988.

[Pre88] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, Cambridge,
1988.

[Sha90] L. Sha, R. Rajkumar, and J. P. Lehoczky. “Priority Inher-
itance Protocols: An Approach to Real-Time Synchro-
nization,” IEEE Transactions on Computers, Septem-
ber 1990.

[Tri82] K. S. Trivedi. Probability and Statistics with Relia-
bility, Queuing, and Computer Science Applications.
Prentice-Hall, 1982.

[Wal89] C. A. Waldspurger. “A Distributed Computational
Economy for Utilizing Idle Resources,” Master’s thesis,
MIT, May 1989.

[Wal92] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O.
Kephart, and W. S. Stornetta. “Spawn: A Distributed
Computational Economy,” IEEE Transactions on Soft-
ware Engineering, February 1992.

[Wei84] R. P. Weicker. “Dhrystone: A Synthetic Systems Pro-
gramming Benchmark,” Communications of the ACM,
October 1984.

[Wei91] W. Weihl, E. Brewer, A. Colbrook, C. Dellarocas, W.
Hsieh, A. Joseph, C. Waldspurger, and P. Wang. “Pre-
lude: A System for Portable Parallel Software,” Tech-
nical Report MIT/LCS/TR-519, MIT Lab for Computer
Science, October 1991.

A Random Number Generator

This MIPS assembly-language code [Kan89] is a fast
implementation of the Park-Miller pseudo-random number
generator [Par88, Car90]. It uses the multiplicative lin-
ear congruential generator S0 = (A � S) mod (231 � 1),
for A = 16807. The generator’s ANSI C prototype is:
unsigned int fastrand(unsigned int s).

fastrand:
move $2, $4 | R2 = S (arg passed in R4)
li $8, 33614 | R8 = 2 � constant A
multu $2, $8 | HI, LO = A � S
mflo $9 | R9 = Q = bits 00..31 of A � S
srl $9, $9, 1
mfhi $10 | R10 = P = bits 32..63 of A � S
addu $2, $9, $10 | R2 = S’ = P + Q
bltz $2, overflow | handle overflow (rare)
j $31 | return (result in R2)

overflow:
sll $2, $2, 1 | zero bit 31 of S’
srl $2, $2, 1
addiu $2, 1 | increment S’

j $31 | return (result in R2)

