USENIX Association

Proceedings of the
FREENIX Track:
2001 USENIX Annual
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Kgueue: A genericand scalableevent notification facility

JonatharLemon

jlemon@FreeBSD.gr

FreeBSDProject

Abstract

ApplicationsrunningonaUNIX platformneedto beno-
tified whensomeactiity occursonasocletor otherde-
scriptor, andthisis traditionally donewith the select()or
poll() systemcalls. However, it hasbeenshavn thatthe
performancef thesecallsdoesnotscalewell with anin-
creasinghumberof descriptorsThesenterfacesarealso
limited in therespecthatthey areunableto handleother
potentiallyinterestingactivities thatanapplicationmight
beinterestedn, thesemightincludesignals file system
changesand AIO completions. This paperpresentsa
genericeventdelivery mechanismwhich allows an ap-
plication to selectfrom a wide rangeof event sources,
andbe notified of activity on thesesourcesn a scalable
andefficient manner The mechanisnmmay be extended
to coverfutureeventsourcesvithoutchangingheappli-
cationinterface.

1 Intr oduction

Applicationsareofteneventdriven,in thatthey perform
their work in responsdo eventsor actiity externalto
the applicationandwhich are subsequentlyleliveredin
somefashion. Thusthe performanceof an application
often comesto dependon how efficiently it is ableto
detectandrespondo theseevents.

FreeBSDprovidestwo systemcalls for detectingac-
tivity on file descriptors,theseare poll() and select().
However, neitherof thesecalls scalevery well as the
numberof descriptorsbeing monitoredfor eventsbe-
comedarge. A highvolumesenerthatintendsto handle
severalthousandiescriptorgjuickly findsthesecallsbe-
comingabottleneck]eadingto poorperformancgl] [2]
[10].

Thesetof eventsthattheapplicationmaybeinterested
in is not limited to actvity on an openfile descriptor
An applicationmay also want to know when an asyn-
chronousl/O (aio) requestcompleteswhena signalis

deliveredto the applicationwhenafile in thefilesystem
changesn somefashion,or whena processxits. None
of thesearehandledefficiently atthemoment;signalde-
liveryis limited andexpensve,andtheothereventslisted
requireaninefficient polling model. In addition,neither
poll() nor select()can be usedto collect theseevents,
leadingto increased:odecomplexity dueto useof mul-
tiple notificationinterfaces.

This paperpresentsa nev mechanisnthatallows the
applicationto registerits interestin a specificevent,and
then efficiently collect the notification of the eventat a
latertime. The setof eventsthatthis mechanisntovers
is shawvn to include not only thosedescribedabove, but
may also be extendedto unforeseerevent sourceswith
no modificationto the API.

Therestof this paperis structuredasfollows: Section
2 examineswherethecentralbottleneckof poll() andse-
lect()is, Section3 explainsthedesigngoals,andSection
4 presentghe API of new mechanism Section5 details
how to usethenew API andprovidessomeprogramming
exampleswhile the kernelimplementatioris discussed
in Section6. Performancemeasurementir someap-
plicationsare found in Section7. Section8 discusses
relatedwork, andthe paperconcludeswith a summary
in Section9.

2 Problem

The poll() and select()interfacessuffer from the defi-
cieng thatthe applicationmustpassin an entirelist of
descriptordo be monitored,for every call. This hasan
immediateconsequencef forcingthesystento perform
two memaorycopiesacrosghe user/lernelboundaryre-
ducing the amountof memory bandwidthavailable for
other actiities. For large lists containingmary thou-
sandsf descriptorspracticalexperiencehasshovn that
typically only a few hundredactually have ary activity,
making95% of the copiesunnecessary
Uponreturn,the applicationmustwalk the entirelist

to find the descriptorghatthe kernelmarked as having
activity. Sincethe kernelknew which descriptorswvere
active, this resultsin a duplicationof work; the applica-
tion mustrecalculateheinformationthatthesystemwas
alreadyawareof. It would appeato be moreefficientto
have thekernelsimply passhackallist of descriptorghat
it knows is active. Walking the list is an O(N) actiity,
which doesnotscalewell asN getslarge.

Within thekernel,thesituationis alsonotideal. Space
mustbe found to hold the descriptotlist; for large lists,
this is done by calling malloc(), and the areamustin
turn be freed beforereturning. After the copy is per
formed, the kernel must examine every entry to deter
minewhetherthereis pendingactivity on thedescriptor
If the kernelhasnot found ary active descriptorsn the
currentscan,it will thenupdatethe descriptors selinfo
entry; this informationis usedto performa wakeupon
the processn the eventthatit calls tsleep()while wait-
ing for activity on the descriptor After the processis
wokenup, it scanghelist again,looking for descriptors
thatarenow active.

This leadsto 3 passeover the descriptorlist in the
casewherepoll or selectactuallysleep;onceto walk the
list in orderto look for pendingeventsand recordthe
selectinformation,a secondime to find the descriptors
whoseactiity causeda wakeup,andathird timein user
spacavheretheuserwalksthelist to find the descriptors
whichweremarkedactive by thekernel.

Theseproblemsstemfrom the factthat poll() andse-
lect() arestatelesdy design;thatis, the kerneldoesnot
keepary recordof whatthe applicationis interestedn
betweersystemcallsandmustrecalculatét every time.
This designdecisionnot to keepary statein the kernel
leadsto maininefficiency in the currentimplementation.
If thekernelwasableto keeptrack of exactly which de-
scriptorsthe applicationwasinterestedn, andonly re-
turn a subsebf theseactivateddescriptorsmuchof the
overheaccould be eliminated.

3 DesignGoals

Whendesigninga replacementacility, the primarygoal
wasto createa systemthatwould be efficient and scal-
able to a large numberof descriptors,on the order of
several thousand.The secondarygoal wasto make the
systemflexible. UNIX basedmachineshave tradition-
ally lacked a robust facility for event notification. The
poll andselectinterfacesare limited to socket and pipe
descriptorsthe useris unableto wait for othertypesof
events, like file creationor deletion. Other eventsre-
quiretheuserto usea differentinterface;notablysiginfo
andfamily mustbe usedto obtainnatification of signal
events,andcalls to aiowait areneededo discoverif an
AIO call hascompleted.

Anothergoalwasto keeptheinterfacesimpleenough
thatit could be easily understoodand also possibleto
convert poll() or select()basedapplicationsto the new
API with aminimumof changeslt wasrecognizedhat
if thenew interfacewasradicallydifferent,thenit would
essentiallyprecludemaodificationof legag/ applications
which might otherwisetake advantageof thenew API.

Expandingheamountinformationreturnedo the ap-
plicationto morethanjustthefactthataneventoccurred
wasalsoconsiderediesirable.For readablesoclets,the
user may want to know how mary bytes are actually
pendingin the soclet buffer in orderto avoid multiple
read()calls. For listeningsoclets,the applicationmight
checkthe size of the listen backlogin orderto adaptto
theofferedload. Thegoalof providing moreinformation
waskeptin mind whendesigningthe new facility.

The mechanismshould also be reliable, in that it
shouldnever silently fail or returnan inconsistenttate
to the user This goalimplies that thereshouldnot be
ary fixedsizelists, asthey might overflow, andthatary
memoryallocationmustbedoneatthetime of thesystem
call, ratherwhenactivity occurs,to avoid losing events
dueto low memoryconditions.

As an example,considerthe casewhereseveral net-
work pacletsarrivefor asoclet. We couldconsiderach
incomingpaclketasadiscreteevent,recordingoneevent
for eachpaclet. However, thenumberof incomingpack-
etsis essentiallyunboundedwhile the amountof mem-
ory in thesystemis finite; we would be unableto provide
aguarante¢hatno eventswould belost.

Theresultof theabove scenarids thatmultiple pack-
ets are coalescednto a single event. Eventsthat are
deliveredto the applicationmay correspondo multiple
occurrence®f actiity on the eventsourcebeing moni-
tored.

In addition, supposea paclet arrives containing N
bytes,andthe application,after receving notificationof
theevent,readsR bytesfrom thesoclet,whereR < N.
The next time the event API is called, therewould be
no notificationof the (N — R) bytesstill pendingin the
soclet buffer, becauseventswould be definedin terms
of arriving paclets. This forcesthe applicationto per
form extrabookkeepingn orderto insurethatit doesnot
mistalenly lose data. This additionalburdenimposed
on the applicationconflictswith the goal of providing a
simpleinterface,andsoleadsto thefollowing designde-
cision.

Events will normally consideredto be “level-
triggered”,asopposedo “edge-triggered” Anotherway
of puttingthisisto saythataneventis bereportedasliong
asa specifiedconditionholds, ratherthanwhenactuity
is actually detectedfrom the event source. The given
conditioncould be assimpleas“there is unreaddatain
the buffer”, or it could be morecomplex. This approach

handleghe scenariadescribecabove,andallows the ap-
plicationto performa partialreadon a buffer, yetstill be
notified of an eventthe next time it calls the API. This
correspondso the existing semanticgprovided by poll()
andselect().

A final designcriteriawasthatthe API shouldbecor-
rect in that eventsshouldonly be reportedif they are
applicable.Considerthe casewherea paclet arriveson
a soclet, in turn generatingan event. However, before
the applicationis notified of this pendingevent, it per
forms a close() on the soclet. Sincethe soclet is no
longeropen,the eventshouldnot be deliveredto the ap-
plication, asit is nolongerrelevant. Furthermoreijf the
eventhappendo beidentifiedby thefile descriptorand
anotherdescriptoris createdwith the sameidentity, the
eventshouldbe removed, to precludethe possibility of
falsenotificationonthe wrongdescriptor

Thecorrectnessequiremenshouldalsoextendto pre-
existing conditions,wherethe eventsourcegeneratesin
eventprior to the applicationregisteringits interestwith
the API. This eliminatesthe race condition wheredata
could be pendingin a soclet buffer at the time that the
applicationregistersits interestin the soclket. Themech-
anismshouldrecognizehatthependingdatasatisfiegshe
“level-trigger” requirementndcreateaneventbasedn
thisinformation.

Finally, thelastdesigngoalfor the API is thatit should
be possiblefor a library to usethe mechanismwithout
fear of conflicts with the main program. This allows
374 party codethat usesthe API to be linked into the
applicationwithout conflict. While on the surfacethis
appeargo be obvious, several counterexamplesexist.
Within a processa signal may only have a single sig-
nal handlerregistered,so library codetypically cannot
usesignals.X-window applicationsonly allow for a sin-
gle eventloop. The existing select()and poll() callsdo
not have this problem,sincethey are statelessput our
new API, which movessomestateinto the kernel,must
be ableto have multiple event notification channelper
process.

4 KqueueAPI

The kqueueAPI introducestwo new systemcalls out-
linedin Figurel. Thefirst createsa new kqueue which
is anotificationchannelor queuewheretheapplication
registerswhich eventsit is interestedn, andwhereit re-
trievesthe eventsfrom the kernel. The returnedvalue
from kqueue()is treatedas an ordinary descriptor and
canin turnbepassedo poll(), select() or evenregistered
in anotherkqueue.

Theseconccall is usedby theapplicationbothto reg-
ister new eventswith the kqueue,andto retrieve ary
pendingevents. By combiningthe registrationand re-

int
kqueue(void)

int

kevent(int kq,
const struct kevent *changelist, int nchanges,
struct kevent *eventlist, int nevents,
const struct timespec *timeout)

struct kevent {

uintpt_t ident; /I identifier for event

short filter; /I filter for event

u_short flags; I/ action flags for kq

u.int fflags; /I filter flag value

intptr.t data; /I filter data value

void *udata; // opaque identifier
}

EV_SET(&kev, ident, filter, flags, fflags, data, udata)

Figurel: KqueueAPI

trieval processthe numberof systemcalls neededs re-

duced. Changeghat should be appliedto the kqueue
aregivenin the changelist, and ary returnedeventsare

placedin the eventlist up to the maximumsizeallowed

by nevents The numberof entriesactuallyplacedin the

eventlistis returnedby thekevent() call. Thetimeoutpa-

rametemehaesin the sameway aspoll(); azero-\alued

structurewill checkfor pendingeventswithout sleeping,
while a NULL value will block until woken up or an

eventis ready An applicationmay chooseto separate
the registrationandretrieval calls by passingin a value

of zerofor nchangesor nevents asappropriate.

Eventsareregisteredwith the systemby the applica-
tion via a structkevent andan eventis uniquelyidenti-
fied within the systemby a < kg, ident, filter > tuple.
In practicalterms,this meanghattherecanbe only one
< ident, filter > pairfor agivenkqueue.

Thefilter parameteiis an identifier for a small piece
of kernelcodewhich is executedwhenthereis actiity
from aneventsource andis responsibldor determining
whetheran event shouldbe returnedto the application
or not. Theinterpretationof the ident, fflags anddata
fieldsdependbn whichfilter is beingusedto expressthe
event. The currentlist of filters andtheir agumentsare
presentedh the kqueusfilter section.

The flags field is usedto expresswhat action should
betakenonthekeventwhenit is registeredwith the sys-
tem, andis alsousedto returnfilter-independenstatus
informationuponreturn. The valid flag bits aregivenin
Figure2.

The udatafield is passedn andout of the kernelun-
changedandis not usedin ary way. The usageof this
field is entirely applicationdependentandis provided
as a way to efficiently implementa function dispatch
routine, or otherwiseadd an applicationidentifier to the

Inputflags:

EV_ADD Addstheeventtothekqueue

EV_ENABLE Permit kevent() to return the
eventif it is triggered.

EV_DISABLE Disable the event so kevent()
will notreturnit. Thefilter itself is notdis-
abled.

EV_DELETE Remores the event from the
kqueue. Eventswhich are attachedo file
descriptorsareautomaticallydeletedwhen
thedescriptoris closed.

EV_CLEAR After the eventis retrieved by the
user its stateis reset.This is usefulfor fil-
terswhich reportstatetransitionansteadof
thecurrentstate.Notethatsomefilters may
automaticallysetthis flag internally.

EV_ONESHOT Causesheeventto returnonly
thefirst occurrenceof thefilter beingtrig-
gered. After the userretrieves the event
from thekqueuejt is deleted.

Outputflags:

EV_EOF Filters may set this flag to indicate
filter-specificEOF conditions.

EV_ERROR If anerroroccurswhenprocessing
thechangelistthis flag will beset.

Figure2: Flagvaluesfor structkevent
keventstructure.

4.1 Kqueuefilters

The designof the kqueuesystemis basedon the notion

of filters, which areresponsibldor determiningwhether
aneventhasoccurredor not, andmay alsorecordextra

informationto be passedackto theuser Theinterpre-
tationof certainfieldsin the keventstructuredepend®sn

which filter is beingused. The currentimplementation
comeswith a few generalpurposeeventfilters, which

aresuitablefor mostpurposesThesefiltersinclude:

EVFILT_READ
EVFILT WRITE
EVFILT_AIO
EVFILT_.VNODE

EVFILT_.PROC
EVFILT_SIGNAL

The READ and WRITE filters are intendedto work
on ary file descriptor and the ident field containsthe
descriptornumber Thesefilters closely mirror the be-
havior of poll() or select(),in thatthey areintendedto
returnwhenever thereis datareadyto read,or if the ap-
plication canwrite without blocking. The kernelfunc-
tion correspondingdo thefilter depend®nthedescriptor
type, so the implementationis tailored for the require-
mentsof eachtype of descriptorin use. In generalthe
amountof datathatis readyto read(or ableto be writ-
ten) will bereturnedin the data field within the kevent
structure wherethe applicationis free to usethis infor-
mationin whatever mannerit desires.If the underlying
descriptorsupportsa conceptof EOF, thenthe EV_EOF
flagwill besetin theflagsword structureassoonasit is
detectedregardlesof whetherthereis still dataleft for
theapplicationto read.

For example, the readfilter for soclet descriptorsis
triggeredas long as thereis datain the soclet buffer
greaterthanthe SO.LOWAT mark, or whenthe soclet
has shutdavn andis unableto receve ary more data.
Thefilter will returnthe numberof bytespendingin the
socletbuffer, aswell assetanEOFflagfor theshutdavn
case.Thisprovidesmoreinformationthattheapplication
canusewhile processindghe event. As EOFis explicitly
returnedvhenthesocletis shutdavn, theapplicationno
longerneedgo make anadditionalcall to read()in order
to discover an EOF condition.

A non kqueue-svare application using the asyn-
chronoud/O (aio)facility startsanl/O requesby issuing
aio_read()or aio_.write() Therequesthenproceedsnde-
pendentlyof the applicationwhich mustcall aio_error()
repeatedlyto checkwhetherthe requesthascompleted,
andtheneventuallycall aio_return()to collectthe com-
pletionstatusof therequest.The AlO filter replaceshis
polling modelby allowing the userto registerthe aio re-
questwith a specifiedkqueueat thetime the l/O request
is issued,and an eventis returnedunderthe samecon-
ditionswhenaio_error() would successfullyeturn. This
allowstheapplicationto issueanaio_read()call, proceed
with themaineventloop, andthencall aio_return()when
the keventcorrespondingo the aio is returnedfrom the
kqueue saving severalsystemcallsin the process.

The SIGNAL filter is intendedto work alongsidethe
normalsignalhandlingmachineryproviding analternate
methodof signaldelivery. Theidentfield is interpreted
asasignalnumberandon return,the datafield contains
a countof how oftenthe signalwassentto the applica-
tion. This filter makesuseof the EV_CLEAR flaginter
nally, by clearingits state(countof signal occurrence)
aftertheapplicationreceivesthe eventnotification.

The VNODE filter is intendedo allow the userto reg-
isteraninterestin changeshathapperwithin thefilesys-
tem. Accordingly, the ident field shouldcontaina de-

Input/OutputFlags:

NOTE_EXIT Processxited.
NOTE_FORK Procesgalledfork()

NOTE_EXEC Processexecuteda new processvia
execwe(2)or similar call.

NOTE_TRACK Follow a process across fork()
calls. The parent processwill return with
NOTE_TRACK setin the flagsfield, while the
child processwill returnwith NOTE_CHILD set
in fflagsandthe parentPID in data.

OutputFlagsonly:

NOTE_CHILD This is the child process of a
TRACKed processwhich calledfork().

NOTE_TRACKERR Thisflagis returnedf thesys-
tem was unableto attachan eventto the child
processysuallydueto resourcdimitations.

Figure3: Flagsfor EVFILT_PROC

scriptorcorrespondindo an openfile or directory The
fflags field is usedto specify which actionson the de-
scriptor the applicationis interestedin on registration,
anduponreturn,which actionshave occurred.The pos-
sibleactionsare:

NOTE_DELETE
NOTE.-WRITE
NOTE_.EXTEND
NOTE_ATTRIB
NOTE_LINK
NOTE_.RENAME

Thesecorrespondo theactionghatthefilesystenper
forms on the file and thus will not be explained here.
ThesenotesmaybeOR-dtogetheiin thereturneckevent,
if multipleactionshaveoccurred E.g.: afile waswritten,
thenrenamed.

The final generalpurposefilter is the PROC filter,
which detectsprocesschanges.For this filter, the ident
field is interpretedasa processdentifier. This filter can
watchfor severaltypesof events,andthefflagsthatcon-
trol thisfilter areoutlinedin Figure3.

5 Usageand Examples

Kqueueis designedo reducethe overheadncurredby
poll() and select(),by efficiently notifying the user of

an event that needsattention, while also providing as
muchinformationaboutthateventaspossible However,

kqueueis not designedo be a dropin replacementor

poll; in orderto getthegreatesbenefitfrom thesystem,
existing applicationswill needto berewrittento take ad-
vantageof the uniqueinterfacethatkqueueprovides.

A traditionalapplicationbuilt aroundpoll will have a
single structurecontainingall active descriptorswhich
is passedo the kernelevery time the applicationsgoes
throughthe centraleventloop. A kqueue-avareapplica-
tion will needto notify the kernelof ary changedo the
list of active descriptorsjnsteadof passingn the entire
list. This canbe doneeitherby calling kevent() for each
updateto the active descriptorlist, or by building up a
list of descriptorchange@ndthenpassinghislist to the
kernelthe next time the eventloop is called. The lat-
ter approaclhoffersbetterperformanceasit reduceshe
numberof systemcallsmade.

While thepreviousAPI sectionfor kqueuemayappear
to becomplex atfirst, muchof thecomplexity stemsrom
the factthatthereare multiple event sourcesand multi-
plefilters. A programwhich only wantsREAD/WRITE
eventsis actuallyfairly simple. Exampleson the follow-
ing pagesillustrate how a programusing poll() canbe
easilycorvertedto usekqueue(andalsopresentseveral
codefragmentsdllustrating the useof the otherfilters.

The codein Figure 4 illustratestypical usageof the
poll() systenmcall, while thecodein Figure5 is aline-by-
line corversionof the samecodeto usekqueue. While
admittedlythis is a simplified example,the mappingbe-
tweenthe two callsis fairly straightforvard. The main
stumblingblock to a corversionmay be the lack of a
function equivalentto updatefd, which makeschanges
to thearraycontainingthe pollfd or keventstructures.

If the udatafield is initialized to the correctfunction
prior to registeringanew kevent,it is possibleto simplify
thedispatchoop evenmore,asshavn in Figure6.

Figure 7 containsa fragmentof codethat illustrates
how to have a signalevent deliveredto the application.
Note the call to signal()which establishes NULL sig-
nal handler Prior to this call, the default actionfor the
signalis to terminatethe process. Ignoring the signal
simply meanshatno signalhandlerwill be calledafter
thesignalis deliveredto theprocess.

Figure8 presentsodethatmonitorsa descriptorcor-
respondingto a file on an ufs filesystemfor specified
changes.Note the useof EV_CLEAR, which resetsthe
event after it is returned; without this flag, the event
would berepeatedlyeturned.

Thebehaior of the PROCilter is bestillustratedwith
the examplebelon. A PROC filter may be attachedo
ary processn the systenthatthe applicationcansee,it
is notlimitedto its descendants hefilter mayattachto a
privilegedprocessthereareno securityimplications,as

handl e_event s()

{
int i, n, tineout = TI MEQUT;
n = pol |l (pfd, nfds, tinmeout);
if (n<=0)
goto error_or_tinmeout;
for (i =0; n!=0; i++) {
if (pfd[i].revents == 0)
continue;
n--;
if (pfd[i].revents &
(POLLERR | POLLNVAL))
/* error */
if (pfd[i].revents & POLLIN)
readabl e_fd(pfd[i].fd);
if (pfd[i].revents & POLLOUT)
witeable_fd(pfd[i].fd);
}
}
update_fd(int fd, int action,
int events)
if (action == ADD) {
pfdifd].fd = fd;
pfd[fd].events = events;
} else
pfdifd].fd = -1;
}

Figure4: Original poll() code

all informationcanbe obtainedthrough’ps’. Theterm
'see’is specificto FreeBSDs jail code,which isolates
certaingroupsof processefrom eachother

There is single notification for each fork(), if the
FORKflagis setin the procesdilter. If the TRACK flag
is set,thenthefilter actuallycreatesandregistersa new
knote,whichis in turn attachedo the new processThis
new knoteis immediatelyactivated with the CHILD flag
set.

The fork functionality was addedin order to trace
the processs execution. For example, supposethat an
EVFILT_PROC filter with the flags (FORK, TRACK,
EXEC, EXIT) is registeredfor processA, which then
forks off two children,processe8 & C. Proces< then
immediately forks off anotherprocessD, which calls
exec() to run anotherprogram,which in turn exits. If
theapplicationwasto call kevent()atthis point, it would
find 4 keventswaiting:

ident: A, fflags: FORK

ident: B, fflags: CHILD data: A
ident: C, fflags: CHILD, FORK data: A
ident: D, fflags: CHILD, EXEC, EXIT data: C

The knote attachedo the child is responsibléor re-

handl e_event s()

{
int i, n
struct timespec tinmeout =
{ TMOUT_SEC, TMOUT_NSEC };
n = kevent (kg, ch, nchanges,
ev, nevents, &timeout);
if (n<=0)
goto error_or_tinmeout;
for (i =0; i <n; i++) {
if (ev[i].flags & EV_ERROR)
/* error */
if (ev[i].filter == EVFILT_READ)
readabl e_fd(ev[i].ident);
if (ev[i].filter == EVFILT_WRI TE)
witeable fd(ev[i].ident);
}
}
update_fd(int fd, int action,
int filter)
EV_SET(&ch[nchanges], fd, filter,
action == ADD ? EV_ADD
EV_DELETE,
0, 0, 0);
nchanges++;
}

Figure5: Direct corversionto kevent()

turning mappingbetweenthe parentand child process
ids.

6 Implementation

Thefocusof actvity in the Kqueuesystemcenterson a
datastructurecalleda knote,which directly corresponds
to thekeventstructureseerby theapplication.Theknote
tiestogetherthe datastructurebeingmonitored thefilter
usedto evaluatethe actvity, thekqueuethatit is on,and
links to otherknotes.Theothermaindatastructurds the
kqueusitself, which senesatwofold purposeto provide
a queuecontainingknoteswhich arereadyto deliver to
the application,and to keeptrack of the knoteswhich
correspondo the keventsthe applicationhasregistered
its interestin. Thesegoalsareaccomplishedy the use
of threesubdatastructuresattachedo the kqueue:

1. A list for the queueitself, containingknotesthat
have previously beenmarkedactive.

2. A small hashtable usedto look up knoteswhose
identfield doesnot correspondo a descriptor

int i, n
struct timespec tinmeout =

{ TMOUT_SEC, TMOUT_NSEC };
void (* fcn)(struct kevent *);

n = kevent (kq, ch, nchanges,
ev, nevents, &tinmeout);

if (n<=0)
goto error_or_tineout;
for (i =0; i <n; i++) {

if (ev[i].flags & EV_ERROR)
/* error */

fcn = ev[i].udata;

fen(&evlil);

Figure6: Usingudatafor directfunctiondispatch

struct kevent ev;
struct tinespec nullts ={ 0, 0 };

EV_SET(&ev, SIGHUP, EVFILT_SI GNAL,
EV_ADD | EV_ENABLE, 0, 0, 0);
kevent (kg, &ev, 1, NULL, 0, &nullts);

signal (SI GHUP, SIG IGN);
for (;;) {

n = kevent (kg, NULL, 0, &ev, 1, NULL);

if (n>0)
printf("signal % delivered"
" %l times\n",
ev.ident, ev.data);

Figure7: Usingkeventfor signaldelivery

struct kevent ev;
struct timespec nullts = { 0, 0 };

EV_SET(&ev, fd, EVFILT_VNCDE,
EV_ADD | EV_ENABLE | EV_CLEAR
NOTE_RENAME | NOTE_WRI TE |
NOTE_DELETE | NOTE_ATTRIB, 0, 0);
kevent (kg, &ev, 1, NULL, 0, &nullts);

for (;;) {

n = kevent (kg, NULL, 0, &ev, 1, NULL);

if (n>0) {

printf("The file was");

if (ev.fflags & NOTE_RENAME)
printf(" renaned");

if (ev.fflags & NOTE_WRI TE)
printf(" witten");

if (ev.fflags & NOTE_DELETE)
printf(" deleted");

if (ev.fflags & NOTE_ATTRI B)
printf(" chnod/ chowned");

printf("\n");

Figure8: Usingkeventto watchfor file changes

3. A lineararrayof singly linked lists indexed by de-
scriptor whichis allocatedn exactlythesameash-
ion asaprocessopenfile table.

The hashtableandarrayarelazily allocated,andthe
arrayexpandsasneededaccordingto the largestfile de-
scriptor seen. The kqueuemustrecordall knotesthat
have beenregisteredwith it in orderto destry them
whenthe kq is closedby the application. In addition,
thedescriptorarrayis usedwhenthe applicationclosesa
specificfile descriptoyin orderto deleteary knotescor-
respondingwith the descriptor An exampleof the links
betweerthe datastructuress showv below.

6.1 Registration

Initially, the applicationcalls kqueue()to allocatea new
kqueughencefortireferredto askq). Thisinvolvesallo-
cationof a new descriptora structkqueue andentryfor
this structurein the openfile table. Spacefor the array
andhashtablesarenotinitialized at thistime.

The application then calls kevent(), passingin a
pointer to the changelistthat should be applied. The
keventsin the changelistare copiedinto the kernelin
chunks,andtheneachoneis passedo kqueueregister()
for entryinto thekq. Thekqueueregister()functionuses
the < ident, filter > pairto lookup a matchingknote
attachedo the kg. If noknoteis found,a new onemay
beallocatedf the EV_ADD flagis set. Theknoteis ini-
tialized from the keventstructurepassedn, thenthe fil-
ter attachroutine (detailedbelow) is calledto attachthe
knoteto the eventsource. Afterwards,the new knoteis
linkedto eitherthearrayor hashtablewithin thekq. If an
error occurswhile processinghe changelistthe kevent
that causedhe error is copiedover to the eventlist for
returnto the application.Only afterthe entirechangelist
is processedloesis kqueuescan()calledin orderto de-
queueeventsfor the application. The operationof this
routineis detailedin the Delivery section.

6.2 Filters

Eachfilter provides a vector consistingof three func-
tions: {attach,detach, filter}. The attachroutineis
responsibldor attachingthe knoteto alinkedlist within
the structurewhich recevesthe eventsbeingmonitored,
while the detachroutineis usedto remove theknotethis
list. Theseroutinesare neededbecausehe locking re-
quirementsandlocationof the attachmenpoint aredif-
ferentfor eachdatastructure.

Thefilter routineis calledwhenthereis ary activity
from the event source,and is responsiblefor deciding
whethertheactity satisfiesaconditionthatwouldcause
an eventto bereportedto the application. The specifics

kg A g L____, kg B
! I
--- L
L |
vnode > knote |
R
|
............................... ‘ |
. |
i 1
X |
\ [
|
sockbuf > knote - - """~ ~-~----~-~
socket : :
Y Y
sockbuf ™ knote > knote

Figure9: Two kqueuestheir descriptorarrays,andactive lists. Notethatkg A hastwo knotesgueuedn its active list,
while kg B hasnone.Thesoclet hasaklist for eachsockhuf, andasshowvn, knoteson a klist may belongto different

kqueues.

of the condition are encodedwithin the filter, and thus
aredependenbn which filter is used,but normally cor-

respondo specificstates suchaswhetherthereis data
in the buffer, or if anerrorhasbeenobsened. Thefilter

mustreturnaboolearnvalueindicatingwhetheran event
shouldbe deliveredto the application. It may alsoper

form some*“side effects” if it choosesy manipulating
thefflag anddatavalueswithin theknote. Thesesideef-

fects may rangefrom merely recordingthe numberof

times the filter routine was called, or having the filter

copy extrainformationoutto userspace.

All threeroutinescompletelyencapsulatéheinforma-
tion requiredto manipulatethe event source. No other
codein thekqueuesystemis awareof wherethe activity
comesfrom or whataneventrepresentsptherthanask-
ing the filter whetherthis knote shouldbe activated or
not. This simpleencapsulatiofs whatallows the system
to be extendedto otherevent sourcessimply by adding
new filters.

6.3 Activity on Event Source

Whenactvity occurs(a pacletarrives,afile is modified,
a procesExits), a datastructureis typically modifiedin
response.Within the code path wherethis happensa
hookis placedfor thekqueuesystemthistakestheform
of aknote()call. This functiontakesa singly linked list
of knotes(unimaginatvely referredto hereasaklist) as
an argument,along with an optional hint for the filter.

Theknote()functionthenwalkstheklist makingcallsto
thefilter routinefor eachknote. As the knotecontainsa
referenceo thedatastructurethatit is attachedo, thefil-

ter may chooseo examinethe datastructurein deciding

whetheraneventshouldbereported.The hint is usedto
passin additionalinformation,which maynotbepresent
in thedatastructurethefilter examines.

If thefilter decideghe eventshouldbereturnedit re-
turnsatruth valueandthe knote()routinelinks theknote
onto the tail end of the active list in its corresponding
kqueue for theapplicationto retrieve. If the knoteis al-
readyontheactive list, no actionis taken, but the call to
thefilter occursin orderto provide anopportunityfor the
filter to recordthe activity.

6.4 Delivery

Whenkqueuescan()is called,it appends specialknote
marker at the end of the active list, which boundsthe
amountof work thatshouldbedone;if thismarkeris de-
queuedwhile walking the list, it indicatesthatthe scan
is complete. A knoteis thenremoved from the active
list, andtheflagsfield is checledfor theEV_ONESHO
flag. If thisis not set,thenthefilter is calledagainwith
aqueryhint; this givesthefilter achanceo confirmthat
theeventis still valid, andinsurescorrectnessTheratio-
nalefor this is the casewheredataarrivesfor a soclet,
which causegheknoteto be queuedput the application
happengo call read()and empty the soclet buffer be-
fore calling kevent. If the knote wasstill queuedthen
aneventwould bereturnedelling theapplicationto read
anemptybuffer. Checkingwith thefilter atthetime the
eventis dequeuedassuress thatthe informationis up
to date. It may also be worth noting that if a pending
eventis deactvatedvia EV_DISABLE, its removal from
theactive queues delayeduntil this point.
Informationfrom theknoteis thencopiedinto akevent

structurewithin the eventlist for returnto the applica-
tion. If EV_ONESHO is set,thenthe knoteis deleted
andremoved from the kg. Otherwiseif the filter indi-

catesthatthe eventis still actve andEV_CLEAR is not
set,thenthe knoteis placedbackat thetail of the active
list. Theknotewill not be examinedagainuntil the next

scansinceit is now behindthe markerwhichwill termi-
natethescan.Operatiorcontinueauntil eitherthemarker
is dequeuedor thereis no morespacein the eventlist,at
whichtime themarkeris forcibly dequeuedandtherou-
tinereturns.

6.5 MiscellaneousNotes

Sincean ordinaryfile descriptorreferenceshe kqueue,
it cantake partin any operationghat normally canper
formed on a descriptor The applicationmay select(),
poll(), close(), or even createa kevent referencinga
kqueueijn thesecasesaneventis deliveredwhenthereis
aknotequeuedntheactivelist. Theability to monitora
kqueuegrom anotheikqueueallows anapplicationto im-
plementa priority hierarchyby choosingwhich kqueue
to servicefirst.

The currentimplementatiordoesnot passkqueuede-
scriptorsto childrenunlessthe new child will shareits
file tablewith the parentvia rfork(RFFDG).This maybe
viewed asanimplementatiordetail; fixing this involves
making a copy of all knote structuresat fork() time, or
markingthemascopy onwrite.

Knotesareattachedo thedatastructurethey aremon-
itoring via a linkedlist, contrastingwith the behavior of
poll() andselect(),which recorda single pid within the
selinfo structure. While this may be a naturaloutcome
from theway knotesareimplementedit alsomeanghat
the kqueuesystemis not susceptibleo selectcollisions.
As eachknoteis queuedn theactive list, only processes
sleepingon thatkqueuearewokenup.

As hints are passedo all filters on a Kklist, regardless
of type,whenasingleklist containamultiple eventtypes,
caremustbetakento insurethatthe hint uniquelyiden-
tifies the actwity to thefilters. An exampleof this may
be seenin the PROC and SIGNAL filters. Theseshare
the sameklist, hungoff of the processstructure where
thehint valueis usedto determinewvhethertheactiity is
signalor processelated.

Eachkeventthatis submittedto the systemis copied
into kernel space, and events that are dequeuedare
copiedback out to the eventlistin userspace. While
addingslightly more copy overhead this approachwas
preferredoveranAlO stylesolutionwherethekerneldi-
rectly updateghe statusof a controlblock thatis keptin
userspace. The rationalefor this wasthatit would be
easierfor the userto find andresole bugsin the appli-
cationif thekernelis notallowedto write directly to lo-

cationsin userspacewhich the usercould possiblyhave
freedandreuseddy accident.This hasturnedoutto have
anadditionalbenefit,asapplicationamaychooseo “fire
andforget” by submittingan eventto thekernelandnot
keepingadditionalstatearound.

7 Performance

Measurement$or performancenumbersin this section
were taken on a Dell PoverEdge2300 equippedwith
anlIntel Pentium-111600MhzCPUand512MB memory
runningFreeBSD4.3-RC.

The first experimentwas to determinethe costsas-
sociatedwith the kqueuesystemitself. For this a pro-
gram similar to Imbench [6] was used. The com-
mand under test was executedin a loop, with timing
measurementsaken outside the loop, and then aver-
agedby the numberof loops made. Timeswere mea-
suredusingtheclock gettime(CLOCKREALTIME) fa-
cility provided by FreeBSD which on the platform un-
dertesthasa resolutionof 838 nanosecondsTime re-
quired to executethe loop itself and the systemcalls
to clock gettime()werewas measuredandthe reported
valuesfor the final timeswere adjustedto eliminatethe
overhead. Eachtestwasrun 1024 times, with the first
testnot includedin the measurementsn orderto elim-
inateadwersecold cacheeffects. The meanvalueof the
testsweretaken;in all casesthedifferencebetweerthe
meanandmedianis lessthanonestandardieviation.

In thefirst experiment,avaryingnumberof socletsor
fileswerecreatedandthenpassedo keventor poll. The
time requiredfor the call to completewasrecordedand
no activity was pendingon ary of the descriptors.For
both systemcalls, this measureshe overheacheededo
copy the descriptorsets,and query eachdescriptorfor
actiity. For the kevent systemcall, this also reflects
the overheadheededo establishthe internalknote data
structure.

As shavn in Figure 10, it takestwice aslong to adda
new knoteto a kqueueasopposedo calling poll. This
impliesthatfor applicationghatpoll adescriptorexactly
once, kevent will not provide a performancegain, due
to the amountof overheadrequiredto setup the knote
linkages. The differing resultsbetweenthe soclet and
file descriptorsreflectsthe differentcode pathsusedto
checkactvity ondifferentfile typesin the system.

After theinitial EV_ADD call to addthedescriptorgo
the kqueue the time requiredto checkthesedescriptors
was recorded;this is shavn in the "kq_descriptor”line
in thegraphabove. In this case therewasno difference
betweerfile types.In all casesthetimeis constantsince
thereis no activity on ary of theregistereddescriptors.

This providesalowerboundonthetime requiredfor a
givenkeventcall, regardles®f thenumberof descriptors

1400

"k‘q_regisler‘_sockels"‘—»7 '
"kq_register_files" ---x---
"poll_sockets" ------
1200 | “Poll_files” -
"kq_descriptors” -
1000
3 800 F
be]
2
S
] x
£ 600 [
E
@
E .
= 400 S
&
200 T
|
T
0
200 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Number of descriptors

Figure10: Time neededor initial kqueuecall. Notey-
axisorigin is shiftedin orderto betterseekqueueresults.

thatarebeingmonitored.

The main costassociatedvith the keventcall is the
procesof registeringa new knotewith the systemhow-
ever, oncethis is done,thereis negligible costfor moni-
toring the descriptorif it is inactive. This contrastawith
poll, which incursthe samecost regardlessof whether
thedescriptoris active or inactive.

The upperboundon thetime neededor a keventcall
afterthedescriptorsareregisteredwvould beif every sin-
gle descriptorwasactive. In this casethe kernelwould
have to do the maximumamountof work by checking
eachdescriptorsfilter for validity, andthenreturningev-
ery keventin the kqueueto the user The resultsof this
testareshown in Figure 11, with the poll valuesrepro-
ducedagainfor comparision.

In thisgraph thelinesfor kqueueareworstcasetimes;
in which every single descriptoris found to be actie.
The bestcasetime is nearzero, asgiven by the earlier
"kq_descriptor’line. In an actualworkload, the actual
timeis somavhereinbetweenputin eithercasethetotal
time takenis lessthanthatfor poll().

As evidencedby the two graphsabove, the amountof
time savedby kqueueoverpoll depend®nthenumberof
timesthata descriptoris monitoredfor anevent,andthe
amountof activity thatis presenbn a descriptor Figure
12 shawvs accumulatedime requiredto checka single
descriptorfor bothkqueueandpoll. Thepoll line is con-
stant,while thetwo kqueudinesgive the bestandworst
casescenariodor a descriptor Timeshereareaveraged
from the 100file descriptorcasein the previousgraphs.
This graphshows that despitea higher startuptime for
kqueueunlessthe descriptoiis polledlessthan4 times,
kqueuehasalower overall costthanpoll.

' "poII_s(‘)ckeLs" —‘»7
"kq_active_sockets" ---x---
"poll_files" ---*---
600 |- kq_active_files' iz
500 | g
o
]
§ 400 -
S
o
@2
£ .
g 300 e
IS
200 P
T a
100 =
~a
0)) ‘ ‘
0 100 200 300 400 500 600 700 800 900 1000

Number of descriptors
Figurell: Timerequiredwhenall descriptorsareactive.

4.5

T T T
"poll_costs" —+—
"kqg_costs_active" ---x---
"kq_costs_inactive" -----

41

35

3L

25

2L

15

Accumulated Time (microseconds)

i /‘/_/,

05

1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Number of system calls

Figure12: Accumulatedime for kqueuevs poll

7.1 Individual operations

The stateof kqueueis maintainedby using the action
field in thekeventto alterthe stateof theknotes.Eachof
theseactionstakesa differentamountof amountof time
to perform,asillustratedby Figure13. Theseoperations
are performedon soclet descriptorsithe graphsfor file
descriptorqttys) aresimilar. While enable/disabldave
alower costthanadd/deleterecall thatthis only affects
returningthe keventto the user;thefilter associateavith
theknotewill still beexecuted.

7.2 Application level benchmarks
Web Proxy Cache

Two real-world applicationswere modified to use the
kqueuesystemcall; a commercialweb cachingproxy
sener, andthe thttpd [9] Web sener. Both of theseap-
plicationswererun onthe platformdescribedearliet
The client machinefor running network testswasan
Alpha 264DF using a single 21264EV6 666Mhz pro-

1200

"kq_add” ——

"kq_disable" &
1000

800 |

600 [

Time (milliseconds)

’,X//

200 e

=3

S

7 N 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Number of descriptors

Figure13: Time requiredfor eachkqueueoperation.

T T T
"select_time_vs_cold_conn" —+—
"kevent_time_vs_cold_conn" ---x---

% CPU time

I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000
Number of cold connections

Figure14: KernelCPUtime consumedy systemcall.

cessorand512MB memory running FreeBSD4.3-RC.
Bothmachinesvereequippedvith aNetgeaiGA620Gi-

gabit Ethernetcard,andconnectedria a Cisco Catalyst
3500XL Gigabitswitch. No othertraffic waspresenbn

theswitchatthetime of thetests.For thewebcacheall

fileswereloadedinto thecachegrom awebsenerbefore
startingthetest.

In orderto generatea workload for the web proxy
senerwith theequipmentvailable thehttp_load[8] tool
wasused. This wasconfiguredto requestURLs from a
setof 10001KB and10 1MB cacheddlocument$rom the
proxy, while maintaining100 parallelconnections An-
otherprogramwasusedto keepavaryingnumberof idle
connectionsopento the sener. This approachfollows
earlierresearchthatshovs thatwebsenershave a small
setof active connectionsandalargernumberof inactive
connection$?]. Performancelatafor thetestswerecol-
lectedonthesenersystemby runningthekernelprofiler
(kgmon)while thecachewasunderload.

Figure 14 shows the amountof CPU time that each
systemcall (andits directdescendantg)seasthe num-

100

90

80

70

60

50 |-

% of CPU idle time

40 -
30
20

10 |
"select_idle_time" —+—
"lfqild\eillme“’ =X

1 1 M 1
0 500 1000 1500 2000 2500 3000 3500 4000
Number of cold connections

Figurel5: Amountof idle time remaining.

berof active connectionss heldat 100,andthe number
of cold connectionwaries.Observinghegraph,seethat
thekqueudimesareconstantegardles®f thenumberof
inactive connectionsasexpectedfrom the microbench-
marks. The selectbasedapproactstartsnearingthe sat-
urationpoint asthe amountof idle CPUtime decreases.
Figure 15 shows a graphof idle CPUtime, asmeasured
by vmstat,andit canseenthatthe systemis essentially
outof resourcedy thetime thereare2000connections.

thttpd Web Server

The thttpd Web Sener [9] was modifiedto add kqueue
supportto its fdwatchdescriptormanagementode,and
the performancef the resultingsener wascomparedo

theoriginal code.

For benchmarkindghe sener, the httperf[7] measure-
mentpackagewas used. The size of the FD_SETSIZE
arraywasincreasedn orderto supportmorethan 1024
opendescriptors.The value of net.inet.tcp.msbn both
clientandsener machinesvasdescreasetfom 30 sec-
ondsto 5 secondsn orderto regycle the network port
spaceat a higherrate. After the sener wesstarted,and
beforeary measurementa/ere taken, a singledry run
wasdoneusingthe maximumnumberof idle onnections
betweerthe clietn andsener. Doing this allows theker-
nel portionof thewebserer procesgo preallocatespace
for the openfile descriptorkqueuedescriptortables,as
well asallowing the userportion of the procesdo allo-
catethe spaceneededor the datastructures.f thiswas
not done,the responseate as obsened from the client
variesasthe processattemptgo allocatememory

The offered load from client using httperf was kept
constantat 500 requestgper secondfor this test, while
thenumberof idle connection®penedvith idletimewas
varied. Theresultof thetestis thereply time asreported
by httperf. Thereply ratefor all testswasequalto the
requestrate, while the numberof errorswas negligible

T T
ool
“kqueue" ---x---

40 1

Response Time (milliseconds)

,,,,,,,,,,,, FOR
,,,,,,, VIS

e L S o

0 | 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Idle Connections

Figure16: Respons¢ime from httperf

(< 2in all cases).

The idle time on the sener machinewas monitored
during the test using vmstat. The unmodified thttpd
sener runsout of cpuwhenthe numberof idle connec-
tions is around600, while the modified sener still has
approximately48% idle time with 10,000idle connec-
tions.

8 RelatedWork

This sectionpresentsomeof the otherwork donein this
area.

POSIX signal queues

POSIXsignalqueuesare partof the SingleUnix Speci-
fication[5], andallow signalsto be queuedfor delivery
to an application,alongwith someadditionalinforma-
tion. For every eventthatshouldbe deliveredto the ap-
plication, a signal(typically SIGIO) is generatedanda
structurecontainingthe file descriptoris allocatedand
placedon the queuefor the signal handlerto retrieve.
No attemptat eventaggreyationis performedsothereis
no fixed boundon the queuelengthfor returnedevents.
Most implementationssilently boundthe queuelength
to afixedsize,droppingeventswhenthequeuebecomes
toolarge. Thestructureallocationis performedvhenthe
eventis delivered,openingup the possibility of losing
eventsduringaresourceshortage.
Thesignalqueuesrestatelesssotheapplicationrmust
handlethe bookkeepingrequiredto determinewhether
thereis residualinformationleft from the initial event.
The applicationmust also be preparedto handlestale
eventsaswell. As anexample,considerwhat happens
whena paclet arrives,causingan eventto be placedon
asignalqueue andthendequeuedby the signalhandler
Beforeary additionalprocessingcan happena second

paclet arrives and a secondeventis in turn placedon

the signal queue. The applicationmay; in the course
of processinghe first event, closethe descriptorcorre-
spondingto the network channelthatthe pacletsareas-
sociatedwith. Whenthe secondeventis retrieved from

the signalqueueit is now “stale” in the sensehatit no

longer correspondgo an openfile descriptor What is

worse,the descriptormay have beenreusedfor another
openfile, resultingin a falsereportingof actiity on the
new descriptor A further drawvbackto the signalqueue
approachs thatthe useof signalsasanatificationmech-
anismprecludesaving multiple eventhandlersmaking
it unsuitablefor usein library code.

getnext.event

This proposedAPI by Banga, Mogul and Druschel
[2] motivated the author to implement systemunder
FreeBSDthat worked in a similar fashion,using their
concepbf hinting. The practicalexperiencegainedfrom
realworld usageof anapplicationutilizing thisapproach
inspiredthe conceptof kqueue.

While the original systemdescribedoy Banga,et.al.,
performsevent coalescing,it also suffers from “stale”
events, in the samefashionof POSIX signal queues.
Their implementationis restrictedto soclet descriptors,
andalsouseslist of fixedsizeto hold hints,falling back
to thebehavior of anormalselect(uponlist overflow.

SGl's/dev/imon

/dev/imon [3] is an inode monitor, and where events
within the filesystemare sentbackto userspace. This
is theonly otherinterfacethatthe authoris awareof that
is capableof performingsimilar operationsasthe VN-

ODE filter. However, only a singleprocescanreadthe
device nodeat once;SGI handleshis by creatinga dae-
monprocessalledfmonthattheapplicatiormaycontact
to requesinformationfrom.

Sun’s/dev/poll

This system[4] appeardo come closestto the design
outlinedin this paper but hassomelimitations ascom-
paredto kqueue.Applicationsareableto open/dev/poll
to obtaina filedescriptorthat behares similarly to a kq
descriptor Eventsarepassedo thekernelby performing
awrite() onthedescriptorandarereadbackvia anioctl()
call. The returnedinformationis limited to an revent
field, similarly to thatfoundin poll(), andthe interface
restrictedto soclets; it cannothandleFIFO descriptors
or othereventsourcegsignals filesystemevents).

The interface also doesnot automaticallyhandlethe
casewherea descriptoris closedby the application,but

insteadkeepsreturningPOLLNVAL for that descriptor
until removed from the interestsetor reusedby the ap-
plication.

The descriptorobtainedby opening/dev/poll cannot
in turn be selectedon, precludingconstructionof hier-
archicalor prioritized queues.Thereis no equialentto
kqueuesfiltersfor extendingthebehaior of thesystem,
nor supportfor direct function dispatchasthereis with
kqueue.

9 Conclusion

Applicationshandlinga large numberof eventsarede-
pendenbn theefficiengy of eventnotificationanddeliv-
ery. This paperhaspresentedhe designcriteria for a
genericandscalableaventnotificationfacility, aswell as
analternateAPl. This APl wasimplementedn FreeBSD
andcommittedto themain CVStreein April 2000.

Overall, the systemperformsto expectationsandap-
plicationswhich previously foundthatselector poll was
a bottleneckhave seenperformancegains from using
kgueue. The authoris aware of the systembeingused
in several major applicationssuchas webserers, web
proxy seners,irc daemonsnetnavs transportsandmail
seners,to namea few.

Theimplementatiordescribecherehasbeenadopted
by OpenBSDandis in the proces®f beingbroughtinto
NetBSD as well, so the API is not limited to a single
operatingsystem. While the measurementi this pa-
per have concentrategrimarily on the soclet descrip-
tors, otherfilters alsoprovide performanceains.

The “tail -f” commandin FreeBSDwas historically
implementedy stat'ingthefile every 1/4 secondn or-
derto seeif thefile hadchangedReplacingthis polling
approachwith a kg VNODE filter provides the same
functionality with less overhead,for those underlying
filesystemghatsupportkqueueaventnotification.

The AIO filter is usedto notify the applicationwhen
anAlO requesis completedenablingthe maindispatch
loop to be simplified to a singlekeventcall insteadof a
combinationof poll, aio_error, andaio_suspencalls.

TheDNSresoherlibrary routines(res*) usedselect()
internallyto orderto wait for aresponsdrom the name-
sener. Onthe FreeBSDproject’s heavily loadede-mail
exploderwhich usegpostfixfor mail delivery, thesystem
wasseeinganextremelyhighnumberof selectcollisions,
which causesevery processusing select()to be woken
up. Changingthe resoler library to usekqueuewasa
successfuéxampleof usinga privatekqueuewithin ali-
braryroutine,andalsoresultedn aperformanceainby
eliminatingthe selectcollisions.

The authoris not aware of ary other UNIX system
whichis capableof handlingmultiple eventsourcesnor
one that can be trivially extendedto handleadditional

sourcesSincetheoriginalimplementatiorwasreleased,
the systemhasbeenextendeddown to the device layer,
andnow is capableof handlingdevice-specificeventsas
well. A device managerapplicationis plannedfor this
capability wheretheuseris notifiedof ary changen hot-
swappabledevicesin the system.Anotherfilter thatis in
the procesof beingaddeds a TIMER filter which pro-
videsthe applicationwith as mary oneshotor periodic
timersasneeded Additionally, a high performanceker-
nel audittrail facility may beimplementedvith kqueue,
by having the user use a kqueuefilter to selectvely
choosewhich auditingeventsshouldberecorded.

References

[1] BANGA, G., AND MoOGUL, J. C. Scalableker
nel performancedor Internetsenersunderrealistic
loads. In Proceeding®fthe 1998USENIXAnnual
Tedhnical Confeence(New OrleansLA, 1998).

[2] BANGA, G., MoGuUL, J. C., AND DRUSCHEL, P.
A scalableand explicit eventdelivery mechanism
for UNIX. In USENIXAnnual Technical Confer
ence(1999),pp.253-265.

[3] /dev/imon. http://techpubs. sgi.conl
library/tpl/cgi-bin/getdoc.cgi?
col | =0650&db=man%&f nanme=/ usr/
share/ cat man/ a_nan/ cat 7/i non. z.

[4] /dev/poll. http://docs. sun. com ab2/
col | . 40. 6/ REFMAN7/ @\b2PageVi ew
55123.

[5] GrouP, T. Single unix specification,
1997. htt p: // ww. opengroup. or g/

onl i ne- pubs?D0OC=007908799.

[6] McVoy, L. W., AND STAELIN, C. Im-
bench: Portabletools for performanceanalysis.
In USENIXAnnual Technical Confeence(1996),
pp.279-294.

[7] MOSBERGER, D., AND JIN, T. httperf: A tool for
measuringveb sener performanceln FirstWork-
shopon Internet ServerPerformance(Junel1998),
ACM, pp.59—67.

[8] POSKANZER, J. httpload. http://ww.
acne. coni sof tware/ http_| oad/ .

[9] POSKANZER, J. thttpd. htt p://www. ace.
com software/thttpd/.

[10] Provos, N., AND LEVER, C. Scalablenetwork
i/o in linux, 2000.

