
The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

New Orleans, Louisiana, February, 1999

For more information about USENIX Association contact:

1. Phone: 1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

IO−Lite: A Unified I/O Buffering and Caching System

Vivek S. Pai, Peter Druschel, Willy Zwaenepoel
Rice University

IO-Lite: A Uni�ed I/O Bu�ering and Caching System

Vivek S. Paiz Peter Druschely Willy Zwaenepoely

z Department of Electrical and Computer Engineering
y Department of Computer Science

Rice University

Abstract

This paper presents the design, implementation,

and evaluation of IO-Lite, a uni�ed I/O bu�ering

and caching system for general-purpose operating

systems. IO-Lite uni�es all bu�ering and caching

in the system, to the extent permitted by the hard-

ware. In particular, it allows applications, interpro-

cess communication, the �lesystem, the �le cache,

and the network subsystem to share a single physi-

cal copy of the data safely and concurrently. Protec-

tion and security are maintained through a combi-

nation of access control and read-only sharing. IO-

Lite eliminates all copying and multiple bu�ering

of I/O data, and enables various cross-subsystem

optimizations. Experiments with a Web server on

IO-Lite show performance improvements between 40

and 80% on real workloads.

1 Introduction

For many users, the perceived speed of comput-

ing is increasingly dependent on the performance

of networked server systems, underscoring the need

for high performance servers. Unfortunately, general

purpose operating systems provide inadequate sup-

port for server applications, leading to poor server

performance and increased hardware cost of server

systems.

One source of the problem is lack of integra-

tion among the various input-output (I/O) subsys-

tems and the application in general-purpose oper-

ating systems. Each I/O subsystem uses its own

bu�ering or caching mechanism, and applications

generally maintain their own private I/O bu�ers.

This approach leads to repeated data copying, mul-

tiple bu�ering of I/O data, and other performance-

degrading anomalies.

Repeated data copying causes high CPU over-

head and limits the throughput of a server. Mul-

tiple bu�ering of data wastes memory, reducing the

space available for the document cache. This size

reduction causes higher cache miss rates, increas-

ing disk accesses and reducing throughput. Finally,

lack of support for application-speci�c cache replace-

ment policies [9] and optimizations like TCP check-

sum caching [15] further reduce server performance.

We present the design, the implementation, and

the performance of IO-Lite, a uni�ed I/O bu�ering

and caching system for general-purpose operating

systems. IO-Lite uni�es all bu�ering and caching

in the system to the extent permitted by the hard-

ware. In particular, it allows applications, interpro-

cess communication, the �le cache, the network sub-

system, and other I/O subsystems to share a single

physical copy of the data safely and concurrently.

IO-Lite achieves this goal by storing bu�ered I/O

data in immutable bu�ers, whose locations in phys-

ical memory never change. The various subsystems

use mutable bu�er aggregates to access the data ac-

cording to their needs.

The primary goal of IO-Lite is to improve the per-

formance of server applications such as those run-

ning on networked (e.g., Web) servers, and other

I/O-intensive applications. IO-Lite avoids redun-

dant data copying (decreasing I/O overhead), avoids

multiple bu�ering (increasing e�ective �le cache

size), and permits performance optimizations across

subsystems (e.g., application-speci�c �le cache re-

placement and cached Internet checksums).

A prototype of IO-Lite was implemented in

FreeBSD. In keeping with the goal of improving per-

formance of networked servers, our central perfor-

mance results involve a Web server, in addition to

other benchmark applications. Results show that

IO-Lite yields a performance advantage of 40 to 80%

on real workloads. IO-Lite also allows e�cient sup-

port for dynamic content using third-party CGI pro-

grams without loss of fault isolation and protection.

1.1 Background

In state-of-the-art, general-purpose operating sys-

tems, each major I/O subsystem employs its own

bu�ering and caching mechanism. In UNIX, for

instance, the network subsystem operates on data

stored in BSD mbufs or the equivalent System V

streambufs, allocated from a private kernel mem-

ory pool. The mbuf (or streambuf) abstraction

is designed to e�ciently support common net-

work protocol operations such as packet fragmen-

tation/reassembly and header manipulation.

The UNIX �lesystem employs a separate mecha-

nism designed to allow the bu�ering and caching of

logical disk blocks (and more generally, data from

block oriented devices.) Bu�ers in this bu�er cache

are allocated from a separate pool of kernel memory.

In older UNIX systems, the bu�er cache is used to

store all disk data. In modern UNIX systems, only

�lesystem metadata is stored in the bu�er cache; �le

data is cached in VM pages, allowing the �le cache

to compete with other virtual memory segments for

the entire pool of physical main memory.

No support is provided in UNIX systems for

bu�ering and caching at the user level. Applica-

tions are expected to provide their own bu�ering

and/or caching mechanisms, and I/O data is gener-

ally copied between OS and application bu�ers dur-

ing I/O read and write operations1. The presence

of separate bu�ering/caching mechanisms in the ap-

plication and in the major I/O subsystems poses a

number of problems for I/O performance:

Redundant data copying: Data copying may oc-

cur multiple times along the I/O data path. We call

such copying redundant, because it is not necessary

to satisfy some hardware constraint. Instead, it is

imposed by the system's software structure and its

interfaces. Data copying is an expensive operation,

because it generally proceeds at memory rather than

CPU speed and it tends to pollute the data cache.

Multiple bu�ering: The lack of integration in

the bu�ering/caching mechanisms may require that

multiple copies of a data object be stored in main

memory. In a Web server, for example, a data �le

may be stored in the �lesystem cache, in the Web

server's bu�ers, and in the network subsystem's send

bu�ers of one or more connections. This duplication

reduces the e�ective size of main memory, and thus

the size and hit rate of the server's �le cache.

Lack of cross-subsystem optimization: Sepa-

rate bu�ering mechanisms make it di�cult for in-

dividual subsystems to recognize opportunities for

optimizations. For example, the network subsystem

of a server is forced to recompute the Internet check-

sum each time a �le is being served from the server's

cache, because it cannot determine that the same

data is being transmitted repeatedly. Also, server

applications cannot exercise customized �le cache re-

1Some systems partly avoid this data copying under cer-

tain conditions in a transparent manner, using page remap-

ping and copy-on-write.

placement policies.

The outline of the rest of the paper is as fol-

lows: Section 2 presents the design of IO-Lite and

discusses its operation in a Web server application.

Section 3 describes a prototype implementation in a

BSD UNIX system. A quantitative evaluation of IO-

Lite is presented in Section 4, including performance

results with a Web server on real workloads. In Sec-

tion 5, we present a qualitative discussion of IO-Lite

in the context of related work, and we conclude in

Section 6.

2 IO-Lite Design

2.1 Principles: Immutable Bu�ers and
Bu�er Aggregates

In IO-Lite, all I/O data bu�ers are immutable.

Immutable bu�ers are allocated with an initial data

content that may not be subsequently modi�ed.

This access model implies that all sharing of bu�ers

is read-only, which eliminates problems of synchro-

nization, protection, consistency, and fault isolation

among OS subsystems and applications. Data pri-

vacy is ensured through conventional page-based ac-

cess control.

Moreover, read-only sharing enables very e�cient

mechanisms for the transfer of I/O data across pro-

tection domain boundaries, as discussed in Sec-

tion 2.2. For example, the �lesystem cache, applica-

tions that access a given �le, and the network sub-

system can all safely refer to a single physical copy

of the data.

The price for using immutable bu�ers is that I/O

data can not generally be modi�ed in place2. To al-

leviate the impact of this restriction, IO-Lite encap-

sulates I/O data bu�ers inside the bu�er aggregate

abstraction. Bu�er aggregates are instances of an

abstract data type (ADT) that represent I/O data.

All OS subsystems access I/O data through this uni-

�ed abstraction. Applications that wish to obtain

the best possible performance can also choose to ac-

cess I/O data in this way.

The data contained in a bu�er aggregate does

not generally reside in contiguous storage. Instead,

a bu�er aggregate is represented internally as an

ordered list of <pointer,length> pairs, where each

pair refers to a contiguous section of an immutable

I/O bu�er. Bu�er aggregates support operations

for truncating, prepending, appending, concatenat-

ing, splitting, and mutating data contained in I/O

bu�ers.

2As an optimization, I/O data can be modi�ed in place if

it is not currently shared.

While the underlying I/O bu�ers are immutable,

bu�er aggregates are mutable. To mutate a bu�er

aggregate, modi�ed values are stored in a newly allo-

cated bu�er, and the modi�ed sections are then log-

ically joined with the unmodi�ed portions through

pointer manipulations in the obvious way. The im-

pact of the absence of in-place modi�cations will be

discussed in Section 2.8.

In IO-Lite, all I/O data is encapsulated in bu�er

aggregates. Aggregates are passed among OS sub-

systems and applications by value, but the associ-

ated IO-Lite bu�ers are passed by reference. This

approach allows a single physical copy of I/O data to

be shared throughout the system. When a bu�er ag-

gregate is passed across a protection domain bound-

ary, the VM pages occupied by all of the aggregate's

bu�ers are made readable in the receiving domain.

Conventional access control ensures that a process

can only access I/O bu�ers associated with bu�er ag-

gregates that were explicitly passed to that process.

The read-only sharing of immutable bu�ers ensures

fault isolation, protection, and consistency despite

the concurrent sharing of I/O data among multi-

ple OS subsystems and applications. A system-wide

reference counting mechanism for I/O bu�ers allows

safe reclamation of unused bu�ers.

2.2 Interprocess Communication

In order to support caching as part of a uni�ed

bu�er system, an interprocess communicationmech-

anism must allow safe concurrent sharing of bu�ers.

In other words, di�erent protection domains must

be allowed protected, concurrent access to the same

bu�er. For instance, a caching Web server must re-

tain access to a cached document after it passes the

document to the network subsystem or to a local

client.

IO-Lite uses an IPC mechanism similar to

fbufs [11] to support safe concurrent sharing. Copy-

free I/O facilities that only allow sequential shar-

ing [21, 7] are not suitable for use in caching I/O

systems, since only one protection domain has ac-

cess to a given bu�er at any time and reads are de-

structive.

I/O-Lite extends fbufs in two signi�cant direc-

tions. First, it extends the fbuf approach from

the network subsystem to the �lesystem, including

the �le data cache, thus unifying the bu�ering of

I/O data throughout the system. Second, it adapts

the fbuf approach, originally designed for the x-

kernel [13], to a general-purpose operating system.

IO-Lite's IPC, like fbufs, combines page remap-

ping and shared memory. Initially, when an (im-

mutable) bu�er is transferred, VM mappings are up-

dated to grant the receiving process read access to

the bu�er's pages. Once the bu�er is deallocated,

these mappings persist, and the bu�er is added to a

cached pool of free bu�ers associated with the I/O

stream on which it was �rst used, forming a lazily

established pool of read-only shared memory pages.

When the bu�er is reused, no further VM map

changes are required, except that temporary write

permissions must be granted to the producer of the

data, to allow it to �ll the bu�er. This toggling

of write permissions can be avoided whenever the

producer is a trusted entity, such as the OS kernel.

Here, write permissions can be granted permanently,

since a trusted entity can be implicitly expected to

honor the bu�er's immutability.

IO-Lite's worst case cross-domain transfer over-

head is that of page remapping; it occurs when the

producer allocates the last bu�er before the �rst

bu�er is deallocated by the receiver(s). Otherwise,

bu�ers can be recycled, and the transfer perfor-

mance approaches that of shared memory.

2.3 Access Control and Allocation

IO-Lite ensures access control and protection at

the granularity of processes. That is, no loss of se-

curity or safety is associated with the use of IO-

Lite. IO-Lite maintains cached pools of bu�ers with

a common access control list (ACL), i.e., a set of pro-

cesses with access to all IO-Lite bu�ers in the pool.

The choice of a pool from which a new IO-Lite bu�er

is allocated determines the ACL of the data stored

in the bu�er.

IO-Lite's access control model requires programs

to determine the ACL of an I/O data object prior to

storing it in main memory, in order to avoid copy-

ing. Determining the ACL is trivial in most cases,

except when an incoming packet arrives at a network

interface, as discussed in Section 2.6.

Figure 1 depicts the relationship between VM

pages, bu�ers, and bu�er aggregates. IO-Lite bu�ers

are allocated in a region of the virtual address space

called the IO-Lite window. The IO-Lite window ap-

pears in the virtual address spaces of all protection

domains, including the kernel. The �gure shows a

section of the IO-Lite window populated by three

bu�ers. An IO-Lite bu�er always consists of an in-

tegral number of (virtually) contiguous VM pages.

The pages of an IO-Lite bu�er share identical ac-

cess control attributes; that is, in a given protection

domain, either all or none of a bu�er's pages are

accessible.

Also shown are two bu�er aggregates. An aggre-

gate contains an ordered list of tuples of the form

<address, length>. Each tuple refers to a subrange

of memory called a slice. A slice is always contained

Buffer Aggregate 1 Buffer Aggregate 2

Buffer 1 Buffer 2 Buffer 3

Figure 1: Aggregate bu�ers and slices

in one IO-Lite bu�er, but slices in the same IO-Lite

bu�er may overlap. The contents of a bu�er aggre-

gate can be enumerated by reading the contents of

each of its constituent slices in order.

Data objects with the same ACL can be allocated

in the same IO-Lite bu�er and on the same page.

As a result, IO-Lite does not waste memory when

allocating objects that are smaller than the VM page

size.

2.4 IO-Lite and Applications

To take full advantage of IO-Lite, application pro-

grams can use an extended I/O application program-

ming interface (API) that is based on bu�er aggre-

gates. This section brie
y describes this API. A

complete discussion of the API can be found in the

technical report [20].

size_t IOL_read(int fd, IOL_Agg **aggr,

size_t size);

size_t IOL_write(int fd, IOL_Agg *aggr);

Figure 2: IO-Lite I/O API

IOL read and IOL write form the core of the inter-

face (see Figure 2). These operations supersede the

standard UNIX read and write operations. (The

latter operations are maintained for backward com-

patibility.) Like their predecessors, the new opera-

tions can act on any UNIX �le descriptor. All other

�le descriptor related UNIX systems calls remain un-

changed.

The new IOL read operation returns a bu�er ag-

gregate (IOL Agg) containing at most the amount

of data speci�ed as an argument. Unlike the POSIX

read, IOL read may always return less data than re-

quested. The IOL write operation replaces the data

in an external data object with the contents of the

bu�er aggregate passed as an argument.

The e�ects of IOL read and IOL write operations

are atomic with respect to other IOL write opera-

tions concurrently invoked on the same descriptor.

That is, an IOL read operations yields data that ei-

ther re
ects all or none of the changes a�ected by

a concurrent IOL write operation on the same �le

descriptor. The data returned by a IOL read is ef-

fectively a \snapshot" of the data contained in the

object associated with the �le descriptor.

Additional IO-Lite system calls allow the creation

and deletion of IO-Lite allocation pools. A version of

IOL read allows applications to specify an allocation

pool, such that the system places the requested data

into IO-Lite bu�ers from that pool. Applications

that manage multiple I/O streams with di�erent ac-

cess control lists use this operation. The (IOL Agg)

bu�er aggregate abstract data type supports a num-

ber of operations for creation, destruction, duplica-

tion, concatenation and truncation as well as data

access.

Implementations of language-speci�c runtime I/O

libraries, like the ANSI C stdio library, can be con-

verted to use the new API internally. Doing so re-

duces data copying without changing the library's

API. As a result, applications that perform I/O us-

ing these standard libraries can enjoy some perfor-

mance bene�ts merely by re-linking them with the

new library.

2.5 IO-Lite and the Filesystem

With IO-Lite, bu�er aggregates form the basis of

the �lesystem cache. The �lesystem itself remains

unchanged.

File data that originates from a local disk is gener-

ally page-aligned and page sized. However, �le data

received from the network may not be page-aligned

or page-sized, but can nevertheless be kept in the

�le cache without copying. Conventional UNIX �le

cache implementations are not suitable for IO-Lite,

since they place restrictions on the layout of cached

�le data. As a result, current Unix implementations

perform a copy when �le data arrives from the net-

work.

The IO-Lite �le cache has no statically allocated

storage. The data resides in IO-Lite bu�ers, which

occupy ordinary pageable virtual memory. Concep-

tually, the IO-Lite �le cache is very simple. It con-

sists of a data structure that maps triples of the

form <�le-id, o�set, length> to bu�er aggregates

that contain the corresponding extent of �le data.

Since IO-Lite bu�ers are immutable, a write op-

eration to a cached �le results in the replacement

of the corresponding bu�ers in the cache with the

bu�ers supplied in the write operation. The replaced

bu�ers no longer appear in the �le cache; however,

they persist as long as other references to them exist.

For example, assume that a IOL read operation of

a cached �le is followed by a IOL write operation to

the same portion of the �le. The bu�ers that were

returned in the IOL read are replaced in the cache

as a result of the IOL write. However, the bu�ers

persist until the process that called IOL read deal-

locates them and no other references to the bu�ers

remain. In this way, the snapshot semantics of the

IOL read operation are preserved.

2.6 IO-Lite and the Network

With IO-Lite, the network subsystem uses IO-Lite

bu�er aggregates to store and manipulate network

packets.

Some modi�cations are required to network de-

vice drivers. As explained in Section 2.2, programs

using IO-Lite must determine the ACL of a data ob-

ject prior to storing the object in memory. Thus,

network interface drivers must determine the I/O

stream associated with an incoming packet, since

this stream implies the ACL for the data contained

in the packet.

To avoid copying, drivers must determine this in-

formation from the headers of incoming packets us-

ing a packet �lter [16], an operation known as early

demultiplexing. Incidentally, early demultiplexing

has been identi�ed by many researchers as a nec-

essary feature for e�ciency and quality of service in

high-performance networks [23]. With IO-Lite, early

demultiplexing is necessary for best performance.

2.7 Cache Replacement and Paging

We now discuss the mechanisms and policies for

managing the IO-Lite �le cache and the physical

memory used to support IO-Lite bu�ers. There

are two related issues, namely (1) replacement of

�le cache entries, and (2) paging of virtual memory

pages that contain IO-Lite bu�ers. Since cached �le

data resides in IO-Lite bu�ers, the two issues are

closely related.

Cache replacement in a uni�ed caching/bu�ering

system is di�erent from that of a conventional �le

cache. Cached data is potentially concurrently ac-

cessed by applications. Therefore, replacement de-

cisions should take into account both references to

a cache entry (i.e., IOL read and IOL write oper-

ations), as well as virtual memory accesses to the

bu�ers associated with the entry3.

Moreover, the data in an IO-Lite bu�er can be

shared in complex ways. For instance, assume that

an application reads a data record from �le A, ap-

pends that record to the same �le A, then writes the

record to a second �le B, and �nally transmits the

record via a network connection. After this sequence

of operations, the bu�er containing the record will

appear in two di�erent cache entries associated with

�le A (corresponding to the o�set from where the

record was read, and the o�set at which it was ap-

pended), in a cache entry associated with �le B, in

the network subsystem transmission bu�ers, and in

the user address space of the application. In gen-

eral, the data in an IO-Lite bu�er may at the same

time be part of an application data structure, rep-

resent bu�ered data in various OS subsystems, and

represent cached portions of several �les or di�erent

portions of the same �le.

Due to the complex sharing relationships, a large

design space exists for cache replacement and pag-

ing of uni�ed I/O bu�ers. While we expect that fur-

ther research is necessary to determine the best poli-

cies, our current system employs the following simple

strategy. Cache entries are maintained in a list or-

dered �rst by current use (i.e, is the data currently

referenced by anything other than the cache?), then

by time of last access, taking into account read and

write operations but not VM accesses for e�ciency.

When a cache entry needs to be evicted, the least

recently used among currently not referenced cache

entries is chosen, else the least recently used among

the currently referenced entries.

Cache entry eviction is triggered by a simple rule

that is evaluated each time a VM page containing

cached I/O data is selected for replacement by the

VM pageout daemon. If, during the period since

the last cache entry eviction, more then half of VM

pages selected for replacement were pages containing

cached I/O data, then it is assumed that the current

�le cache is too large, and we evict one cache entry.

Because the cache is enlarged (i.e., a new entry is

added) on every miss in the �le cache, this policy

tends to keep the �le cache at a size such that about

half of all VM page replacements a�ect �le cache

pages.

Since all IO-Lite bu�ers reside in pageable virtual

3Similar issues arise in �le caches that are based on mem-

ory mapped �les.

memory, the cache replacement policy only controls

how much data the �le cache attempts to hold. Ac-

tual assignment of physical memory is ultimately

controlled by the VM system. When the VM pa-

geout daemon selects a IO-Lite bu�er page for re-

placement, IO-Lite writes the page's contents to the

appropriate backing store and frees the page.

Due to the complex sharing relationships possible

in a uni�ed bu�ering/caching system, the contents

of a page associated with a IO-Lite bu�er may have

to be written to multiple backing stores. Such back-

ing stores include ordinary paging space, plus one

or more �les for which the evicted page is holding

cached data.

Finally, IO-Lite includes support for application-

speci�c �le cache replacement policies. Interested

applications can customize the policy using an ap-

proach similar to that proposed by Cao et al. [9].

2.8 Impact of Immutable I/O bu�ers

Consider the impact of IO-Lite's immutable I/O

bu�ers on program operation. If a program wishes

to modify a data object stored in a bu�er aggregate,

it must store the new values in a newly allocated

bu�er. There are three cases to consider.

First, if every word in the data object is modi�ed,

then the only additional cost (over in-place modi-

�cation) is a bu�er allocation. This case arises fre-

quently in programs that perform operations such as

compression and encryption. The absence of support

for in-place modi�cations should not signi�cantly af-

fect the performance of such programs.

Second, if only a subset of the words in the ob-

ject change values, then the naive approach of copy-

ing the entire object would result in partially redun-

dant copying. This copying can be avoided by stor-

ing modi�ed values into a new bu�er, and logically

combining (chaining) the unmodi�ed and modi�ed

portions of the data object through the operations

provided by the bu�er aggregate.

The additional costs in this case (over in-place

modi�cation) are due to bu�er allocations and

chaining (during the modi�cation of the aggre-

gate), and subsequent increased indexing costs (dur-

ing access of the aggregate) incurred by the non-

contiguous storage layout. This case arises in net-

work protocols (fragmentation/reassembly, header

addition/removal), and many other programs that

reformat/reblock I/O data units. The performance

impact on these programs due to the lack of in-place

modi�cation is small as long as changes to data ob-

jects are reasonably localized.

The third case arises when the modi�cations of

the data object are so widely scattered (leading to

a highly fragmented bu�er aggregate) that the costs

of chaining and indexing exceed the cost of a redun-

dant copy of the entire object into a new, contigu-

ous bu�er. This case arises in many scienti�c appli-

cations that read large matrices from input devices

and access/modify the data in complex ways. For

such applications, contiguous storage and in-place

modi�cation is a must. For this purpose, IO-Lite in-

corporates the mmap interface found in all modern

UNIX systems. The mmap interface creates a con-

tiguous memory mapping of an I/O object that can

be modi�ed in-place.

The use of mmap may require copying in the ker-

nel. First, if the data object is not contiguous and

not properly aligned (e.g. incoming network data) a

copy operation is necessary due to hardware con-

straints. In practice, the copy operation is done

lazily on a per-page basis. When the �rst access

occurs to a page of a memory mapped �le, and its

data is not properly aligned, that page is copied.

Second, a copy is needed in the event of a store op-

eration to a memory-mapped �le, when the a�ected

page is also referenced through an immutable IO-

Lite bu�er. (This case arises, for instance, when the

�le was previously read by some user process using

an IOL read operation). The modi�ed page must be

copied in order to maintain the snapshot semantics

of the IOL read operation. The copy is performed

lazily, upon the �rst write access to a page.

2.9 Cross-Subsystem Optimizations

A uni�ed bu�ering/caching system enables cer-

tain optimizations across applications and OS sub-

systems not possible in conventional I/O systems.

These optimizations leverage the ability to uniquely

identify a particular I/O data object throughout the

system.

For example, with IO-Lite, the Internet check-

sum module used by the TCP and UDP protocols

is equipped with an optimization that allows it to

cache the Internet checksum computed for each slice

of a bu�er aggregate. Should the same slice be trans-

mitted again, the cached checksum can be reused,

avoiding the expense of a repeated checksum calcu-

lation. This optimization works extremely well for

network servers that serve documents stored on disk

with a high degree of locality. Whenever a �le is

requested that is still in the IO-Lite �le cache, TCP

can reuse a precomputed checksum, thereby elimi-

nating the only remaining data-touching operation

on the critical I/O path.

To support such optimizations, IO-Lite provides

with each bu�er a generation number. The gener-

ation number is incremented every time a bu�er is

re-allocated. Since IO-Lite bu�ers are immutable,

this generation number, combined with the bu�er's

address, provides a system-wide unique identi�er for

the contents of the bu�er. That is, when a subsys-

tem is presented repeatedly with an IO-Lite bu�er

with an identical address and an identical generation

number, it can be sure that the bu�er contains the

same data values, thus enabling optimizations like

Internet checksum caching.

2.10 Operation in a Web Server

In this section, we describe the operation of IO-

Lite in a Web server as an example. We start with

an overview of the basic operation of a Web server

on a conventional UNIX system.

AWeb server repeatedly accepts TCP connections

from clients, reads the client's HTTP request, and

transmits the requested content data with an HTTP

response header. If the requested content is static,

the corresponding document is read from the �le sys-

tem. If the document is not found in the �lesystem's

cache, a disk read is necessary.

Copying occurs as part of the reading of data

from the �lesystem, and when the data is written

to the socket attached to the client's TCP connec-

tion. High-performance Web servers avoid the �rst

copy by using the UNIX mmap interface to read �les,

but the second copy remains. Multiple bu�ering oc-

curs because a given document may simultaneously

be stored in the �le cache and in the TCP retrans-

mission bu�ers of potentially multiple client connec-

tions.

With IO-Lite, all data copying and multiple

bu�ering is eliminated. Once a document is in

mainmemory, it can be served repeatedly by passing

bu�er aggregates between the �le cache, the server

application, and the network subsystem. The server

obtains a bu�er aggregate using the IOL read opera-

tion on the appropriate �le descriptor, concatenates

a response header, and transmits the resulting ag-

gregate using IOL write on the TCP socket. If a

document is served repeatedly from the �le cache,

the TCP checksum need not be recalculated except

for the bu�er containing the response header.

Dynamic content is typically generated by an aux-

iliary third-party CGI program that runs as a sepa-

rate process. The data is sent from the CGI process

to the server process via a UNIX pipe. In conven-

tional systems, sending data across the pipe involves

at least one data copy. In addition, many CGI pro-

grams read primary �les that they use to synthesize

dynamic content from the �lesystem, causing more

data copying when that data is read. Caching of

dynamic content in a CGI program can aggravate

the multiple bu�ering problem: Primary �les used

to synthesize dynamic content may now be stored in

the �le cache, in the CGI program's cache as part of

a dynamic page, in the server's holding bu�ers, and

in the TCP retransmission bu�ers.

With IO-Lite, sending data over a pipe involves no

copying. CGI programs can synthesize dynamic con-

tent by manipulating bu�er aggregates containing

data from primary �les and newly generated data.

Again, IO-Lite eliminates all copying and multiple

bu�ering, even in the presence of caching CGI pro-

grams. TCP checksums need not be recomputed for

portions of dynamically generated content that are

repeatedly transmitted.

IO-Lite's ability to eliminate data copying and

multiple bu�ering can dramatically reduce the cost

of serving static and dynamic content. The impact

is particularly strong in the case when a cached copy

(static or dynamic) of the requested content exists,

since copying costs can dominate the service time

in this case. Moreover, the elimination of multiple

bu�ering frees up valuable memory resources, per-

mitting a larger �le cache size and hit rate, thus

further increasing server performance.

Finally, a Web server can use the IO-Lite facilities

to customize the replacement policy used in the �le

cache to derive further performance bene�ts. To use

IO-Lite, an existing Web server need only be mod-

i�ed to use the IO-Lite API. CGI programs must

likewise use bu�er aggregates to synthesize dynamic

content.

A quantitative evaluation of IO-Lite in the context

of a Web server follows in Section 4.

3 Implementation

This section gives an overview of the implementa-

tion of the IO-Lite prototype system in a 4.4BSD

derived UNIX kernel. IO-Lite is implemented as

a loadable kernel module that can be dynamically

linked to a slightly modi�ed FreeBSD 2.2.6 kernel.

A runtime library must be linked with applications

wishing to use the IO-Lite API. This library pro-

vides the bu�er aggregate manipulation routines and

stubs for the IO-Lite system calls.

Network Subsystem: The BSD network sub-

system was adapted by encapsulating IO-Lite bu�ers

inside the BSD native bu�er abstraction, mbufs.

This approach avoids intrusive and widespread

source code modi�cations.

The encapsulation was accomplished by using the

mbuf out-of-line pointer to refer to an IO-Lite bu�er,

thus maintaining compatibility with the BSD net-

work subsystem in a very simple, e�cient manner.

Small data items such as network packet headers

are still stored inline in mbufs, but the performance

critical bulk data resides in IO-Lite bu�ers. Since

the mbuf data structure remains essentially unmod-

i�ed, the bulk of the network subsystem (including

all network protocols) works unmodi�ed with mbuf

encapsulated IO-Lite bu�ers.

Filesystem: The IO-Lite �le cache module re-

places the uni�ed bu�er cache module found in

4.4BSD derived systems [17]. The bulk of the �lesys-

tem code (below the block-oriented �le read/write

interface) remains unmodi�ed. As in the original

BSD kernel, the �lesystem continues to use the \old"

bu�er cache to hold �lesystem metadata.

The original UNIX read and write system calls

for �les are implemented by IO-Lite for backward

compatibility; a data copy operation is used to

move data between application bu�ers and IO-Lite

bu�ers.

VM System: Adding IO-Lite does not require

any signi�cant changes to the BSD VM system [17].

IO-Lite uses standard interfaces exported by the VM

system to create a VM object that represents the IO-

Lite window, map that object into kernel and user

process address spaces, and to provide page-in and

page-out handlers for the IO-Lite bu�ers.

The page-in and page-out handlers use informa-

tion maintained by the IO-Lite �le cache module to

determine the disk locations that provide backing

store for a given IO-Lite bu�er page. The replace-

ment policy for IO-Lite bu�ers and the IO-Lite �le

cache is implemented by the page-out handler, in

cooperation with the IO-Lite �le cache module.

IPC System: The IO-Lite system adds a modi-

�ed implementation of the BSD IPC facilities. This

implementation is used whenever a process uses the

IO-Lite read/write operations on a BSD pipe or

Unix domain socket. If the processes on both ends of

a pipe or Unix domain socket-pair use the IO-Lite

API, then the data transfer proceeds copy-free by

passing the associated IO-Lite bu�ers by reference.

The IO-Lite system ensures that all pages occupied

by these IO-Lite bu�ers are readable in the receiving

domain, using standard VM operations.

4 Performance

In this section, we evaluate the performance of a

prototype IO-Lite implementation. All experiments

use a server system based on a 333MHz Pentium

II PC equipped with 128MB of main memory and

�ve network adaptors to a switched 100Mbps Fast

Ethernet.

To fully expose the performance bottlenecks in

the operating system, we use a high-performance

in-house Web server called Flash [19]. Flash is an

event-driven HTTP server with support for CGI. To

the best of our knowledge, Flash is among the fastest

HTTP servers currently available. Flash-Lite is a

slightly modi�ed version of Flash that uses the IO-

Lite API.

While Flash uses memory-mapped �les to read

disk data, Flash-Lite uses the IO-Lite read/write in-

terface to access disk �les. In addition, Flash-Lite

uses the IO-Lite support for customization of the

�le caching policy to implement Greedy Dual Size

(GDS), a policy that performs well on Web work-

loads [10].

For comparison, we also present performance re-

sults with Apache version 1.3.1, a widely used Web

server [3]. This version uses mmap to read �les and

performs substantially better than earlier versions.

Apache's performance re
ects what can be expected

of a widely used Web server today.

Flash is an aggressively optimized, experimental

Web server; it re
ects the best in Web server per-

formance that can be achieved using the standard

facilities available in a modern operating system.

Flash-Lite's performance re
ects the additional ben-

e�ts that result from IO-Lite. All Web servers were

con�gured to use a TCP socket send bu�er size of

64KBytes; access logging was disabled.

In the �rst experiment, 40 HTTP clients running

on �ve machines repeatedly request the same docu-

ment of a given size from the server. A client issues a

new request as soon as a response is received for the

previous request [4]. The �le size requested varies

from 500 bytes to 200KBytes (the data points below

20KB are 500 bytes, 1KB, 2KB, 3KB, 5KB, 7KB,

10KB and 15 KB). In all cases, the �les are cached

in the server's �le cache after the �rst request, so no

physical disk I/O occurs in the common case.

Figure 3 shows the output bandwidth of the var-

ious Web servers as a function of request �le size.

Results are shown for Flash-Lite, Flash and Apache.

Flash performs consistently better than Apache,

with bandwidth improvements up to 71% at a �le

size of 20KBytes. This result con�rms that our ag-

gressive Flash server outperforms the already fast

Apache server.

Flash using IO-Lite (Flash-Lite) delivers a band-

width increase of up to 43% over Flash and up to

137% over Apache. For �le sizes of 5KBytes or less,

Flash and Flash-Lite perform equally well. The rea-

son is that at these small sizes, control overheads,

rather than data dependent costs, dominate the cost

of serving a request.

The throughput advantage obtained with IO-Lite

in this experiment re
ects only the savings due to

0 50 100 150 200
0

100

200

300

400

Flash−Lite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Figure 3: HTTP

0 50 100 150 200
0

100

200

300

400

Flash−Lite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Figure 4: Persistent HTTP

copy-avoidance and checksum caching. Potential

bene�ts resulting from the elimination of multiple

bu�ering and the customized �le cache replacement

are not realized, because this experiment does not

stress the �le cache (i.e., a single document is re-

peatedly requested).

4.1 Persistent Connections

The previous experiments are based on HTTP 1.0,

where a TCP connection is established by clients for

each individual request. The HTTP 1.1 speci�cation

adds support for persistent (keep-alive) connections

that can be used by clients to issue multiple requests

in sequence. We modi�ed both versions of Flash to

support persistent connections and repeated the pre-

vious experiment. The results are shown in Figure 4.

With persistent connections, the request rate for

small �les (less than 50KBytes) increases signi�-

cantly with Flash and Flash-Lite, due to the re-

duced overhead associated with TCP connection es-

tablishment and termination. The overheads of the

process-per-connection model in Apache appear to

prevent that server from fully taking advantage of

this e�ect.

Persistent connections allow Flash-Lite to realize

its full performance advantage over Flash at smaller

�le sizes. For �les of 20KBytes and above, Flash-Lite

outperforms Flash by up to 43%. Moreover, Flash-

Lite comes within 10% of saturating the network

at a �le size of only 17KBytes and it saturates the

network for �le sizes of 30KBytes and above.

4.2 CGI Programs

An area where IO-Lite promises particularly sub-

stantial bene�ts is CGI programs. When compared

to the original CGI 1.1 standard [1], the newer

FastCGI interface [2] amortizes the cost of forking

and starting a CGI process by allowing such pro-

cesses to persist across requests. However, there

are still substantial overheads associated with IPC

across pipes and multiple bu�ering, as explained in

Section 2.10.

We performed an experiment to evaluate how IO-

Lite a�ects the performance of dynamic content gen-

eration using FastCGI programs. A test CGI pro-

gram, when receiving a request, sends a \dynamic"

document of a given size from its memory to the

server process via the UNIX pipe; the server trans-

mits the data on the client's connection. The results

of these experiments are shown in Figure 5.

The bandwidth of the Flash and Apache servers is

roughly half their corresponding bandwidth on static

documents. This results shows the strong impact of

the copy-based pipe IPC in regular UNIX on CGI

performance. With Flash-Lite, the performance is

signi�cantly better, approaching 87% of the speed

on static content. Also interesting is that CGI pro-

grams with Flash-Lite achieve performance better

than static �les with Flash.

Figure 6 shows results of the same experiment us-

ing persistent HTTP-1.1 connections. Unlike Flash-

Lite, Flash and Apache cannot take advantage of the

e�ciency of persistent connections here, since their

performance is limited by the pipe IPC.

The results of these experiments show that IO-

Lite allows a server to e�ciently support dynamic

content using CGI programs, without giving up fault

isolation and protection from such third-party pro-

grams. This result suggests that with IO-Lite, there

may be less reason to resort to library-based inter-

faces for dynamic content generation. Such inter-

faces were de�ned by Netscape andMicrosoft [18, 14]

to avoid the overhead of CGI. Since they require

third-party programs to be linked with the server,

they give up fault isolation and protection.

4.3 Performance on Real Workload

The previous experiments use an arti�cial work-

load. In particular, they use a set of requested docu-

ments that �ts into the server's main memory cache.

0 50 100 150 200
0

100

200

300

400
Flash−Lite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Figure 5: HTTP/FastCGI

0 50 100 150 200
0

100

200

300

400
Flash−Lite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Figure 6: P-HTTP/FastCGI

Apache Flash Flash-Lite

Requests/sec 524 617 866

Ratio 1.0 1.18 1.65

Table 1: Rice Trace

As a result, these experiments only quantify the in-

crease in performance due to the elimination of CPU

overhead with IO-Lite. They do not demonstrate

possible secondary performance bene�ts due to the

increased availability of main memory that results

from IO-Lite's elimination of double bu�ering. In-

creasing the amount of available memory allows a

larger set of documents to be cached, thus increasing

the server cache hit rate and performance. Finally,

since the cache is not stressed in these experiments,

possible performance bene�ts due to the customized

�le cache replacement policy used in Flash-Lite are

not exposed.

To measure the overall impact of IO-Lite on the

performance of a Web server under realistic work-

load conditions, we performed experiments where

our experimental server is driven by a workload de-

rived from server logs of an actual Web server. We

use logs from Rice University's Computer Science

departmental Web server. Only requests for static

documents were extracted from the logs. The aver-

age request size in this trace is about 17KBytes.

Table 1 show the relative performance in re-

quests/sec of Flash-Lite, Flash, and Apache on

the Rice CS department trace. Flash exceeds the

throughput of Apache by 18% on this trace. Flash-

Lite gains 65% throughput over Apache and 40%

over Flash, demonstrating the e�ectiveness of IO-

Lite under realistic workload conditions, where the

set of requested documents exceeds the cache size

and disk accesses occur.

4.4 WAN E�ects

Our experimental testbed uses a local-area net-

work to connect a relatively small number of clients

to the experimental server. This setup leaves a sig-

ni�cant aspect of real Web server performance un-

evaluated, namely the impact of wide-area network

delays and large numbers of clients [4]. In particu-

lar, we are interested here in the TCP retransmission

bu�ers needed to support e�cient communicationon

connections with substantial bandwidth-delay prod-

ucts.

Since both Apache and Flash use mmap to read

�les, the remaining primary source of double bu�er-

ing is TCP's transmission bu�ers. The amount of

memory consumed by these bu�ers is related to the

number of concurrent connections handled by the

server, times the socket send bu�er size Tss used

by the server. For good network performance, Tss
must be large enough to accommodate a connec-

tion's bandwidth-delay product. A typical setting

for Tss in a server today is 64KBytes.

Busy servers may handle several hundred concur-

rent connections, resulting in signi�cant memory re-

quirements even in the current Internet. With fu-

ture increases in Internet bandwidth, the necessary

Tss settings needed for good network performance

are likely to increase signi�cantly, which makes it

increasingly important to eliminate double bu�er-

ing.

The BSD UNIX network subsystem dynamically

allocates mbufs (and mbuf clusters) to hold data in

socket bu�ers. When the server is contacted by a

large number of clients concurrently and the server

transmits on each connection an amount of data

equal or larger than Tss, then the system may be

forced to allocate su�cient mbufs to hold Tss bytes

for each connection. Moreover, in FreeBSD and

other BSD-derived system, the size of the mbuf pools

is never decreased. That is, once the mbuf pool has

grown to a certain size, its memory is permanently

unavailable for other uses, such as the �le cache.

To quantify this e�ect, we repeated the previous

experiment, with the addition that an increasing

number of \slow" background clients contact the

server. These clients request a document, but are

slow to read the data from their end of the TCP

connection, which has a small receive bu�er (2KB).

This trick forces the server to bu�er data in its socket

send bu�ers and simulates the e�ect of WAN con-

nections on the server.

As the number of clients increases, more memory

is used to hold data in the server's socket bu�ers,

increasing memory pressure and reducing the size

of the �le cache. With IO-Lite, however, socket

send bu�ers do not require separate memory since

they refer to data stored in IO-Lite bu�ers4. Dou-

ble bu�ering is eliminated, and the amount of mem-

ory available for the �le cache remains independent

of the number of concurrent clients contacting the

server and the setting of Tss.

 0 16 32 64 128 256
0

200

400

600

800

1000

Flash−Lite
Flash
Apache

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

slow clients

Figure 7: Throughput vs. #clients

Figure 7 shows the performance of Apache, Flash

and Flash-Lite as a function of the number of slow

clients contacting the server. As expected, Flash-

Lite remains una�ected by the number of slow clients

contacting the server, up to experimental noise.

Apache su�ers up to 42% and Flash up to 30%

throughput loss as the number of clients increases,

reducing the available cache size. For 16 slow clients

and more, Flash-Lite is close to 80% faster than

Flash; for 32 slow clients and more, Flash-Lite is

150% faster than Apache.

The results con�rm IO-Lite's ability to eliminate

double bu�ering in the network subsystem. This

e�ect gains in importance both as the number of

concurrent clients and the setting of Tss increases.

Future increases in Internet bandwidth will require

larger Tss settings to achieve good network utiliza-

tion.

4A small amount of memory is required to holdmbuf struc-

tures.

 grep wc permute gcc sm gcc lg
 0

.2

.4

.6

.8

 1

No
rm

ali
ze

d
ru

n
tim

e

81.1 ms

100 ms

16.3 s 0.42 s

8.54 s

152 ms 117 ms 22.4 s 0.59 s 8.82 s

Figure 8: Various application runtimes

4.5 Other Applications

To demonstrate the impact of IO-Lite on the per-

formance of a wider range of applications, and also

to gain experience with the use of the IO-Lite API, a

number of existing UNIX programs were converted

and some new programs were written to use IO-Lite.

We modi�ed GNU grep, wc, cat, and the GNU gcc

compiler chain (compiler driver, C preprocessor, C

compiler, and assembler). Figure 8 depicts the re-

sults obtained with grep, wc, and permute. The

\wc" refers to a run of the word-count program on a

1.75 MB �le. The �le is in the �le cache, so no phys-

ical I/O occurs. \Permute" generates all possible

permutations of 8 character words in a 80 character

string. Its output (10! � 80 = 290304000 bytes) is

piped into the \wc" program. The \grep" bar refers

to a run of the GNU grep program on the same �le

used for the \wc" program, but the �le is piped into

wc from cat instead of being read directly from disk.

Improvements in runtime of approximately 15%

result from the use of IO-Lite for wc, since it reads

cached �les. The bene�t of IO-Lite is reduced be-

cause each page of the cached �le must be mapped

into the application's address space when a �le is

read from the IO-Lite �le cache.

For the \permute" program the improvement is

more signi�cant (24%). The reason is that a pipeline

is involved in the latter program. Whenever local in-

terprocess communication occurs, the IO-Lite imple-

mentation can recycle bu�ers, avoiding all VM map

operations. Finally, in the \grep" case, the overhead

of multiple copies is eliminated, so the IO-Lite ver-

sion is able to eliminate 3 copies (one due to \grep",

and two due to \cat").

The gcc compiler chain was converted mainly to

determine if there were bene�ts from IO-Lite for

more compute-bound applications and to stress the

IO-Lite implementation. We expected that a com-

piler is too compute-intensive to bene�t substan-

tially from I/O performance improvements. Rather

than modify the entire program, we simply replaced

the stdio library with a version that uses IO-Lite for

communication over pipes. Interestingly, converting

the compiler to use IO-Lite actually led to a measur-

able performance improvement. The improvement

is mainly due to the fact that IO-Lite allows e�-

cient communication through pipes. Although the

standard gcc has an option that uses pipes instead

of temporary �les for communication between the

compiler's various stages, various ine�ciencies in the

handling of pipes actually caused a signi�cant slow-

down, so the baseline gcc numbers used for compari-

son are for gcc running without pipes. Since IO-Lite

can handle pipes very e�ciently, unexpected per-

formance improvements resulted from its use. The

\gcc sm" and \gcc lg" bars refer to compiles of a

1200 Byte and a 206 KByte �le, respectively.

The \grep" and \wc" programs read their input

sequentially, and were converted to use the IO-Lite

API. The C preprocessor's output, the compiler's

input and output, and the assembler's input all use

the C stdio library, and were converted merely by

relinking them with an IO-Lite version of stdio li-

brary. The preprocessor (cpp) uses mmap to read

its input.

5 Related Work

This section discusses related work. To provide

focus, we examine how existing and proposed I/O

systems a�ect the design and performance of a Web

server. We begin with the standard UNIX (POSIX)

I/O interface, and go on to more aggressively opti-

mized I/O systems proposed in the literature.

POSIX I/O: The UNIX/POSIX read/readv op-

erations allow an application to request the place-

ment of input data at an arbitrary (set of) loca-

tion(s) in its private address space. Furthermore,

both the read/readv and write/writev operations

have copy semantics, implying that applications can

modify data that was read/written from/to an exter-

nal data object without a�ecting that data object.

To avoid the copying associated with reading a �le

repeatedly from the �lesystem, a Web server using

this interface would have to maintain a user-level

cache of Web documents, leading to double-bu�ering

in the disk cache and the server. When serving a

request, data is copied into socket bu�ers, creating

a third copy. CGI programs [1] cause data to be

additionally copied from the CGI program into the

server's bu�ers via a pipe, possibly involving kernel

bu�ers.

Memory-mapped �les: The semantics of

mmap facilitate a copy-free implementation, but the

contiguous mapping requirement may still demand

copying in the OS for data that arrives from the net-

work. Like IO-Lite, mmap avoids multiple bu�ering

of �le data in �le cache and application(s). Unlike

IO-Lite, mmap does not generalize to network I/O,

so double bu�ering (and copying) still occurs in the

network subsystem.

Moreover, memory-mapped �les do not provide

a convenient method for implementing CGI sup-

port, since they lack support for producer/consumer

synchronization between the CGI program and the

server. Having the server and the CGI program

share memory-mapped �les for IPC requires ad-hoc

synchronization and adds complexity.

Transparent Copy Avoidance: In principle,

copy avoidance and single bu�ering could be accom-

plished transparently using existing POSIX APIs,

through the use of page remapping and copy-on-

write. Well-known di�culties with this approach are

VM page alignment problems, and potential writes

to bu�ers by applications, which may defeat copy

avoidance by causing copy-on-write faults.

The emulated copy technique in Genie [7] uses

a number of techniques to address the alignment

problem and allows transparent copy-free network

access under certain conditions. Subsequent exten-

sions support transparent copy-free IPC if one side of

the IPC connection is a trusted (server) process [8].

Further enhancements of the system allow copy-free

data transfer between network sockets and memory-

mapped �les under appropriate conditions [6]. How-

ever, copy avoidance is not fully transparent, since

applications may have to ensure proper alignment of

incoming network data, use bu�ers carefully to avoid

copy-on-write faults, and use special system calls to

move data into memory-mapped �les.

To use Genie in a Web server, for instance, the

server application must be modi�ed to use memory-

mapped �les and to satisfy other conditions neces-

sary to avoid copying. Due to the lack of support

for copy-free IPC between unprivileged processes in

Genie, CGI applications may require data copying.

IO-Lite does not attempt to provide transpar-

ent copy avoidance. Instead, I/O-intensive appli-

cations must be written or modi�ed to use the IO-

Lite API. (Legacy applications with less stringent

performance requirements can be supported in a

backward-compatible fashion at the cost of a copy

operation, as in conventional systems.) By giving

up transparency and in-place modi�cations, IO-Lite

can support universal copy-free I/O, including gen-

eral IPC and cached �le access, using an API with

simple semantics and consistent performance.

Copy Avoidance with Hando� Semantics:

The Container Shipping (CS) I/O system [21] and

Thadani and Khalidi's work [24] use I/O read and

write operations with hando� (move) semantics.

Like IO-Lite, these systems require applications to

process I/O data at a given location. Unlike IO-

Lite, they allow applications to modify I/O bu�ers

in-place. This is safe because the hando� semantics

permit only sequential sharing of I/O data bu�ers|

i.e., only one protection domain has access to a given

bu�er at any time.

Sacri�cing concurrent sharing comes at a cost:

Since an application loses access to a bu�er that

it passed as an argument to a write operation, an

explicit physical copy is necessary if the application

needs access to the data after the write. Moreover,

when an application reads from a �le while a second

application is holding cached bu�ers for the same

�le, a second copy of the data must be read from

the input device. This scenario demonstrates that

the lack of support for concurrent sharing prevents

an e�ective integration of a copy-free I/O bu�ering

scheme with the �le cache.

In a Web server, lack of concurrent sharing re-

quires copying of \hot" pages, making the common

case more expensive. CGI programs that produce

entirely new data for every request (as opposed to

returning part of a �le or a set of �les) are not af-

fected, but CGI programs that try to intelligently

cache data su�er copying costs.

Fbufs: Fbufs is a copy-free cross-domain trans-

fer and bu�ering mechanism for I/O data, based on

immutable bu�ers that can be concurrently shared.

The fbufs system was designed primarily for han-

dling network streams, was implemented in a non-

UNIX environment, and does not support �lesystem

access or a �le cache. IO-Lite's cross-domain trans-

fer mechanism was inspired by fbufs. When trying

to use fbufs in a Web server, the lack of integration

with the �lesystem would result in double-bu�ering.

Their use as an interprocess communication facility

would bene�t CGI programs, but with the same re-

strictions on �lesystem access.

Extensible Kernels: Recent work has proposed

the use of of extensible kernels [5, 12, 15, 22] to ad-

dress a variety of problems associated with existing

operating systems. Extensible kernels can poten-

tially address many di�erent OS performance prob-

lems, not just the I/O bottleneck that is the focus

of our work.

In contrast to extensible kernels, IO-Lite is di-

rectly applicable to existing general-purpose op-

erating systems and provides an application-

independent scheme for addressing the I/O bottle-

neck. Our approach avoids the complexity and the

overhead of new safety provisions required by exten-

sible kernels. It also relieves the implementors of

servers and applications from having to write OS-

speci�c kernel extensions.

CGI programs may pose problems for extensi-

ble kernel-based Web servers, since some protec-

tion mechanism must be used to insulate the server

from poorly-behaved programs. Conventional Web

servers and Flash-Lite rely on the operating system

to provide protection between the CGI process and

the server, and the server does not extend any trust

to the CGI process. As a result, the malicious or

inadvertent failure of a CGI program will not a�ect

the server.

To summarize, IO-Lite di�ers from existing work

in its generality, its integration of the �le cache, its

support for cross-subsystem optimizations, and its

direct applicability to general-purpose operating sys-

tems. IO-Lite is a general I/O bu�ering and caching

system that avoids all redundant copying and mul-

tiple bu�ering of I/O data, even on complex data

paths that involve the �le cache, interprocess com-

munication facilities, network subsystem and multi-

ple application processes.

6 Conclusion

This paper presents the design, implementation,

and evaluation of IO-Lite, a uni�ed bu�ering and

caching system for general-purpose operating sys-

tems. IO-Lite improves the performance of servers

and other I/O-intensive applications by eliminating

all redundant copying and multiple bu�ering of I/O

data, and by enabling optimizations across subsys-

tems.

Experimental results from a prototype implemen-

tation in FreeBSD show performance improvements

between 40 and 80% over an already aggressively

optimized Web server without IO-Lite, both on syn-

thetic workloads and on real workloads derived from

Web server logs. IO-Lite also allows the e�cient sup-

port of CGI programs without loss of fault isolation

and protection. Further results show that IO-Lite

reduces memory requirements associated with the

support of large numbers of client connections and

large bandwidth-delay products in Web servers by

eliminating multiple bu�ering, leading to increased

throughput.

Acknowledgments

We are grateful to our OSDI shepherd Greg Min-

shall and the anonymous reviewers, whose com-

ments have helped to improve this paper. Thanks to

Michael Svendsen for his help with the testbed con-

�guration. This work was supported in part by NSF

Grants CCR-9803673, CCR-9503098, MIP-9521386,

by Texas TATP Grant 003604, and by an IBM Part-

nership Award.

References

[1] The common gateway interface.

http://hoohoo.ncsa.uiuc.edu/cgi/.

[2] FastCGI speci�cation.

http://www.fastcgi.com/.

[3] Apache. http://www.apache.org/.

[4] G. Banga and P. Druschel. Measuring the ca-

pacity of a Web server under realistic loads.

World Wide Web Journal (Special Issue on

World Wide Web Characterization and Perfor-

mance Evaluation), 1999. To appear.

[5] B. N. Bershad, S. Savage, P. Pardyak, E. G.

Sirer, M. E. Fiuczynski, D. Becker, C. Cham-

bers, and S. Eggers. Extensibility, safety and

performance in the SPIN operating system. In

Proc. Fifteenth ACM Symp. on Operating Sys-

tem Principles, Copper Mountain, CO, Dec.

1995.

[6] J. C. Brustoloni. Interoperation of copy avoid-

ance in network and �le I/O. In Proc. of

the IEEE Infocom Conference, New York, Mar.

1999.

[7] J. C. Brustoloni and P. Steenkiste. E�ects of

bu�ering semantics on I/O performance. In

Proc. 2nd USENIX Symp. on Operating Sys-

tems Design and Implementation, Seattle WA

(USA), Oct. 1996.

[8] J. C. Brustoloni and P. Steenkiste. User-level

protocol servers with kernel-level performance.

In Proc. of the IEEE Infocom Conference, San

Francisco, Mar. 1998.

[9] P. Cao and E. Felten. Implementation and per-

formance of application-controlled �le caching.

In Proc. of the First USENIX Symp. on Operat-

ing System Design and Implementation, pages

165{177, 1994.

[10] P. Cao and S. Irani. Cost-aware WWW proxy

caching algorithms. In Proc. of the USENIX

Symp. on Internet Technologies and Systems

(USITS), Monterey, CA, Dec. 1997.

[11] P. Druschel and L. L. Peterson. Fbufs: A high-

bandwidth cross-domain transfer facility. In

Proc. of the Fourteenth ACM Symp. on Oper-

ating System Principles, pages 189{202, Dec.

1993.

[12] D. R. Engler, M. F. Kaashoek, and J. O'Toole.

Exokernel: An operating system architecture

for application-level resource management. In

Proc. of the Fifteenth ACM Symp. on Operat-

ing System Principles, Copper Mountain, CO,

Dec. 1995.

[13] N. C. Hutchinson and L. L. Peterson. The x-

kernel: An architecture for implementing net-

work protocols. IEEE Transactions on Software

Engineering, 17(1):64{76, Jan. 1991.

[14] Microsoft Corporation ISAPI Overview.

http://www.microsoft.com/msdn/sdk/plat-

forms/doc/sdk/internet/src/isapimrg.htm.

[15] M. F. Kaashoek, D. R. Engler, G. R. Ganger,

H. M. Brice~no, R. Hunt, D. Mazi�eres, T. Pinck-

ney, R. Grimm, J. Jannotti, and K. MacKen-

zie. Application performance and
exibility on

exokernel systems. In Proc. of the Sixteenth

ACM Symp. on Operating System Principles,

San Malo, France, Oct. 1997.

[16] S. McCanne and V. Jacobson. The BSD packet

�lter: A new architecture for user-level packet

capture. In Proc. of the USENIX '93 Winter

Conference, pages 259{269, Jan. 1993.

[17] M. K. McKusick, K. Bostic, M. J. Karels, and

J. S. Quarterman. The Design and Implementa-

tion of the 4.4BSD Operating System. Addison-

Wesley Publishing Company, 1996.

[18] Netscape Server API. http://www.net-

scape.com/newsref/std/server api.html.

[19] V. S. Pai, P. Druschel, and W. Zwaenepoel.

Flash: An e�cient and portable Web server,

1998. Submitted for publication.

[20] V. S. Pai, P. Druschel, and W. Zwaenepoel.

I/O-Lite: A uni�ed I/O bu�ering and caching

system. Technical Report 98-331, Department

of Computer Science, Rice University, 1998.

[21] J. Pasquale, E. Anderson, and P. K. Muller.

Container Shipping: Operating system support

for I/O-intensive applications. IEEE Computer,

27(3):84{93, Mar. 1994.

[22] M. I. Seltzer, Y. Endo, C. Small, and K. A.

Smith. Dealing with disaster: Surviving misbe-

haved kernel extensions. In Proc. 2nd USENIX

Symp. on Operating Systems Design and Imple-

mentation, Seattle, WA, Oct. 1996.

[23] D. L. Tennenhouse. Layered multiplex-

ing considered harmful. In H. Rudin and

R. Williamson, editors, Protocols for High-

Speed Networks, pages 143{148, Amsterdam,

1989. North-Holland.

[24] M. N. Thadani and Y. A. Khalidi. An e�cient

zero-copy I/O framework for UNIX. Techni-

cal Report SMLI TR-95-39, Sun Microsystems

Laboratories, Inc., May 1995.

