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Abstract

This paper presentscooperative prefetching and caching— the use
of network-wide global resources (memories, CPUs, and disks) to
support prefetching and caching in the presence of hints of fu-
ture demands. Cooperative prefetching and caching effectively
unites disk-latency reduction techniques from three lines of re-
search: prefetching algorithms, cluster-wide memory management,
and parallel I/O. When used together, these techniques greatly in-
crease the power of prefetching relative to a conventional (non-
global-memory) system. We have designed and implemented
PGMS, a cooperative prefetching and caching system, under the
Digital Unix operating system running on a 1.28 Gb/sec Myrinet-
connected cluster of DEC Alpha workstations. Our measurements
and analysis show that by using available global resources, coop-
erative prefetching can obtain significant speedups for I/O-bound
programs. For example, for a graphics rendering application, our
system achieves a speedup of 4.9 over a non-prefetching version of
the same program, and a 3.1-fold improvement over that program
using local-disk prefetching alone.

1 Introduction

The past decade has seen a two-order-of-magnitude increase in
processor speed, yet only a two-fold improvement in disk ac-
cess time. As a result, recent research has focused on reduc-
ing disk stall time through several approaches. One approach
is the development of algorithms for prefetching data from disk
into memory [7, 27, 22, 29], using hints from either programmer-
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annotated [27] or compiler-annotated [25] programs. A second ap-
proach is the use of memory on idle network nodes as an additional
level of buffer cache [13, 14, 16]; thisglobal memorycan be ac-
cessed much faster than disk over high-speed switched networks.
A third approach is to stripe files over multiple disks [26], using
multiple nodes to access the disks in parallel [18, 9, 3].

This paper presentscooperative prefetching and caching— the
use of network-wide global memory to support prefetching and
caching in the presence of optional program-provided hints of fu-
ture demands. Cooperative prefetching and caching combines mul-
tiple approaches to disk-latency reduction, resulting in a system
that is significantly different than one using any single approach
alone. In the presence of global memory, a node has three choices
for data prefetching: (1) from disk into local memory, (2) from disk
into global memory (i.e., the disk and memory ofanothernode),
and (3) from global memory into local memory. When used to-
gether, these options greatly increase the power of prefetching rel-
ative to a conventional (non-global-memory) system.

For example, Figure 1a shows a simplified view of a conven-
tional prefetching system. Node A issues prefetch requests to miss-
ing blocksm andn in advance, so that both blocks are available in
memory just in time for the data references. In this case, buffers
must be freed on node A for blocksm andn about2FD andFD
in advance of their use, respectively, whereFD is the disk fetch
time. There are two possible problems with this scheme. First,
node A's disk may not be free in time to prefetch these blocks with-
out stalling. Second, if prefetched early enough to avoid stalling,
blocks m and n may replace useful data, causing an increase in
misses; whether or not this happens depends on how far in advance
the data is prefetched (which depends onFD) and the access pat-
tern of the program.

In contrast, Figures 1b and 1c show two examples of prefetch-
ing in a global-memory system. From these scenarios, we see that
combining prefetching and global memory has several possible ad-
vantages:

� A prefetching node can greatly delay its final load request
for data that resides in global memory, thereby reducing the
chance of replacing useful local data. In Figure 1b, for ex-
ample, node A requests that node B prefetch pages from disk
into B's memory ahead of time. As a result, node A need not
free a buffer for the prefetched data untilFG (the time for a
page fetch from global memory) before its use. On a 1Gb/sec
network, such as Myrinet,FG may be up to 50 times smaller
thanFD, so this difference is substantial.

� The I/O bandwidth available to a single node is ultimately
limited by its I/O subsystem – in most cases, the disk sub-
system. However, using idle nodes to prefetch data into
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global memory greatly increases the available I/O bandwidth
by adding in parallel: (1) the bandwidth of the network, (2)
the bandwidth of remote disk subsystems, and (3) the execu-
tion power of the remote CPUs. Use of this parallelism for
the global prefetching shown in Figures 1b and 1c effectively
reduces page prefetch time for I/O-bound processes fromFD
toFG.

� Figure 1c shows that distributing prefetch requests among
multiple nodes in parallel allows those nodes to delay their
own buffer replacement decisions (in this case, node B bene-
fits relative to Figure 1b), thereby making more effective use
of their memories.

� With the high ratio of disk latency to global memory latency,
a highly-conservative process could choose to prefetchonly
into global memory; the process would fault on reference to
a non-resident page, but would still benefit from the 50-fold
reduction in fault time.

� Given that there is idle memory and CPU power in the net-
work, a process could afford to prefetchspeculatively, using
idle global pages as the speculative prefetch cache.

While the idea of using network memory for prefetching is con-
ceptually straightforward, it raises a number of questions. For ex-
ample, how do nodesgloballychoose the pages in which to prefetch
from the global memory pool? When should data be prefetched
and to what level of the storage hierarchy? When should pages be
moved from global memory to local memory? How do we trade off
the use of global memory pages for prefetching versus the use of
those frames to hold evicted VM and file pages for non-prefetching
applications? And finally, how do we value each page in the net-
work, in order to best utilize each page frame?

To answer these questions, we have defined an algorithm for
global memory management with prefetching and implemented
that algorithm in the DEC UNIX operating system, running on
a collection of DEC Alpha workstations connected by a Myrinet
high-speed switched network. Our system, called PGMS (Prefetch-
ing Global Memory System), integrates all cluster memory use, in-
cluding VM pages, mapped files, and file system buffers, for both
prefetching and non-prefetching applications. It effectively unites
techniques from three previous lines of research: prefetching algo-
rithms, including the work of Patterson et al. [27], Cao et al. [7],

Kimbrel et al. [22], and Tomkins et al. [29]; the global memory
system (GMS) of Feeley et al. [14]; and the use of network nodes
for parallel I/O, as in the Zebra system of Hartman and Ouster-
hout [18]. Our measurements of PGMS executing on the Alpha-
based cluster show that prefetching in a global memory system can
produce substantial speedups for I/O-bound programs: e.g., for a
memory-bound graphics rendering application, PGMS achieves a
speedup of 4.3 over a non-prefetching version of the same pro-
gram, and a 2.8-fold improvement over that program using local
disk prefetching alone.

The remainder of the paper is organized as follows. Section 2
presents our algorithm for prefetching in global memory. Section 3
describes the implementation of our algorithm in the DEC UNIX
operating system. Section 4 presents performance results from our
prototype. We compare our work to previous research in Section 5
and conclude in Section 6.

2 The Global Prefetching and Caching Algorithm

This section presents the idealized global prefetching and caching
algorithm that is the basis of PGMS; Section 3 describes how the
PGMS implementation efficiently approximates the algorithm. For
the purposes of defining the algorithm, we make several simplify-
ing assumptions. First, we assume a uniform cluster topology with
network page transfer cost (FG) independent of location. Second,
we assume uniform availability of disk-resident data to all nodes
(e.g., through a network-attached disk [17] or replicated file sys-
tem [24]) and uniform page transfer time from disk into a node's
memory (FD). For cluster systems using high-speed switched net-
works,FG will be significantly smaller thanFD. Third, we assume
a centralized algorithm with completea priori knowledge of the
reference streams of the applications running on all nodes, includ-
ing the pages to be referenced, the relative order in which they are
referenced, and the inter-reference times.

We begin with a description of the algorithm below. In Sec-
tion 2.3, we discuss the theory motivating our design.

2.1 Design principles

The goal of our design is to minimize average memory reference
time across all processes in the cluster. This goal requires that “op-
timal” prefetching and caching decisions be made both for individ-
ual processes and for the cluster as a whole. The algorithm we use
in PGMS has two basic objectives:

� To reduce disk I/Os, maintain in the cluster's global memory
the set of pages that will be referenced nearest in the future.

� To reduce stalls, bring each page in the cluster to the node
that will reference it in advance of the access.

2.2 Detailed description

In our discussion, we use the termlocal pagefor a page that is
resident on a node using that page, and the termglobal pagefor a
page that is cached by one node on behalf of another. A reference
to a global page thus requires a network transfer.

To meet its objectives PGMS must make decisions about both
prefetching and cache replacement. Furthermore, the system must
make (1) global decisions about which pages to keep in global
memory rather than on disk, and (2) local decisions about which
data to keep resident in a node's local memory rather than in global
memory. The PGMS algorithm thus implements four interrelated
policies:

� local cache replacement (transfer of pages from a node's lo-
cal memory to global memory),



� global cache replacement (eviction from global memory),

� local prefetching (disk-to-local and global-to-local), and

� global prefetching (disk-to-global).

For cache replacement, we modify the algorithms used by
GMS [14] to incorporate prefetching. For local cache replacement,
we first choose to forward to global memory a global page on the
local node (i.e., a page held on behalf of another node); if there is
no global page, we choose the local page whose next reference is
furthest in the future. For global cache replacement in PGMS, we
evict the page in the cluster whose next reference is furthest in the
future.

For prefetching decisions we apply a hybrid algorithm, whose
goal is to be conservative locally but aggressive with resources on
idle nodes. For local prefetching, we adapt the Forestall algorithm
of Kimbrel, et al. [22, 29]. Forestall analyzes the future reference
stream to determine whether the process is I/O constrained; if so,
Forestall attempts to prefetch just early enough to avoid stalling.
In our adaptation, we apply the Forestall algorithm to the node's
local reference stream and take into account the different access
times for network-resident (global) and disk-resident data. This
analysis leads to aprefetch predicate; when the prefetch predicate
is true, Forestall recommends that a page be prefetched either from
global memory or from local disk. Whether the page is actually
prefetched depends on whether a resident page can be found whose
next reference is further in the future.

For prefetching into global memory (disk-to-global) PGMS
uses the Aggressive algorithm of Cao et al. [6]. If a page on disk
will be referenced earlier than a page in cluster memory, then the
disk page is prefetched. To make room, the global eviction pol-
icy chooses for replacement the page (in the cluster) whose next
reference is furthest in the future.

Computing the local prefetch predicate

The local prefetch predicate indicates when prefetching is needed
to avoid additional stalls. In our predicate computation, we assume
that all prefetches into a node and all memory references at a node
are serialized.

Consider the hinted future reference stream on a nodeP at a
given timeT , and letb[i] be thei-th missing page in the hinted ref-
erence stream that will be accessed after timeT . (Missing pages at
time T are those pages that are not inP 's local memory or in the
process of being prefetched intoP 's local memory at timeT .) Let
tb[i] be the time betweenT and the next access tob[i], assuming no
stalls occur betweenT and this access. LetFi be the time that will
be required to fetchb[i] into local memory:Fi equalsFG (the time
to perform a network fetch) ifb[i] is currently in global memory
and equalsFD (the time to fetch from disk) otherwise. Under these
assumptions, we can readily calculate whether or not we need to be-
gin prefetching immediately in order to avoid stalling: prefetching
is not yet required if for eachj, the time to fetch the firstj missing
pages (

P
1�i�j

Fi) is less than the time until the access to thej-th
missing page (tb[j]). Therefore, we define the local prefetch pred-
icate to be true if there is somej for which

P
1�i�j

Fi � tb[j].
Whenever this prefetch predicate is true for somej, nodeP at-
tempts to prefetch its first missing page.

2.3 Theoretical underpinnings

We begin with a discussion of cache replacement in a three-level
memory hierarchy. Then we summarize theoretical results on
prefetching as it pertains to PGMS. Finally, we touch upon the
problem of buffer allocation among competing processes.

2.3.1 Cache replacement

Our algorithm attempts to minimize the total cost of all memory
references within the cluster. The cost of a memory reference de-
pends on whether, at the time of reference, the data is in local mem-
ory, in global memory (on another node), or on disk. Typically, a
local hit is more than three orders of magnitude faster than a global
memory or disk access, while a global memory hit over a Gb/sec
network is on the order of 50 times faster than a disk access.

It is well known that in a two-level memory hierarchy such as
local memory and disk, the optimal replacement strategy is to re-
place the page whose next reference is furthest in the future [4]. The
analogous replacement strategy for a three-level memory hierarchy
(local memory, global memory, disk) such as PGMS is the Global
Longest Forward Distance (GLFD) algorithm, defined formally
as follows.

On a reference by nodeA to pageg in global memory on
nodeG, bring g into A's memory, where it becomes a lo-
cal page. In exchange, select a page onA for eviction: if
A has a global page, send that page toG, where it remains
a global page; otherwise ifA has no global page, select the
local page whose next reference is furthest in the future on
A, and send that page toG, where it becomes a global page.
On a reference by nodeA to paged on disk, readd intoA's
memory. In exchange, select (1) a pagea on A for evic-
tion to global memory, and (2) a pageg in the cluster for
eviction to disk. Select the pagea on A for eviction us-
ing the same method described above for a global memory
reference. For the cluster-wide eviction, select pageg (say
on nodeG) whose next reference is furthest in the future,
cluster-wide. Writeg to disk, and senda to nodeG, where it
becomes a global page.

The effect of this algorithm is to (1) maintain in the cluster as a
whole the set of pages that will be accessed soonest and (2) main-
tain on each node the set of pages that will be accessed soonest
by processes running on that node. While this algorithm is not al-
ways optimal, it is near optimal as shown by the following theorem
(whose proof we omit for reasons of space):

Theorem
Consider a global memory system with local memory access

costFL, global memory access costFG, and disk access costFD,
whereFL < FG < FD. LetOPT be the offline page replace-
ment algorithm minimizing total memory access cost. We denote
byCOPT (R) the total memory access cost incurred byOPT on
reference streamR, i.e.

COPT (R) = jRjFL +OG(R)FG +OD(R)FD;

whereOG(R) (resp.OD(R)) denotes the number of global mem-
ory references (resp. disk references) made byOPT onR. Simi-
larly, denote byCGLFD(R) the total memory access cost incurred
byGLFD on inputR. Then for anyR,

CGLFD(R) � COPT (R) (1 + 3(FG=FD)) :

The theorem implies that theGLFD algorithm is near optimal
whenever the ratio of network access time to disk access time is
small. For example, in a fast network such as the Myrinet where
(FG=FD) � 0:02, the total I/O overhead incurred by theGLFD
paging algorithm is within 6% of optimal. Therefore, in PGMS we
useGLFD as the cache replacement algorithm.



2.3.2 Prefetching strategy

Effective prefetching into local memory eliminates stall time while
minimizing computational overhead. Previous studies of prefetch-
ing [6, 7] have shown that for a fully-hinted process with a single
disk, the Aggressive prefetching algorithm achieves near-optimal
reduction in stall time. Unfortunately, Aggressive's early prefetch-
ing may result in suboptimal replacements, which can increase the
total number of I/Os performed. Although these I/Os are over-
lapped with computation, a significant overhead (the computational
overhead of issuing fetches) can result. The Forestall algorithm has
been shown in practice to match the reduction in I/O stall achieved
by the Aggressive algorithm, while avoiding the computational
overhead of performing unnecessary fetches [22, 29]. Forestall is
therefore the method of choice for local prefetching.

In contrast to local prefetching, disk stall time is much more im-
portant than computational overhead for disk-to-global prefetching,
where the prefetching is performed by otherwise idle nodes. By
analogy with the problem of prefetching from a single disk into a
single memory [6], the problem of prefetching from multiple disks
into global memory, under the assumption that disk-resident data
is available uniformly on all disks, can be shown to achieve near-
optimal reduction in disk stall time.1 Further, where the pages
to be evicted will not be referenced until significantly later, if ever,
aggressive prefetching's drawback of less accurate cache replace-
ment decisions is relatively unimportant. Little harm results from
displacing these pages aggressively in order to gain the benefits of
prefetching.2

There are two other important reasons to prefetch aggressively
into global memory. First, pressure onlocal memory is signifi-
cantly reduced through aggressive global prefetching. Indeed, the
times at which the local prefetch predicate for a process is true
depends directly on how many of the process' missing pages are
in global memory (as opposed to disk); the greater the fraction
of missing pages that are in global memory, thelater the times at
which the predicate will first be true. Delaying the times at which
the local prefetch predicate is true allows better replacements to be
made on a busy node running the hinted process, reducing unneces-
sary fetches and associated overhead on that node. Second, hinted
processes cannot rely on access to the full CPU and disk band-
width of idle nodes, because of competition with other prefetching
processes for these resources. Aggressive prefetching gives these
processes some leeway for dealing with this uncertainty whereas
more conservative global-memory prefetching could result in un-
necessary stall.

2.3.3 Allocating bu�ers among competing processes

Our assumption of complete advance knowledge of the combined
reference streams of the applications in the cluster allows us to view
each node as executing a single process. This simplifies the algo-
rithm and conceptual framework. In practice, any prefetching sys-
tem must allocate buffers among multiple independent processes
with differing hint capabilities.

Policies for allocating buffers among competing processes on
a single node have been extensively studied [27, 29, 8, 7]. These
studies show that proper buffer allocation among competing pro-
cesses on a single node must consider working set sizes, hinted
reference patterns, cache behavior of unhinted processes, variabil-
ity of inter-reference CPU times between different processes, the

1This is in sharp contrast to the case where different pages reside on different disks,
in which case aggressive prefetching can be far from optimal.

2It should also be noted that in contrast to the results of [29], a page cannot be
prefetched into global memory and then evicted before it is referenced: a page chosen
for prefetch into global memory is always the then soonest non-resident page to be
referenced by any process in the cluster, so the next global fault will not occur until
after that page is referenced.

prefetching and cache replacement policies used and processor
scheduling. For example, the benefit of the prefetch recommen-
dations made by hinted processes can be compared to the cost of
LRU cache replacement decisions for unhinted processes [27, 29].
An interesting direction for future research is to analyze these al-
gorithms in the context of a prefetching global memory system.

Processes on different nodes will also compete for global mem-
ory and prefetching resources. The prefetching system must simi-
larly allocate resources among competing nodes. As noted above,
the aggressive prefetching policy in PGMS reduces the impact of
this competition on individual prefetching processes, both by re-
ducing the likelihood of disk faults and by reducing the uncertainty
resulting from independent competing prefetching requests.

2.4 Summary

We have outlined an algorithm for prefetching and caching in
global memory systems. PGMS prefetches into local memory con-
servatively (delaying as long as possible) and into global mem-
ory aggressively. The objective of this two-pronged scheme is to
maintain valuable blocks in local memory, while sacrificing global
blocks to speedup prefetching. We make this tradeoff because it
has been shown that in a global memory system performance is
relatively insensitive to which of the oldest global pages are re-
placed [30]. Therefore, we replace the least valuable global pages
in order to reduce stall time through prefetching, without risking
local performance.The ability to make this tradeoff is the key ad-
vantage of combining prefetching and global memory.

3 Implementation

The previous section presented an idealized algorithm for prefetch-
ing in global memory systems. We now describe the prototype
PGMS implementation that approximates the ideal algorithm for
cooperative prefetching and caching. In brief, we implemented
PGMS by taking the Digital-UNIX-based GMS global memory
system [14], adding prefetching support, and then implementing an
approximation to the prefetching algorithm presented above. We
begin by giving an overview of GMS for background.

3.1 Overview of GMS

GMS is a global memory system for a clustered network of work-
stations. The goal of GMS is to use global memory to increase the
average performance of all cluster applications. Programs benefit
from global memory in two ways. First, on a page replacement,
the evicted page is sent to global memory rather than disk; a reload
of that page may therefore occur much faster. Second, programs
benefit from access to shared pages, which may be transferred over
the network rather than from disk.

GMS is implemented as a low-level operating system layer, un-
derneath both the file system and the virtual memory system. All
getpagerequests issued by both the VM and file systems to fetch
pages from long-term storage, and allputpagerequests issued to
send pages to long-term storage, are intercepted by GMS. Each
page in the GMS system has a network-wide unique ID, determined
by its location on disk (i.e., the UID consists of the IP address, de-
vice number, inode number, and block offset). GMS maintains a
distributed directory that when given the UID for a page, can lo-
cate that page in global memory, if it exists. The key structures
of that database are: (1) a per-nodepage-frame-directory(PFD)
that describes every page resident on the node, (2) a replicated
page-ownership-directory(POD) that maps a page UID to a man-
ager node responsible for maintaining location information about
that page, and (3) theglobal-cache-directory(GCD), a distributed
cluster-wide data structure that maps a UID into the IP address of
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a node caching a particular page. On agetpagerequest, GMS finds
the manager node for that page and sends a request to that node;
the manager checks whether that page is cached in the network,
and sends a message to the caching node if so, requesting that it
transfer the page to the original requester.

3.2 Mechanisms for implementing prefetching

PGMS extends the GMS implementation in three key ways. First,
PGMS adds operations for prefetching blocks into any node's
memory from disk or global memory. Second, PGMS modifies
GMS mechanisms for distributing and maintaining global page in-
formation. Third, the PGMS policy module follows a hinted appli-
cation through its predicted reference stream and uses epoch-based
prefetch information for scheduling prefetching operations. The
remainder of this section describes these three key aspects of our
implementation.

At the lowest level, prefetching in PGMS is handled by two
operations. Theprefetchto local operation prefetches a page into
local memory – if that page is in global memory, the page is
fetched over the network, otherwise it is read from local disk. The
prefetchto global operation prefetches into global memory from
the disk on the global node. In our current prototype, prefetched
files are replicated on the disks of multiple cluster nodes, thus al-
lowing each of these nodes to prefetch from the same file indepen-
dently. (Alternatively, the files could be striped across the disks.)

PGMS stores file replication information in a distributed direc-
tory called thefile-alias-directory(FAD). For each replicated file,
the FAD contains an entry that lists the IP address and local file
name for each node storing a replica. The FAD entry for a file is
stored on the manager node for the file's blocks (the FAD entry for
shared files is replicated on every manager node). The FAD serves
two key purposes: (1) PGMS uses the FAD to pick the nodes used
to prefetch a file, and (2) the FAD extends the GMS UID to per-
mit on-disk replication. While pages in GMS are named by a UID,
the UID does not allow a page to be replicated on multiple disk
locations, because each copy would be given a different name. In
PGMS, a replicated file is assigned a primary location that deter-
mines the UID assigned to each of its pages; the FAD is then used
in conjunction with the UID to support aliasing of a file to multiple
storage locations.

Figure 2 shows the communications and data structures for the
most general prefetch to global memory (a shared page). The
thin arrows show the actions performed when node A issues a
prefetchto global request. The request is first directed to the
page's managing node, which knows if and where the page is

cached in the network. If the page is not cached, PGMS picks
the prefetching node from among the idle nodes that replicate the
page's backing file. When a node receives a prefetch request, it
reads the page from disk and caches the page in its own memory
(as illustrated by node C in Figure 2).

The thick arrows show the actions performed later when the
page is prefetched from global memory on node C to local memory
on node A. Both actions must pass through the manager, because
in the interim the global page may have moved.

3.3 Approximating the prefetching and caching algorithm

Our goal in approximating the algorithm of Section 2 is to provide
a reasonable tradeoff between accuracy and efficiency. The key
issue is guaranteeing the validity of global knowledge used by the
algorithm and deciding when it must be updated.

We give only a high-level description of our algorithm approx-
imation here due to length considerations. Our approach is similar
to that used in GMS. The algorithm divides time intoepochs, where
each epoch has a maximum durationT (in practice,T is between 5
and 10 seconds). A coordinator node is responsible for collecting
and distributing global information at the beginning of each epoch;
the coordinator for the next epoch is elected as the “least loaded”
node at the start of the current epoch.

At the start of the epoch, each node sends to the coordinator its
CPU load and a summary of itsbuffer values. The CPU load on a
node is an estimate of the CPU utilization seen by locally running
processes. The value of a buffer, or equivalently the value of a
page, is an estimate of the time until the next reference to the page
stored in that buffer. The time until the next reference to a page is
estimated on a per-process basis as follows. Future inter-reference
CPU time is estimated from inter-reference CPU times measured
in the recent past scaled by the percentage of time that the process
was scheduled on the processor. The estimated time until the next
reference to a hinted page is then the number of hinted references
preceding it multiplied by the estimated future inter-reference CPU
time. For unhinted processes, the time until the next reference to a
page is estimated to be the time since the previous reference.

Using the information collected and the recent rates of evic-
tions and prefetches, the coordinator computes a weightwi for each
node, representing the number of buffers on nodei that are can-
didates for replacement by global prefetch requests and putpages
(evictions) from other nodes during the epoch. Nodes whose CPUs
are fully utilized are assigned awi value of 0, regardless of whether
or not they have buffers of low value. The coordinator also deter-
mines the maximum buffer value,MaxValue, that will be replaced
in the new epoch. To start the epoch, the coordinator sends the
weight vectorswi, and the valueMaxValue, to all nodes in the clus-
ter. The epoch terminates when either (1) the duration of the epoch,
T , has elapsed, (2)

P
i
wi global pages have been replaced, or (3)

the buffer value information is detected to be inaccurate.
During the epoch, nodes perform replacement and prefetching

as follows:

� Replacements:When a page on a node must be replaced,
the node selects its least-valuable page,p, for eviction. The
node then forwardsp to nodei, wherep becomes a global
page ini's memory, replacingi's least valuable page. The
target nodei is chosen with probability proportional towi=N
(N =

P
i
wi). (If p is a shared page and a copy exists in

another node's local memory, thenp is simply discarded.)
Roughly then, over an epoch the system will replace theN
least valuable pages in the network.

� Prefetching into local memory: For each nodej, whenever
the prefetch predicate for a hinted process onj is true, and
there are buffers onj of lower value than the ones that it



wishes to consume for prefetching, the node issues prefetch
requests, replacing its least-valuable pages.

� Prefetching into global memory: Processes running on
each node,j, issue requests in round-robin order to other
nodesk with wk > 0 and request prefetches into global
memory on their behalf. The request includes an estimate
of the value of each page to be prefetched. To avoid global-
memory thrashing, the system limits each node toB simul-
taneous outstanding disk prefetch requests, whereB is a sys-
tem parameter (we setB = 8 in our prototype). A node with
fewer thanB outstanding requests may issue a new batch of
global prefetch requests.

A given nodek may receive several competing disk-to-global
prefetch requests from other nodes. It initiates the prefetch
request for the pagep of highest value and, upon initiation
of the prefetch, sends an acknowledgement to the request-
ing processor, say nodej. This enables nodej to update its
hinted reference stream to indicate thatp will soon be stored
in global memory. The acknowledgement is also used to in-
form nodej how many of thewk low-value buffers have not
yet been replaced.

Thewi values determine the rate at which global prefetch re-
quests and evictions to global memory arrive at nodei. We choose
these values to meet two goals. First, we wish to minimize the over-
head on each node due to global memory requests and to balance
this load across the various nodes in the network. Load balance is
important for global prefetching in order to achieve a high degree
of I/O parallelism. Second, we wish to ensure that buffers sup-
plied for eviction to global memory and global prefetching are of
sufficiently low value, so that we do not replace useful data. This
is particularly important for limiting any negative impact from ag-
gressive or speculative prefetching into global memory.

4 Performance Measurements and Analysis

This section presents the measured performance of the PGMS sys-
tem. We begin with low-level measurements of the implementa-
tion, and then present the performance of the prefetching mecha-
nisms for several workloads. We then examine the performance
characteristics of various aspects of PGMS in detail, using a ren-
dering application as an example.

4.1 Experimental testbed

All measurements are from 266 MHz DEC AlphaStation 500 (Al-
cor) systems running Digital Unix 4.0, connected by a 1.28 Gb/s
Myrinet network [5]. All nodes in each experiment use M2F-
PCI32 (LANai-4) Myrinet adapters attached to a full-crossbar SW8
Myrinet switch. The disks from which all experimentes are per-
formed are 7200 RPM ST32171W Seagate Barricuda drives. Pages
and file blocks are 8KB, and reading a random 8KB page from disk
takes an average of 13ms.

For optimum network performance we used Trapeze [31, 2]
firmware for the Myrinet adapters. Trapeze uses an adaptive mes-
sage pipelining technique called cut-through delivery [31] to mini-
mize transfer latencies on the network in a manner similar to GMS
subpages [20]. Using Trapeze, GMS can perform an 8KB page
fault from remote memory in 165�s on platforms capable of deliv-
ering the full bandwidth of the 33 MHz 32-bit PCI bus. The Alcor
is limited to 66 MB/s in the receiving direction, which increases
raw page transfer times to 187�s. Including the PGMS overhead
of generating a request and processing the reply, a global-to-local
prefetch takes 370�s.

Operation Node Time (�s)
CPU Net Total

Request Requester 67.9 — 67.9
Manager 53.9 35 88.9

Prefetch Prefetcher 46.3 187 233.3
Receive Requester 22.3 — 22.3
Access Requester 153 — 153

Table 1: Micro measurement ofprefetchto local() operation (me-
dian times from 50 iterations). Note that, due to pipelining effects,
the requester and prefetcher overlap part of their overheads.

Operation Node Time (�s)
CPU Net Total

Request Requester 7.6 — 7.6
Manager 40 35 75

Prefetch Prefetcher 146 — 146

Table 2: Micro measurement of theprefetchto global() operation
(median times from 50 iterations). Note that the prefetch request
sent to the prefetcher is an asynchronous operation.

4.2 Microbenchmarks

Tables 1 and 2 detail the costs of the PGMS prefetching oper-
ations for the common case where the requester and manager are
the same node. For aprefetchto local that returns a page from
global memory, the times are divided into four components: is-
suing the prefetch request to the manager and target nodes (Re-
quest), processing the message and sending the prefetched page to
the requester (Prefetch), receiving the page (Receive), andAccess,
the time to install the page in the local page map (as is normal
for any read). In our PGMS experiments, allputpageandgetpage
operations (includingprefetchto local) copy the page once on the
client; these copies can be eliminated with an optimization [2]. The
prefetchto global operation has two components: the time to gen-
erate the prefetch request (Request), and the time to initiate the disk
request into remote host memory and process it when it completes
(Prefetch). Where appropriate, the values are broken into the CPU
overhead for each node (CPU), the overhead and latency of com-
munication (Net), and the total overhead and latency (Total).

4.3 Application-level performance of PGMS

To characterize the application-level performance of PGMS un-
der a wide range of workloads, we hinted a number of synthetic
benchmarks and real applications and ran them on the PGMS pro-
totype. We measured the following programs:

OO7 is an object-oriented database benchmark that builds and tra-
verses a parts-assembly database [10]. Our experiments tra-
verse an existing 100MB database mapped into memory, ac-
cessing approximately 65MB of data.

Render is a display engine that renders a computer-generated
scene from a pre-computed 178MB database of tracing
data [11]. Our experiments perform a sequence of operations
to move the viewpoint progressively closer to the scene with-
out changing the viewpoint angle, accessing approximately
100MB of data.

Hotcold accesses 512 random pages from a 20MB “hot” mapped
file region, then 256 random pages from a 80MB “cold” re-
gion, and repeats for 20 phases. Every group of four pages
read are accessed sequentially.
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Figure 3: Application speedup on GMS and PGMS

Random randomly accesses all of the pages of a 100MB file.

Reverse sequentially reads a 100MB file in reverse.

The synthetic benchmarks first issue hints to inform the kernel
of the pages or blocks they will access. In the experiments pre-
sented here, each benchmark computes for 250�s between each
page or block access. To explore the effects of data reuse in the
synthetic file benchmarks, we also measured “cyclic” variants that
access their data sets three times before terminating.

Figure 3 shows the speedup of the synthetic benchmarks and
applications on clusters ranging from 1 to 5 nodes. The top graph
shows the speedup of the applications and synthetic benchmarks;
the bottom graph shows the speedup of the benchmarks run cycli-
cally. The speedups are relative to performance on a single node
with no global memory and no prefetching other than the Digital
Unix readahead mechanism for files accessed sequentially. All pro-
grams run on a single node with 64MB of memory, about 32MB of
which is available for prefetching and caching. The other nodes in
the cluster are idle and act as memory and disk servers, each again
with about 32MB of available global memory and a single disk.
For comparison, we also show performance under GMS (dashed
curves).

For these applications, PGMS achieves speedups of 4 to 7 on 5
nodes. Using the Render application as an example, the Y intercept
on the Render curve (Number of Nodes = 1) is the speedup for
a single isolated node that is prefetching from its local disk only.
In this case, we see that local-disk prefetching achieves a speedup
of 1.6 over the non-prefetching version of the application. The 2-
, 3-, 4-, and 5-node measurements show what happens as we add
1, 2, 3, and 4 idle nodes to the network, respectively. The curve
demonstrates that PGMS is able to achieve nearly linear speedup
when up to 4 idle nodes are used to service a memory-intensive
application. With 4 idle nodes, PGMS achieves a speedup of 4.9
over a non-prefetching version of Render and 3.1 over a single node
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Figure 4: Speedup of Render application on PGMS

with local-disk prefetching. Although we were not able to perform
the bulk of our experiments on a cluster larger than 5 nodes, we did
investigate Render on larger clusters and found that its performance
levels off at a speedup of 5.6 on 7 nodes.

Comparing the GMS and PGMS lines, we see that GMS
achieves moderate speedups when the benchmarks access their data
cyclically, yielding hits in global memory as pages are reused.
However, parallel prefetching allows PGMS to achieve significant
speedup for both non-cyclic and cyclic data access.

A common workload absent from these graphs is a sequential
benchmark. Digital Unix and the Alpha I/O hardware is heavily op-
timized for sequential access, doing clustered readahead prefetches
that provide user-level bandwidths of up to 8.3MB/s on our hard-
ware. The PGMS prototype currently does not take advantage of
these optimizations, and as a result performs no better than Digital
Unix when doing sequential accesses.

The following sections focus on the behavior of a single appli-
cation, Render, to examine the performance characteristics of var-
ious aspects of PGMS in detail. We chose Render because of its
data size and relatively complex data access pattern. Render is a
difficult application for global memory systems because of its large
number of cold misses and its poor data locality, which reduces the
value of both local and global data caching.

4.4 Performance breakdown of prefetch types

Figure 4 shows the performance of the hinted Render application
with various prefetching options. The top curve shows the speedup
of Render under PGMS relative to its performance on a single node
with neither prefetching nor global memory, as described in the
previous section.

The bottom curve of Figure 4 shows the performance of Render
under raw GMS, i.e., global memory is used only to hold pages
evicted from the active node's memory, without PGMS prefetching.
No prefetching of any type is performed. With 4 idle nodes, full
PGMS outperforms GMS by a factor of 2.8 for this application.

The middle curves show the effect of selectively enabling both
types of PGMS prefetching in order to quantify the performance
contribution of each type. The second curve from the bottom shows
that adding local-disk prefetching to the basic GMS system im-
proves performance by approximately 57% on a single node. As
idle nodes are added to cache evicted pages, the speedup increases
linearly. This second curve uses no global-to-local prefetching:
page fetches from global memory are demand faulted, as in the
original GMS. The third curve from the bottom, which nearly over-
laps the second, shows that enabling global-to-local prefetching
provides only slight benefit. This is for two reasons. First, global
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memory holds only evicted pages, and the GMS curve (bottom
curve) shows that the benefit of caching evicted pages for Render is
modest. Second, global memory faults using Trapeze/Myrinet are
very fast relative to a disk access, reducing the I/O stall time to be
saved by prefetching from global memory to local memory.

Finally, the top two curves show the large gains from adding
disk-to-global prefetching in PGMS. The second curve from the
top uses disk-to-global prefetching, but without global-to-local
prefetching. This configuration suffers the cost of demand faults
from global memory; however, global memory is used more effec-
tively as a buffer for parallel prefetching of disk data ahead of its
access. Thus, the benefit relative to the previous curve (with global-
to-local prefetching but without disk-to-global prefetching) comes
from replacing disk stalls with global memory stalls. The top curve
shows the final performance improvement from eliminating most of
these global stalls with global-to-local prefetching. Again, the in-
cremental gains from global-to-local prefetching are much smaller
than the gains from using global memory on a fast network to begin
with.

4.5 Detailed breakdown of prefetch types

Figure 5 shows a detailed breakdown of the total number of fetches
performed in the 1- through 5-node cases for each of the configura-
tions shown in Figure 4, in order from fastest (on the left) to slowest
(on the right). For each prefetch type we show counts of both the
prefetch requests that arrived in time to avoid a stall (prefetches)
and those that did not (stalls).

Note that the height of each bar shows the number of fetches,
and not performance. In particular, the different bar components
have different performance costs, and some blocks are fetched
twice in the faster PGMS configurations: once from disk into global
memory, and once from global memory to local memory. The three
rightmost sets of bars show the slower configurations with no disk-
to-global prefetching, counting only fetches into the active node's
memory. Since the size of the active node's memory is the same
across all experiments, the total number of fetches remains con-
stant. The two leftmost sets of bars show additional fetches result-
ing from PGMS disk-to-global prefetching.

The rightmost set of bars shows Render's performance on raw
GMS. Render's working set is sufficiently large and its locality suf-
ficiently poor that the addition of the first idle node does not yield
any hits in the global cache; i.e., none of the pages evicted from lo-
cal memory and cached in global memory are accessed again before
being evicted from global memory. With the addition of the second
idle node, the size of the global cache grows enough to eliminate
some disk stalls.
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Figure 6: Execution time detail for Render

The next two sets of bars from the right show the effects of
adding disk-to-local and global-to-local prefetching to GMS, re-
spectively. The second set of bars from the right show that the
addition of local disk prefetching to GMS eliminates many of the
local disk stalls not already eliminated by the global cache. This is
in part because of the large number of cold misses in our Render
test. The middle set of bars show that the addition of global-to-local
prefetching eliminates all of the remaining stalls on global memory
fetches, improving performance further.

The leftmost two sets of bars show the effect of adding disk-
to-global prefetching, in order to benefit from the combined effects
of global memory and I/O parallelism from the use of disks on
the added nodes. As nodes are added, disk-to-local prefetches and
stalls are reduced to their lowest levels, replaced by disk-to-global
and global-to-local fetches. In the leftmost set, for full PGMS, the
global-to-local fetches are prefetched, eliminating all but a few I/O
stalls occurring at the start of the experiment. With 4 nodes, global
memory is large enough to store Render's entire data set, and the
number of disk-to-global prefetches drops significantly, leading to
a reduction in the total number of fetches performed.

4.6 Elapsed time breakdown

Figure 6 shows a breakdown of the execution time for Render on
the active node under full PGMS as a function of the number of
nodes cooperating. The user CPU time component is constant since
the program executes the same computation in all configurations;
our prefetching techniques only reduce I/O stall time. In the first
bar, we see that, despite prefetching from the local disk, stall time
is substantial on a single node. Adding additional nodes reduces
stall time enormously, in exchange for a small increase in system
time that includes the time spent in the PGMS prefetching code and
the network driver.

Figure 7 gives more insight into Render's behavior by showing
the causes of the PGMS prefetch requests. For a single node, disk
fetches occur for two reasons: the cold misses are the unavoidable
disk reads for the first access to each block in the dataset, while
capacity misses are caused by insufficient memory to cache the en-
tire dataset. Capacity misses are unchanged when a second node is
added, since (as previously noted) the second node provides insuf-
ficient global memory to deliver global cache hits given Render's
working set size and locality. However, with the second node these
capacity misses now result in disk-to-global rather than disk-to-
local prefetches, followed by global-to-local prefetches as shown
in the top portion of the second bar. As additional nodes are added
there is sufficient global memory to reduce capacity misses, and
the count of global-to-local prefetches rises due to effective GMS
caching of evicted pages in the idle cluster memory.
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4.7 The impact of global memory size

A key question in global memory systems is the tradeoff between
adding more global memory to an existing node vs. adding more
nodes. To explore this tradeoff, we ran an additional set of experi-
ments, shown in Figure 8. The lower curve shows the PGMS data
previously presented; in these measurements, each idle node added
an additional 32MB of global memory to the cluster. In the new
experiment shown by the upper curve in Figure 8, we kept global
memory size constant, independent of the number of idle nodes
(i.e., total global memory size was always 128MB, divided evenly
among the idle nodes). Comparison of pointsa andc shows that
increasing memory on the single idle node (by 96MB) had a sub-
stantial performance impact, improving speedup by 48%. With 2
idle nodes (pointsb and d), increasing global memory size from
64MB to 96MB improved speedup by 28%. These improvements
are not surprising, given what we've seen of Render's locality. By
comparing pointsaandb, we can isolate the impact of an additional
CPU and disk, independent of global memory size. In this case, we
see an improvement of 23% due to the additional parallelism and
bandwidth added by that CPU and disk resource. Thus, speedup in
PGMS is caused both by the addition of global memory and by the
additional parallelism provided by idle nodes. The exact benefit of
either will of course depend on the nature of the applications.

4.8 Interaction of competing processes

It is interesting to examine the effect of prefetching when a
prefetching process competes for resources. The left side of Fig-
ure 9 shows the effect of running two competing processes simul-
taneously on the same node. In one case we run two unhinted Ren-

0

50

100

150

200

250

300

350

400

un
hin

te
d

un
hin

te
d

un
hin

te
d

hin
te

d

un
hin

te
d

un
hin

te
d

un
hin

te
d

hin
te

d

E
la

p
se

d
 T

im
e 

(s
)

Same Active Node Separate Active Nodes

Figure 9: Elapsed times for two Render processes executing simul-
taneously.

ders; in the other case we run one hinted and one unhinted Render.
There is one idle node in the system, and thus the two processes in
each case are competing for both local and global resources. The
line on the bars shows the performance for each application when
running standalone in the same configuration. (While we showed
two instances of the same program in Figure 9, experiments using
different programs show similar results.)

Running the two unhinted applications together takes longer
than running them sequentially, i.e., they suffer from the competi-
tion for memory and disk, causing each to run slower than 2 times
its single-node time. Running the unhinted application along with
a hinted application reduces its execution time substantially (com-
pared to the previous example); in this case the hinted process is es-
sentially unaffected by the unhinted process and completes quickly,
leaving all of local and global memory for the unhinted process to
use. The result is nearly optimal, as in shortest-job-first scheduling.

The right side of Figure 9 shows two similar experiments, how-
ever in this case each application runs on a different active node;
they again share a single idle node, and thus they compete for
global memory only. For the two unhinted applications running
simultaneously, the elapsed time of each of the processes is within
1% of the elapsed time of an unhinted process running by itself in
a system with one idle node with half the global memory, i.e., the
sharing of the idle node is nearly perfect. For the hinted/unhinted
experiment the results are similar to the single-node case; the hinted
application finishes quickly, leaving the global resources to the un-
hinted application, which finishes relatively quickly afterwards.

4.9 Summary

In this section we presented measurements of Render in various
system configurations. From these measurements we saw the fol-
lowing results for this application:

1. Global prefetching and caching can provide significant
speedup over local-disk prefetching alone.

2. Disk-to-global prefetches can substantially improve perfor-
mance by adding additional disk parallelism, and by turning
disk misses into global memory fetches, which have much
lower latency.

3. Compared to prefetches from disk, global-to-local prefetches
are less significant because global fetch time is small (and
shrinking with newer network technologies).

4. For some applications, increasing global memory size may
have more impact than adding processors.



5. Running hinted and unhinted applications together does no
harm to the unhinted application (when compared to running
with another unhinted program). Hinted applications make
more effective use of resources.

6. Applications experience both cold misses and capacity
misses, depending on the memory requirements of the appli-
cation and the configuration of the system. Caching in global
memory reduces the cost of capacity misses; prefetching re-
duces the cost of both cold and capacity misses. The Render
application that we used has a large number of cold misses,
and thus is aided more by prefetching than global memory
caching.

Taken together, these results show the advantages of combining
prefetching and global memory in a cluster.

5 Comparison to Previous Work

Our work unites several independent threads of previous research in
prefetching, global memory systems, and network I/O. We describe
below key research efforts in these areas and briefly contrast our
efforts with those.

Early studies showed the possibility of remote paging using
dedicated or temporary paging servers [12, 15, 19]. More recent
efforts have examined the use of network memory in more dynamic
environments. Dahlin et al. [13] describe the use of remote memory
in the XFS file system, which permits file system clients to benefit
both from idle memory and shared file pages on other nodes. The
GMS system described by Feeley et al. [14] places a global memory
layer underneath both the file and virtual memory systems, which
allows both to benefit transparently from “old” pages in the net-
work. Sarkar and Hartman [28] showed how hints could be used to
approximate global information in remote memory systems such as
GMS and XFS. Franklin et al. [16] evaluate a client-server DBMS
system in which the server can fetch requested data from clients'
memories. In all of these systems, applications benefit from shared
data that exists in global memory, or from evicting pages to global
memory. Our work builds on systems like XFS and GMS. In con-
trast, however, PGMS uses idle cycles on network node to aggres-
sively prefetch data for future requests into global memory, in or-
der to reduce future stalls. This greatly increases the total hardware
bandwidth (CPU, network, disk, and memory) available to highly-
active applications.

Several studies of prefetching considered file system resource
management for a single processor with a parallel disk array
when application-disclosed access patterns (hints) are available.
Researchers have shown that many I/O-intensive applications
have predictable access patterns and can therefore provide such
hints [27, 1, 23], while Mowry et al. [25] showed that the com-
piler can automatically generate hints. Patterson et al. [27] manage
allocation of cache space and I/O bandwidth between multiple pro-
cesses, a subset of which are hinted; they apply cost-benefit anal-
ysis to estimate the impact of alternative buffer allocations. Cao
et al. [7] considered the integration of prefetching, caching, and
disk scheduling in the single-disk case; their Aggressive prefetch-
ing strategy is provably near-optimal for a single disk [6], but can
be suboptimal for data striped across multiple disks [21]. Kim-
brel et al. [22] studied combined prefetching and caching strategies
for multiple-disk systems executing a single process; their Fore-
stall algorithm adapts the aggressiveness of prefetching to the ex-
tent to which performance is limited by I/O stalls. Tomkins et
al. [29] compared the performance of the LRU-SP algorithm [8, 7]
and cost-benefit algorithms for allocating I/O and cache resources
among prefetching and non-prefetching processes. PGMS builds
on several of these results, in particular, Cao et al.'s Aggressive

algorithm and Kimbrel et al.'s Forestall algorithm. PGMS differs
from all of this work, however, in that it performs prefetching in
the context of a three-level storage hierarchy (local memory, global
memory, and disk), and attempts to benefit from the parallelism
available on multiple nodes and disks in the network.

Finally, efforts such as Zebra [18], TickerTAIP [9], and XFS [3]
use multiple nodes to increase parallelism for remote file access.
PGMS differs from these in its use of active prefetching and
caching into remote memory.

6 Conclusions

This paper presented PGMS, a system using cooperative prefetch-
ing and caching in a network-wide global memory system. Coop-
erative prefetching permits multiple network nodes with idle CPU
cycles and memory pages to cooperate in prefetching on behalf of
active nodes. This prefetching to global memory can reduce stall
time without the risks of aggressive prefetching on the active nodes.

We have developed a hybrid algorithm for PGMS that combines
aggressive prefetching into global memory with more conservative
prefetching into local memory. We designed and implemented an
approximation to that algorithm on the Digital UNIX operating sys-
tem running on a small cluster of Myrinet-connected DEC Alpha
workstations. Our results show that significant speedups can be
achieved using cooperative prefetching for memory-bound applica-
tions. As well, we quantify the impact of various types of prefetch-
ing: disk-to-local, disk-to-global, and global-to-local.

As network technology advances, we expect that the ratio be-
tween disk and network transfer times will continue to increase,
and therefore using network resources to reduce the I/O bottleneck
will be even more crucial in future generations. The PGMS experi-
ments show how the integration of prefetching and global memory
technologies permits multiple idle network resources to be used in
parallel to benefit memory-bound jobs on active nodes in the clus-
ter.
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