
Flash: An e�cient and portable Web server �

Vivek S. Paiz Peter Druschely Willy Zwaenepoely

z Department of Electrical and Computer Engineering
y Department of Computer Science

Rice University

Abstract

This paper presents the design of a new Web
server architecture called the asymmetric multi-
process event-driven (AMPED) architecture, and
evaluates the performance of an implementation of
this architecture, the Flash Web server. The Flash
Web server combines the high performance of single-
process event-driven servers on cached workloads
with the performance of multi-process and multi-
threaded servers on disk-bound workloads. Further-
more, the Flash Web server is easily portable since
it achieves these results using facilities available in
all modern operating systems.
The performance of di�erent Web server archi-

tectures is evaluated in the context of a single im-
plementation in order to quantify the impact of
a server's concurrency architecture on its perfor-
mance. Furthermore, the performance of Flash is
compared with two widely-usedWeb servers, Apache
and Zeus. Results indicate that Flash can match or
exceed the performance of existing Web servers by
up to 50% across a wide range of real workloads.
We also present results that show the contribution
of various optimizations embedded in Flash.

1 Introduction

The performance of Web servers plays a key role in
satisfying the needs of a large and growing commu-
nity of Web users. Portable high-performance Web
servers reduce the hardware cost of meeting a given
service demand and provide the
exibility to change
hardware platforms and operating systems based on
cost, availability, or performance considerations.
Web servers rely on caching of frequently-

requested Web content in main memory to achieve
throughput rates of thousands of requests per sec-
ond, despite the long latency of disk operations.
Since the data set size of Web workloads typically
exceed the capacity of a server's main memory, a
high-performance Web server must be structured

�To appear in Proc. of the 1999 Annual Usenix Technical

Conference, Monterey, CA, June 1999.

such that it can overlap the serving of requests for
cached content with concurrent disk operations that
fetch requested content not currently cached in main
memory.

Web servers take di�erent approaches to achiev-
ing this concurrency. Servers using a single-process
event-driven (SPED) architecture can provide excel-
lent performance for cached workloads, where most
requested content can be kept in main memory.
The Zeus server [32] and the original Harvest/Squid
proxy caches employ the SPED architecture1.

On workloads that exceed that capacity of the
server cache, servers with multi-process (MP) or
multi-threaded (MT) architectures usually perform
best. Apache, a widely-used Web server, uses the
MP architecture on UNIX operating systems and
the MT architecture on the Microsoft Windows NT
operating system.

This paper presents a new portable Web server
architecture, called asymmetric multi-process event-
driven (AMPED), and describes an implementation
of this architecture, the Flash Web server. Flash
nearly matches the performance of SPED servers on
cached workloads while simultaneously matching or
exceeding the performance of MP and MT servers
on disk-intensive workloads. Moreover, Flash uses
only standard APIs and is therefore easily portable.

Flash's AMPED architecture behaves like a single-
process event-driven architecture when requested
documents are cached and behaves similar to a
multi-process or multi-threaded architecture when
requests must be satis�ed from disk. We qualita-
tively and quantitatively compare the AMPED ar-
chitecture to the SPED, MP, and MT approaches
in the context of a single server implementation. Fi-
nally, we experimentally compare the performance of
Flash to that of Apache and Zeus on real workloads
obtained from server logs, and on two operating sys-
tems.

The rest of this paper is structured as follows: Sec-

1Zeus can be con�gured to use multiple SPED processes,

particularly when running on multiprocessor systems

Read
Request

Find
File

Read File
Send DataStart EndAccept

Conn
Send
Header

Figure 1: Simpli�ed Request Processing Steps

tion 2 explains the basic processing steps required
of all Web servers and provides the background for
the following discussion. In Section 3, we discuss the
asynchronous multi-process event-driven (AMPED),
the single-process event-driven (SPED), the multi-
process (MP), and the multi-threaded (MT) archi-
tectures. We then discuss the expected architecture-
based performance characteristics in Section 4 be-
fore discussing the implementation of the Flash Web
server in Section 5. Using real and synthetic work-
loads, we evaluate the performance of all four server
architectures and the Apache and Zeus servers in
Section 6.

2 Background

In this section, we brie
y describe the basic pro-
cessing steps performed by an HTTP (Web) server.
HTTP clients use the TCP transport protocol to
contact Web servers and request content. The client
opens a TCP connection to the server, and transmits
a HTTP request header that speci�es the requested
content.
Static content is stored on the server in the form

of disk �les. Dynamic content is generated upon
request by auxiliary application programs running
on the server. Once the server has obtained the
requested content, it transmits a HTTP response
header followed by the requested data, if applicable,
on the client's TCP connection.

For clarity, the following discussion focuses on
serving HTTP/1.0 requests for static content on a
UNIX-like operating system. However, all of the
Web server architectures discussed in this paper
are fully capable of handling dynamically-generated
content. Likewise, the basic steps described below
are similar for HTTP/1.1 requests, and for other op-
erating systems, like Windows NT.

The basic sequential steps for serving a request for
static content are illustrated in Figure 1, and consist
of the following:

Accept client connection - accept an incoming
connection from a client by performing an accept

operation on the server's listen socket. This cre-
ates a new socket associated with the client connec-
tion.

Read request - read the HTTP request header
from the client connection's socket and parse the

header for the requested URL and options.

Find �le - check the server �lesystem to see if the
requested content �le exists and the client has appro-
priate permissions. The �le's size and last modi�ca-
tion time are obtained for inclusion in the response
header.

Send response header - transmit the HTTP re-
sponse header on the client connection's socket.

Read �le - read the �le data (or part of it, for larger
�les) from the �lesystem.

Send data - transmit the requested content (or part
of it) on the client connection's socket. For larger
�les, the \Read �le" and \Send data" steps are re-
peated until all of the requested content is transmit-
ted.

All of these steps involve operations that can po-
tentially block. Operations that read data or accept
connections from a socket may block if the expected
data has not yet arrived from the client. Opera-
tions that write to a socket may block if the TCP
send bu�ers are full due to limited network capacity.
Operations that test a �le's validity (using stat())
or open the �le (using open()) can block until any
necessary disk accesses complete. Likewise, read-
ing a �le (using read()) or accessing data from a
memory-mapped �le region can block while data is
read from disk.

Therefore, a high-performance Web server must
interleave the sequential steps associated with the
serving of multiple requests in order to overlap CPU
processing with disk accesses and network commu-
nication. The server's architecture determines what
strategy is used to achieve this interleaving. Di�er-
ent server architectures are described in Section 3.

In addition to its architecture, the performance of
a Web server implementation is also in
uenced by
various optimizations, such as caching. In Section 5,
we discuss speci�c optimizations used in the Flash
Web server.

3 Server Architectures

In this section, we describe our proposed asym-
metric multi-process event-driven (AMPED) archi-
tecture, as well as the existing single-process event-
driven (SPED), multi-process (MP), and multi-
threaded (MT) architectures.

Read
Request

Find
File

Read File
Send Data

Get
Conn

Read
Request

Find
File

Read File
Send Data

Accept
Conn

Get
Conn

Send
Header

Process 1

Read
Request

Find
File

Read File
Send Data

Get
Conn

Read
Request

Find
File

Read File
Send Data

Accept
Conn

Get
Conn

Send
Header

Process N

Figure 2: Multi-Process - In the MP model, each
server process handles one request at a time. Pro-
cesses execute the processing stages sequentially.

3.1 Multi-process

In the multi-process (MP) architecture, a process
is assigned to execute the basic steps associated with
serving a client request sequentially. The process
performs all the steps related to one HTTP request
before it accepts a new request. Since multiple pro-
cesses are employed (typically 20-200), many HTTP
requests can be served concurrently. Overlapping of
disk activity, CPU processing and network connec-
tivity occurs naturally, because the operating sys-
tem switches to a runnable process whenever the
currently active process blocks.
Since each process has its own private address

space, no synchronization is necessary to handle the
processing of di�erent HTTP requests2 . However,
it may be more di�cult to perform optimizations
in this architecture that rely on global information,
such as a shared cache of valid URLs. Figure 2 il-
lustrates the MP architecture.

3.2 Multi-threaded

Multi-threaded (MT) servers, depicted in Fig-
ure 3, employ multiple independent threads of con-
trol operating within a single shared address space.
Each thread performs all the steps associated with
one HTTP request before accepting a new request,
similar to the MP model's use of a process.
The primary di�erence between the MP and the

MT architecture, however, is that all threads can
share global variables. The use of a single shared
address space lends itself easily to optimizations that
rely on shared state. However, the threads must use
some form of synchronization to control access to
the shared data.
The MT model requires that the operating sys-

tem provides support for kernel threads. That is,
when one thread blocks on an I/O operation, other
runnable threads within the same address space

2Synchronization is necessary inside the OS to accept in-

coming connections, since the accept queue is shared

Read
Request

Find
File

Read File
Send Data

Get
Conn

Read
Request

Find
File

Read File
Send Data

Accept
Conn

Get
Conn

Send
Header

Figure 3: Multi-Threaded - The MT model uses
a single address space with multiple concurrent
threads of execution. Each thread handles a request.

must remain eligible for execution. Some operat-
ing systems (e.g., FreeBSD 2.2.6) provide only user-
level thread libraries without kernel support. Such
systems cannot e�ectively support MT servers.

3.3 Single-process event-driven

The single-process event-driven (SPED) architec-
ture uses a single event-driven server process to per-
form concurrent processing of multiple HTTP re-
quests. The server uses non-blocking systems calls
to perform asynchronous I/O operations. An oper-
ation like the BSD UNIX select or the System V
poll is used to check for I/O operations that have
completed. Figure 4 depicts the SPED architecture.

A SPED server can be thought of as a state ma-
chine that performs one basic step associated with
the serving of an HTTP request at a time, thus in-
terleaving the processing steps associated with many
HTTP requests. In each iteration, the server per-
forms a select to check for completed I/O events
(new connection arrivals, completed �le operations,
client sockets that have received data or have space
in their send bu�ers.) When an I/O event is ready, it
completes the corresponding basic step and initiates
the next step associated with the HTTP request, if
appropriate.
In principle, a SPED server is able to overlap the

CPU, disk and network operations associated with
the serving of many HTTP requests, in the context
of a single process and a single thread of control.
As a result, the overheads of context switching and
thread synchronization in the MP and MT architec-
tures are avoided. However, a problem associated
with SPED servers is that many current operating
systems do not provide suitable support for asyn-
chronous disk operations.
In these operating systems, non-blocking read

and write operations work as expected on network
sockets and pipes, but may actually block when used
on disk �les. As a result, supposedly non-blocking
read operations on �les may still block the caller
while disk I/O is in progress. Both operating sys-
tems used in our experiments exhibit this behav-
ior (FreeBSD 2.2.6 and Solaris 2.6). To the best of

Event Dispatcher

Read
Request
Read
Request

Find
File
Find
File

Get
Conn

Accept
Conn

Send Header
Read File
Send Data
Read File
Send Data

Send Header

Figure 4: Single Process Event Driven - The SPED
model uses a single process to perform all client pro-
cessing and disk activity in an event-driven manner.

our knowledge, the same is true for most versions of
UNIX.

Many UNIX systems provide alternate APIs that
implement true asynchronous disk I/O, but these
APIs are generally not integrated with the select

operation. This makes it di�cult or impossible to
simultaneously check for completion of network and
disk I/O events in an e�cient manner. Moreover,
operations such as open and stat on �le descriptors
may still be blocking.
For these reasons, existing SPED servers do not

use these special asynchronous disk interfaces. As
a result, �le read operations that do not hit in the
�le cache may cause the main server thread to block,
causing some loss in concurrency and performance.

3.4 Asymmetric Multi-Process Event-
Driven

The Asymmetric Multi-Process Event-Driven
(AMPED) architecture, illustrated in Figure 5, com-
bines the event-driven approach of the SPED archi-
tecture with multiple helper processes (or threads)
that handle blocking disk I/O operations. By de-
fault, the main event-driven process handles all pro-
cessing steps associated with HTTP requests. When
a disk operation is necessary (e.g., because a �le is
requested that is not likely to be in the mainmemory
�le cache), the main server process instructs a helper
via an inter-process communication (IPC) channel
(e.g., a pipe) to perform the potentially blocking op-
eration. Once the operation completes, the helper
returns a noti�cation via IPC; the main server pro-
cess learns of this event like any other I/O comple-
tion event via select.

The AMPED architecture strives to preserve the
e�ciency of the SPED architecture on operations
other than disk reads, but avoids the performance
problems su�ered by SPED due to inappropriate
support for asynchronous disk reads in many op-
erating systems. AMPED achieves this using only
support that is widely available in modern operat-
ing systems.

In a UNIX system, AMPED uses the standard
non-blocking read, write, and accept system calls

Event Dispatcher

Read
Request
Read
Request

Find
File
Find
File

Get
Conn

Accept
Conn

Send Header
Read File
Send Data
Read File
Send Data

Send Header

Helper 1 Helper 2 Helper k

Figure 5: Asymmetric Multi-Process Event Driven -
The AMPED model uses a single process for event-
driven request processing, but has other helper pro-
cesses to handle some disk operations.

on sockets and pipes, and the select system call to
test for I/O completion. The mmap operation is used
to access data from the �lesystem and the mincore
operation is used to check if a �le is in mainmemory.
Note that the helpers can be implemented either

as kernel threads within the main server process or
as separate processes. Even when helpers are imple-
mented as separate processes, the use of mmap allows
the helpers to initiate the reading of a �le from disk
without introducing additional data copying. In this
case, both the main server process and the helper
mmap a requested �le. The helper touches all the
pages in its memory mapping. Once �nished, it no-
ti�es the main server process that it is now safe to
transmit the �le without the risk of blocking.

4 Design comparison

In this section, we present a qualitative compar-
ison of the performance characteristics and possi-
ble optimizations in the various Web server archi-
tectures presented in the previous section.

4.1 Performance characteristics

Disk operations - The cost of handling disk activ-
ity varies between the architectures based on what,
if any, circumstances cause all request processing to
stop while a disk operation is in progress. In the
MP and MT models, only the process or thread that
causes the disk activity is blocked. In AMPED, the
helper processes are used to perform the blocking
disk actions, so while they are blocked, the server
process is still available to handle other requests.
The extra cost in the AMPED model is due to the
inter-process communication between the server and
the helpers. In SPED, one process handles all client
interaction as well as disk activity, so all user-level
processing stops whenever any request requires disk
activity.

Memory e�ects - The server's memory consump-
tion a�ects the space available for the �lesystem

cache. The SPED architecture has small mem-
ory requirements, since it has only one process and
one stack. When compared to SPED, the MT
model incurs some additional memory consumption
and kernel resources, proportional to the number of
threads employed (i.e., the maximal number of con-
currently served HTTP requests). AMPED's helper
processes cause additional overhead, but the helpers
have small application-level memory demands and a
helper is needed only per concurrent disk operation,
not for each concurrently served HTTP request. The
MP model incurs the cost of a separate process per
concurrently served HTTP request, which has sub-
stantial memory and kernel overheads.

Disk utilization - The number of concurrent disk
requests that a server can generate a�ects whether
it can bene�t from multiple disks and disk head
scheduling. The MP/MT models can cause one
disk request per process/thread, while the AMPED
model can generate one request per helper. In con-
trast, since all user-level processing stops in the
SPED architecture whenever it accesses the disk, it
can only generate one disk request at a time. As a
result, it cannot bene�t from multiple disks or disk
head scheduling.

4.2 Cost/Bene�ts of optimizations &
features

The server architecture also impacts the feasibility
and pro�tability of certain types of Web server op-
timizations and features. We compare the tradeo�s
necessary in the various architectures from a quali-
tative standpoint.

Information gathering - Web servers use informa-
tion about recent requests for accounting purposes
and to improve performance, but the cost of gather-
ing this information across all connections varies in
the di�erent models. In the MP model, some form of
interprocess communication must be used to consol-
idate data. The MT model either requires maintain-
ing per-thread statistics and periodic consolidation
or �ne-grained synchronization on global variables.
The SPED and AMPED architectures simplify infor-
mation gathering since all requests are processed in
a centralized fashion, eliminating the need for syn-
chronization or interprocess communications when
using shared state.

Application-level Caching - Web servers can em-
ploy application-level caching to reduce computation
by using memory to store previous results, such as
response headers and �le mappings for frequently re-
quested content. However, the cache memory com-
petes with the �lesystem cache for physical memory,

so this technique must be applied carefully. In the
MP model, each process may have its own cache
in order to reduce interprocess communication and
synchronization. The multiple caches increase the
number of compulsory misses and they lead to less
e�cient use of memory. The MT model uses a sin-
gle cache, but the data accesses/updates must be
coordinated through synchronization mechanisms to
avoid race conditions. Both AMPED and SPED can
use a single cache without synchronization.

Long-lived connections - Long-lived connections
occur in Web servers due to clients with slow links
(such as modems), or through persistent connections
in HTTP 1.1. In both cases, some server-side re-
sources are committed for the duration of the con-
nection. The cost of long-lived connections on the
server depends on the resource being occupied. In
AMPED and SPED, this cost is a �le descriptor,
application-level connection information, and some
kernel state for the connection. The MT and MP
models add the overhead of an extra thread or pro-
cess, respectively, for each connection.

5 Flash implementation

The Flash Web server is a high-performance im-
plementation of the AMPED architecture that uses
aggressive caching and other techniques to maximize
its performance. In this section, we describe the im-
plementation of the Flash Web server and some of
the optimization techniques used.

5.1 Overview

The Flash Web server implements the AMPED
architecture described in Section 3. It uses a single
non-blocking server process assisted by helper pro-
cesses. The server process is responsible for all in-
teraction with clients and CGI applications [26], as
well as control of the helper processes. The helper
processes are responsible for performing all of the
actions that may result in synchronous disk activ-
ity. Separate processes were chosen instead of kernel
threads to implement the helpers, in order to ensure
portability of Flash to operating systems that do not
(yet) support kernel threads, such as FreeBSD 2.2.6.
The server is divided into modules that perform

the various request processing steps mentioned in
Section 2 and modules that handle various caching
functions. Three types of caches are maintained:
�lename translations, response headers, and �le
mappings. These caches and their function are ex-
plained below.
The helper processes are responsible for perform-

ing pathname translations and for bringing disk

blocks into memory. These processes are dynami-
cally spawned by the server process and are kept in
reserve when not active. Each process operates syn-
chronously, waiting on the server for new requests
and handling only one request at a time. To min-
imize interprocess communication, helpers only re-
turn a completion noti�cation to the server, rather
than sending any �le content they may have loaded
from disk.

5.2 Pathname Translation Caching

The pathname translation cache maintains a
list of mappings between requested �lenames
(e.g., \/~bob") and actual �les on disk (e.g.,
/home/users/bob/public html/index.html). This
cache allows Flash to avoid using the pathname
translation helpers for every incoming request. It
reduces the processing needed for pathname trans-
lations, and it reduces the number of translation
helpers needed by the server. As a result, the mem-
ory spent on the cache can be recovered by the re-
duction in memory used by helper processes.

5.3 Response Header Caching

HTTP servers prepend �le data with a response
header containing information about the �le and
the server, and this information can be cached and
reused when the same �les are repeatedly requested.
Since the response header is tied to the underlying
�le, this cache does not need its own invalidation
mechanism. Instead, when the mapping cache de-
tects that a cached �le has changed, the correspond-
ing response header is regenerated.

5.4 Mapped Files

Flash retains a cache of memory-mapped �les to
reduce the number of map/unmap operations nec-
essary for request processing. Memory-mapped �les
provide a convenient mechanism to avoid extra data
copying and double-bu�ering, but they require ex-
tra system calls to create and remove the mappings.
Mappings for frequently-requested �les can be kept
and reused, but unused mappings can increase ker-
nel bookkeeping and degrade performance.
The mapping cache operates on \chunks" of �les

and lazily unmaps them when too much data has
been mapped. Small �les occupy one chunk each,
while large �les are split into multiple chunks. Inac-
tive chunks are maintained in an LRU free list, and
are unmapped when this list grows too large. We use
LRU to approximate the \clock" page replacement
algorithm used in many operating systems, with the
goal of mapping only what is likely to be in mem-
ory. All mapped �le pages are tested for memory
residency via mincore() before use.

5.5 Byte Position Alignment

The writev() system call allows applications
to send multiple discontiguous memory regions in
one operation. High-performance Web servers use
it to send response headers followed by �le data.
However, its use can cause misaligned data copy-
ing within the operating system, degrading perfor-
mance. The extra cost for misaligned data is pro-
portional to the amount of data being copied.
The problem arises when the OS networking code

copies the various memory regions speci�ed in a
writev operation into a contiguous kernel bu�er.
If the size of the HTTP response header stored in
the �rst region has a length that is not a multiple
of the machine's word size, then the copying of all
subsequent regions is misaligned.
Flash avoids this problem by aligning all response

headers on 32-byte boundaries and padding their
lengths to be a multiple of 32 bytes. It adds charac-
ters to variable length �elds in the HTTP response
header (e.g., the server name) to do the padding.
The choice of 32 bytes rather than word-alignment
is to target systems with 32-byte cache lines, as
some systems may be optimized for copying on cache
boundaries.

5.6 Dynamic Content Generation

The Flash Web server handles the serving of dy-
namic data using mechanisms similar to those used
in other Web servers. When a request arrives for a
dynamic document, the server forwards the request
to the corresponding auxiliary (CGI-bin) application
process that generates the content via a pipe. If a
process does not currently exist, the server creates
(e.g., forks) it.
The resulting data is transmitted by the server

just like static content, except that the data is read
from a descriptor associated with the CGI process'
pipe, rather than a �le. The server process allows the
CGI application process to be persistent, amortizing
the cost of creating the application over multiple re-
quests. This is similar to the FastCGI [27] interface
and it provides similar bene�ts. Since the CGI ap-
plications run in separate processes from the server,
they can block for disk activity or other reasons and
perform arbitrarily long computations without af-
fecting the server.

5.7 Memory Residency Testing

Flash uses the mincore() system call, which is
available in most modern UNIX systems, to deter-
mine if mapped �le pages are memory resident. In
operating systems that don't support this operation
but provide the mlock() system call to lock memory
pages (e.g., Compaq's Tru64 UNIX, formerly Digital

Unix), Flash could use the latter to control its �le
cache management, eliminating the need for memory
residency testing.
Should no suitable operations be available in a

given operating system to control the �le cache or
test for memory residency, it may be possible to use
a feedback-based heuristic to minimize blocking on
disk I/O. Here, Flash could run the clock algorithm
to predict which cached �le pages are memory res-
ident. The prediction can adapt to changes in the
amount of memory available to the �le cache by us-
ing continuous feedback from performance counters
that keep track of page faults and/or associated disk
accesses.

6 Performance Evaluation

In this section, we present experimental results
that compare the performance of the di�erent Web
server architectures presented in Section 3 on real
workloads. Furthermore, we present comparative
performance results for Flash and two state-of-the-
art Web servers, Apache [1] and Zeus [32], on syn-
thetic and real workloads. Finally, we present results
that quantify the performance impact of the various
performance optimizations included in Flash.
To enable a meaningful comparison of di�erent ar-

chitectures by eliminating variations stemming from
implementation di�erences, the same Flash code
base is used to build four servers, based on the
AMPED (Flash), MT (Flash-MT), MP (Flash-MP),
and SPED (Flash-SPED) architectures. These four
servers represent all the architectures discussed in
this paper, and they were developed by replacing
Flash's event/helper dispatch mechanism with the
suitable counterparts in the other architectures. In
all other respects, however, they are identical to the
standard, AMPED-based version of Flash and use
the same techniques and optimizations.
In addition, we compare these servers with two

widely-used production Web servers, Zeus v1.30 (a
high-performance server using the SPED architec-
ture), and Apache v1.3.1 (based on the MP archi-
tecture), to provide points of reference.
In our tests, the Flash-MP and Apache servers use

32 server processes and Flash-MT uses 64 threads.
Zeus was con�gured as a single process for the ex-
periments using synthetic workloads, and in a two-
process con�guration advised by Zeus for the real
workload tests. Since the SPED-based Zeus can
block on disk I/O, using multiple server processes
can yield some performance improvements even on
a uniprocessor platform, since it allows the overlap-
ping of computation and disk I/O.
Both Flash-MT and Flash use a memory-mapped

�le cache with a 128 MB limit and a pathname cache
limit of 6000 entries. Each Flash-MP process has a
mapped �le cache limit of 4 MB and a pathname
cache of 200 entries. Note that the caches in an MP
server have to be con�gured smaller, since they are
replicated in each process.

The experiments were performed with the servers
running on two di�erent operating systems, Solaris
2.6 and FreeBSD 2.2.6. All tests use the same
server hardware, based on a 333 MHz Pentium II
CPU with 128 MB of memory and multiple 100
Mbit/s Ethernet interfaces. A switched Fast Eth-
ernet connects the server machine to the client ma-
chines that generate the workload. Our client soft-
ware is an event-driven program that simulates mul-
tiple HTTP clients [3]. Each simulated HTTP client
makes HTTP requests as fast as the server can han-
dle them.

6.1 Synthetic Workload

In the �rst experiment, a set of clients repeatedly
request the same �le, where the �le size is varied in
each test. The simplicity of the workload in this test
allows the servers to perform at their highest capac-
ity, since the requested �le is cached in the server's
main memory. The results are shown in Figures 6
(Solaris) and 7 (FreeBSD). The left-hand side graphs
plot the servers' total output bandwidth against the
requested �le size. The connection rate for small
�les is shown separately on the right.

Results indicate that the choice of architecture has
little impact on a server's performance on a triv-
ial, cached workload. In addition, the Flash vari-
ants compare favorably to Zeus, a�rming the ab-
solute performance of the Flash-based implementa-
tion. The Apache server achieves signi�cantly lower
performance on both operating systems and over the
entire range of �le sizes, most likely the result of the
more aggressive optimizations employed in the Flash
versions and presumably also in Zeus.

Flash-SPED slightly outperforms Flash because
the AMPED model tests the memory-residency of
�les before sending them. Slight lags in the perfor-
mance of Flash-MT and Flash-MP are likely due to
the extra kernel overhead (context switching, etc.)
in these architectures. Zeus' anomalous behavior
on FreeBSD for �le sizes between 10 and 100 KB
appears to stem from the byte alignment problem
mentioned in Section 5.5.

All servers enjoy substantially higher performance
when run under FreeBSD as opposed to Solaris. The
relative performance of the servers is not strongly
a�ected by the operating system.

0 50 100 150 200
0

20

40

60

80

100

120

File size (KBytes)

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
Zeus
MT
MP
Apache

0 5 10 15 20
200

400

600

800

1000

1200

File size (kBytes)

C
on

ne
ct

io
n

ra
te

 (
re

qs
/s

ec
)

SPED
Flash
Zeus
MT
MP
Apache

Figure 6: Solaris single �le test | On this trivial test, server architecture seems to have little impact on
performance. The aggressive optimizations in Flash and Zeus cause them to outperform Apache.

0 50 100 150 200
0

50

100

150

200

250

File size (KBytes)

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
Zeus
MP
Apache

0 5 10 15 20
500

1000

1500

2000

2500

3000

3500

File size (kBytes)

C
on

ne
ct

io
n

ra
te

 (
re

qs
/s

ec
)

SPED
Flash
Zeus
MP
Apache

Figure 7: FreeBSD single �le test | The higher network performance of FreeBSD magni�es the di�erence
between Apache and the rest when compared to Solaris. The shape of the Zeus curve between 10 kBytes
and 100 kBytes is likely due to the byte alignment problem mentioned in Section 5.5

.

6.2 Trace-based experiments

While the single-�le test can indicate a server's
maximum performance on a cached workload, it
gives little indication of its performance on real
workloads. In the next experiment, the servers are
subjected to a more realistic load. We generate a
client request stream by replaying access logs from
existing Web servers.

Figure 8 shows the throughput in Mb/sec achieved
with various Web servers on two di�erent work-
loads. The \CS trace" was obtained from the logs
of Rice University's Computer Science departmen-
tal Web server. The \Owlnet trace" re
ects traces
obtained from a Rice Web server that provides per-
sonal Web pages for approximately 4500 students
and sta� members. The results were obtained with
the Web servers running on Solaris.

The results show that Flash with its AMPED ar-
chitecture achieves the highest throughput on both
workloads. Apache achieves the lowest performance.

The comparison with Flash-MP shows that this is
only in part the result of its MP architecture, and
mostly due to its lack of aggressive optimizations like
those used in Flash.

The Owlnet trace has a smaller dataset size than
the CS trace, and it therefore achieves better cache
locality in the server. As a result, Flash-SPED's
relative performance is much better on this trace,
while MP performs well on the more disk-intensive
CS trace. Even though the Owlnet trace has high lo-
cality, its average transfer size is smaller than the CS
trace, resulting in roughly comparable bandwidth
numbers.

A second experiment evaluates server performance
under realistic workloads with a range of dataset
sizes (and therefore working set sizes). To generate
an input stream with a given dataset size, we use
the access logs from Rice's ECE departmental Web
server and truncate them as appropriate to achieve a
given dataset size. The clients then replay this trun-

Apache MP MT SPED Flash
0

10

20

30

40
B

an
dw

id
th

 (
M

b/
s)

CS trace
Apache MP MT SPED Flash

0

10

20

30

40

B
an

dw
id

th
 (

M
b/

s)

Owlnet trace

Figure 8: Performance on Rice Server Traces/Solaris

15 30 45 60 75 90 105 120 135 150
0

50

100

150

200

Data set size (MB)

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
Zeus
MP
Apache

Figure 9: FreeBSD Real Workload - The SPED architecture is ideally suited for cached workloads, and
when the working set �ts in cache, Flash mimics Flash-SPED. However, Flash-SPED's performance drops
drastically when operating on disk-bound workloads.

cated log as a loop to generate requests. In both ex-
periments, two client machines with 32 clients each
are used to generate the workload.

Figures 9 (BSD) and 10 (Solaris) shows the perfor-
mance, measured as the total output bandwidth, of
the various servers under real workload and various
dataset sizes. We report output bandwidth instead
of request/sec in this experiment, because truncat-
ing the logs at di�erent points to vary the dataset
size also changes the size distribution of requested
content. This causes
uctuations in the throughput
in requests/sec, but the output bandwidth is less
sensitive to this e�ect.

The performance of all the servers declines as the
dataset size increases, and there is a signi�cant drop
at the point when the working set size (which is re-
lated to the dataset size) exceeds the server's e�ec-
tive mainmemory cache size. Beyond this point, the
servers are essentially disk bound. Several observa-

tion can be made based on these results:

� Flash is very competitive with Flash-SPED on
cached workloads, and at the same time exceeds
or meets the performance of the MP servers
on disk-bound workloads. This con�rms that
Flash with its AMPED architecture is able to
combine the best of other architectures across a
wide range of workloads. This goal was central
to the design of the AMPED architecture.

� The slight performance di�erence between
Flash and Flash-SPED on the cached workloads
re
ects the overhead of checking for cache resi-
dency of requested content in Flash. Since the
data is already in memory, this test causes un-
necessary overhead on cached workloads.

� The SPED architecture performs well for
cached workloads but its performance deteri-

15 30 45 60 75 90 105 120 135 150
30

40

50

60

70

80

Data set size (MB)

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
Zeus
MT
MP
Apache

Figure 10: Solaris Real Workload - The Flash-MT server has comparable performance to Flash for both
in-core and disk-bound workloads. This result was achieved by carefully minimizing lock contention, adding
complexity to the code. Without this e�ort, the disk-bound results otherwise resembled Flash-SPED.

orates quickly as disk activity increases. This
con�rms our earlier reasoning about the perfor-
mance tradeo�s associated with this architec-
ture. The same behavior can be seen in the
SPED-based Zeus' performance, although its
absolute performance falls short of the various
Flash-derived servers.

� The performance of Flash MP server falls signif-
icantly short of that achieved with the other ar-
chitectures on cached workloads. This is likely
the result of the smaller user-level caches used
in Flash-MP as compared to the other Flash
versions.

� The choice of an operating system has a signif-
icant impact on Web server performance. Per-
formance results obtained on Solaris are up to
50% lower than those obtained on FreeBSD.
The operating system also has some impact on
the relative performance of the various Web
servers and architectures, but the trends are less
clear.

� Flash achieves higher throughput on disk-
bound workloads because it can be more
memory-e�cient and causes less context switch-
ing than MP servers. Flash only needs enough
helper processes to keep the disk busy, rather
than needing a process per connection. Ad-
ditionally, the helper processes require little
application-level memory. The combination of
fewer total processes and small helper processes
reduces memory consumption, leaving extra
memory for the �lesystem cache.

� The performance of Zeus on FreeBSD appears
to drop only after the data set exceeds 100 MB,
while the other servers drop earlier. We believe
this phenomenon is related to Zeus's request-
handling, which appears to give priority to re-
quests for small documents. Under full load,
this tends to starve requests for large documents
and thus causes the server to process a some-
what smaller e�ective working set. The over-
all lower performance under Solaris appears to
mask this e�ect on that OS.

� As explained above, Zeus uses a two-process
con�guration in this experiment, as advised by
the vendor. It should be noted that this gives
Zeus a slight advantage over the single-process
Flash-SPED, since one process can continue to
serve requests while the other is blocked on disk
I/O.

Results for the Flash-MT servers could not be pro-
vided for FreeBSD 2.2.6, because that system lacks
support for kernel threads.

6.3 Flash Performance Breakdown

The next experiment focuses on the Flash server
and measures the contribution of its various opti-
mizations on the achieved throughput. The con�gu-
ration is identical to the single �le test on FreeBSD,
where clients repeatedly request a cached document
of a given size. Figure 11 shows the throughput ob-
tained by various versions of Flash with all combi-
nations of the three main optimizations (pathname
translation caching, mapped �le caching, and re-
sponse header caching).

0 5 10 15 20
500

1000

1500

2000

2500

3000

3500

File size (KBytes)

C
on

ne
ct

io
n

ra
te

 (
re

qs
/s

ec
)

all (Flash)
path & mmap
path & resp
path only

mmap & resp
mmap only
resp only
no caching

Figure 11: Flash Performance Breakdown - Without
optimizations, Flash's small-�le performance would
drop in half. The eight lines show the e�ect of vari-
ous combinations of the caching optimizations.

The results show that each of the optimizations
has a signi�cant impact on server throughput for
cached content, with pathname translation caching
providing the largest bene�t. Since each of the op-
timization avoids a per-request cost, the impact is
strongest on requests for small documents.

6.4 Performance underWAN conditions

0 100 200 300 400 500
20

40

60

80

100

120

of simultaneous clients

B
an

dw
id

th
 (

M
b/

s)

SPED
Flash
MT
MP

Figure 12: Adding clients - The low per-client over-
heads of the MT, SPED and AMPED models cause
stable performance when adding clients. Multiple
application-level caches and per-process overheads
cause the MP model's performance to drop.

Web server benchmarking in a LAN environment
fails to evaluate an important aspect of real Web
workloads, namely that fact that clients contact the
server through a wide-area network. The limited
bandwidth and packet losses of a WAN increase
the average HTTP connection duration, when com-
pared to LAN environment. As a result, at a given
throughput in requests/second, a real server handles

a signi�cantly larger number of concurrent connec-
tions than a server tested under LAN conditions [24].
The number of concurrent connections can have

a signi�cant impact on server performance [4]. Our
next experiment measures the impact of the num-
ber of concurrent HTTP connections on our various
servers. Persistent connections were used to simu-
late the e�ect of long-lasting WAN connections in a
LAN-based testbed. We replay the ECE logs with a
90MB data set size to expose the performance e�ects
of a limited �le cache size. In Figure 12 we see the
performance under Solaris as the number of number
of simultaneous clients is increased.
The SPED, AMPED and MT servers display an

initial rise in performance as the number of concur-
rent connections increases. This increase is likely
due to the added concurrency and various aggrega-
tion e�ects. For instance, a large number of connec-
tions increases the average number of completed I/O
events reported in each select system call, amor-
tizing the overhead of this operation over a larger
number of I/O events.
As the number of concurrent connections exceeds

200, the performance of SPED and AMPED
at-
tens while the MT server su�ers a gradual decline
in performance. This decline is related to the per-
thread switching and space overhead of the MT ar-
chitecture. The MP model su�ers from additional
per-process overhead, which results in a signi�cant
decline in performance as the number of concurrent
connections increases.

7 Related Work

James Hu et al. [17] perform an analysis of Web
server optimizations. They consider two di�erent ar-
chitectures, the multi-threaded architecture and one
that employs a pool of threads, and evaluate their
performance on UNIX systems as well as Windows
NT using the WebStone benchmark.
Various researchers have analyzed the process-

ing costs of the di�erent steps of HTTP request
serving and have proposed improvements. Nahum
et al. [25] compare existing high-performance ap-
proaches with new socket APIs and evaluate their
work on both single-�le tests and other benchmarks.
Yiming Hu et al. [18] extensively analyze an ear-
lier version of Apache and implement a number of
optimizations, improving performance especially for
smaller requests. Yates et al. [31] measure the de-
mands a server places on the operating system for
various workloads types and service rates. Banga et
al. [5] examine operating system support for event-
driven servers and propose new APIs to remove bot-
tlenecks observed with large numbers of concurrent

connections.

The Flash server and its AMPED architecture
bear some resemblance to Thoth [9], a portable op-
erating system and environment built using \multi-
process structuring." This model of programming
uses groups of processes called \teams" which coop-
erate by passing messages to indicate activity. Par-
allelism and asynchronous operation can be han-
dled by having one process synchronously wait for
an activity and then communicate its occurrence to
an event-driven server. In this model, Flash's disk
helper processes can be seen as waiting for asyn-
chronous events (completion of a disk access) and
relaying that information to the main server process.

The Harvest/Squid project [8] also uses the model
of an event-driven server combined with helper pro-
cesses waiting on slow actions. In that case, the
server keeps its own DNS cache and uses a set
of \dnsserver" processes to perform calls to the
gethostbyname() library routine. Since the DNS
lookup can cause the library routine to block, only
the dnsserver process is a�ected. Whereas Flash
uses the helper mechanism for blocking disk accesses,
Harvest attempts to use the select() call to per-
form non-blocking �le accesses. As explained ear-
lier, most UNIX systems do not support this use of
select() and falsely indicate that the disk access
will not block. Harvest also attempts to reduce the
number of disk metadata operations.

Given the impact of disk accesses on Web servers,
new caching policies have been proposed in other
work. Arlitt et al. [2] propose new caching poli-
cies by analyzing server access logs and looking for
similarities across servers. Cao et al. [7] introduce
the Greedy DualSize caching policy which uses both
access frequency and �le size in making cache re-
placement decisions. Other work has also analyzed
various aspects of Web server workloads [11, 23].

Data copying within the operating system is a sig-
ni�cant cost when processing large �les, and several
approaches have been proposed to alleviate the prob-
lem. Thadani et al. [30] introduce a new API to read
and send memory-mapped �les without copying. IO-
Lite [29] extends the fbufs [14] model to integrate
�lesystem, networking, interprocess communication,
and application-level bu�ers using a set of uniform
interfaces. Engler et al. [20] use low-level interaction
between the Cheetah Web server and their exokernel
to eliminate copying and streamline small-request
handling. The Lava project uses similar techniques
in a microkernel environment [22].

Other approaches for increasing Web server per-
formance employ multiple machines. In this area,
some work has focused on using multiple server

nodes in parallel [6, 10, 13, 16, 19, 28], or sharing
memory across machines [12, 15, 21].

8 Conclusion

This paper presents a new portable high-
performance Web server architecture, called asym-
metric multi-process event-driven (AMPED), and
describes an implementation of this architecture, the
Flash Web server. Flash nearly matches the perfor-
mance of SPED servers on cached workloads while
simultaneously matching or exceeding the perfor-
mance of MP and MT servers on disk-intensive work-
loads. Moreover, Flash uses only standard APIs
available in modern operating systems and is there-
fore easily portable.
We present results of experiments to evaluate the

impact of a Web server's concurrency architecture
on its performance. For this purpose, various server
architectures were implemented from the same code
base. Results show that Flash with its AMPED ar-
chitecture can nearly match or exceed the perfor-
mance of other architectures across a wide range of
realistic workloads.
Results also show that the Flash server's perfor-

mance exceeds that of the Zeus Web server by up
to 30%, and it exceeds the performance of Apache
by up to 50% on real workloads. Finally, we per-
form experiments to show the contribution of the
various optimizations embedded in Flash on its per-
formance.

Acknowledgments

We are grateful to Erich Nahum, Je� Mogul, and
the anonymous reviewers, whose comments have
helped to improve this paper. Thanks to Michael
Pearlman for our Solaris testbed con�guration. Spe-
cial thanks to Zeus Technology for use of their server
software and Damian Reeves for feedback and tech-
nical assistance with it. Thanks to Jef Poskanzer
for the thttpd web server, from which Flash derives
some infrastructure. This work was supported in
part by NSF Grants CCR-9803673, CCR-9503098,
MIP-9521386, by Texas TATP Grant 003604, and
by an IBM Partnership Award.

References

[1] Apache. http://www.apache.org

[2] M. F. Arlitt and C. L. Williamson. Web Server
Workload Characterization: The Search for In-
variants. In Proceedings of the ACM SIGMET-
RICS '96 Conference, pages 126{137, Philadel-
phia, PA, Apr. 1996.

[3] G. Banga and P. Druschel. Measuring the
capacity of a Web server. In Proceedings of
the USENIX Symposium on Internet Technolo-
gies and Systems (USITS), Monterey, CA, Dec.
1997.

[4] G. Banga and P. Druschel. Measuring the ca-
pacity of a Web server under realistic loads.
World Wide Web Journal (Special Issue on
World Wide Web Characterization and Perfor-
mance Evaluation), 1999. To appear.

[5] G. Banga, P. Druschel, and J. C. Mogul. Re-
source containers: A new facility for resource
management in server systems. In Proc. 3rd
USENIX Symp. on Operating Systems Design
and Implementation, Feb. 1999.

[6] T. Brisco. DNS Support for Load Balancing.
RFC 1794, Apr. 1995.

[7] P. Cao and S. Irani. Cost-aware WWW
proxy caching algorithms. In Proceedings of
the USENIX Symposium on Internet Technolo-
gies and Systems (USITS), Monterey, CA, Dec.
1997.

[8] A. Chankhunthod, P. B. Danzig, C. Neerdaels,
M. F. Schwartz, and K. J. Worrell. A Hierarchi-
cal Internet Object Cache. In Proceedings of the
1996 Usenix Technical Conference, Jan. 1996.

[9] D. R. Cheriton. The Thoth System: Multi-
Process Structuring and Portability. Elsevier
Science Publishing Co,. Inc, 1982.

[10] Cisco Systems Inc. LocalDirector.
http://www.cisco.com

[11] M. Crovella and A. Bestavros. Self-Similarity
in World Wide Web Tra�c: Evidence and
Possible Causes. In Proceedings of the ACM
SIGMETRICS '96 Conference, pages 160{169,
Philadelphia, PA, Apr. 1996.

[12] M. Dahlin, R. Yang, T. Anderson, and D. Pat-
terson. Cooperative caching: Using remote
client memory to improve �le system perfor-
mance. In Proc. USENIX Symp. on Operating
Systems Design and Implementation, Monterey,
CA, Nov. 1994.

[13] O. P. Damani, P.-Y. E. Chung, Y. Huang,
C. Kintala, and Y.-M. Wang. ONE-IP: Tech-
niques for hosting a service on a cluster of ma-
chines. Computer Networks and ISDN Systems,
29:1019{1027, 1997.

[14] P. Druschel and L. L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. In
Proceedings of the Fourteenth ACM Symposium
on Operating System Principles, pages 189{202,
Dec. 1993.

[15] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R.
Karlin, H. M. Levy, and C. A. Thekkath. Imple-
menting global memorymanagement in a work-
station cluster. In Proceedings of the Fifteenth
ACM Symposium on Operating System Princi-
ples, Copper Mountain, CO, Dec. 1995.

[16] A. Fox, S. D. Gribble, Y. Chawathe, E. A.
Brewer, and P. Gauthier. Cluster-based scal-
able network services. In Proceedings of the
Sixteenth ACM Symposium on Operating Sys-
tem Principles, San Malo, France, Oct. 1997.

[17] J. C. Hu, I. Pyrali, and D. C. Schmidt. Measur-
ing the impact of event dispatching and concur-
rency models on web server performance over
high-speed networks. In Proceedings of the 2nd
Global Internet Conference, Phoenix, AZ, Nov.
1997.

[18] Y. Hu, A. Nanda, and Q. Yang. Measurement,
analysis and performance improvement of the
Apache web server. In Proceedings of the 18th
IEEE International Performance, Computing
and Communications Conference (IPCCC'99),
February 1999.

[19] IBM Corporation. IBM eNetwork dispatcher.
http://www.software.ibm.com/network/dispatcher

[20] M. F. Kaashoek, D. R. Engler, G. R. Ganger,
and D. A. Wallach. Server Operating Systems.
In Proceedings of the 1996 ACM SIGOPS Eu-
ropean Workshop, pages 141{148, Connemara,
Ireland, Sept. 1996.

[21] H. Levy, G. Voelker, A. Karlin, E. Ander-
son, and T. Kimbrel. Implementing Cooper-
ative Prefetching and Caching in a Globally-
Managed Memory System. In Proceedings of the
ACM SIGMETRICS '98 Conference, Madison,
WI, June 1998.

[22] J. Liedtke, V. Panteleenko, T. Jaeger, and
N. Islam. High-performance caching with the
Lava hit-server. In Proceedings of the USENIX
1998 Annual Technical Conference, New Or-
leans, LA, June 1998.

[23] S. Manley and M. Seltzer. Web Facts and Fan-
tasy. In Proceedings of the USENIX Symposium

on Internet Technologies and Systems (USITS),
pages 125{134, Monterey, CA, Dec. 1997.

[24] J. C. Mogul. Network behavior of a busy web
server and its clients. Technical Report WRL
95/5, DEC Western Research Laboratory, Palo
Alto, CA, 1995.

[25] E. Nahum, T. Barzilai, and D. Kandlur. Per-
formance Issues in WWW Servers. submitted
for publication.

[26] National Center for Supercomputing Ap-
plications. Common Gateway Interface.
http://hoohoo.ncsa.uiuc.edu/cgi

[27] Open Market, Inc. FastCGI speci�cation.
http://www.fastcgi.com

[28] V. S. Pai, M. Aron, G. Banga, M. Svendsen,
P. Druschel, W. Zwaenepoel, and E. Nahum.
Locality-aware request distribution in cluster-
based network servers. In Proceedings of the 8th
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems,
San Jose, CA, Oct. 1998. ACM.

[29] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-
Lite: A uni�ed I/O bu�ering and caching sys-
tem. In Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation,
New Orleans, LA, Feb. 1999.

[30] M. N. Thadani and Y. A. Khalidi. An e�cient
zero-copy I/O framework for UNIX. Techni-
cal Report SMLI TR-95-39, Sun Microsystems
Laboratories, Inc., May 1995.

[31] D. Yates, V. Almeida, and J. Almeida. On
the interaction between an operating system
and Web server. Technical Report TR-97-012,
Boston University, CS Dept., Boston MA, 1997.

[32] Zeus Technology Limited. Zeus Web Server.
http://www.zeus.co.uk

