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Abstract

VMware ESX Server is a thin software layer designed to
multiplex hardware resources efficiently among virtual ma-
chines running unmodified commodity operating systems.
This paper introduces several novel ESX Server mechanisms
and policies for managing memory. A ballooning technique
reclaims the pages considered least valuable by the operat-
ing system running in a virtual machine. An idle memory tax
achieves efficient memory utilization while maintaining per-
formance isolation guarantees. Content-based page sharing
and hot I/O page remapping exploit transparent page remap-
ping to eliminate redundancy and reduce copying overheads.
These techniques are combined to efficiently support virtual
machine workloads that overcommit memory.

1 Introduction

Recent industry trends, such as server consolida-
tion and the proliferation of inexpensive shared-memory
multiprocessors, have fueled a resurgence of interest in
server virtualization techniques. Virtual machines are
particularly attractive for server virtualization. Each
virtual machine (VM) is given the illusion of being a ded-
icated physical machine that is fully protected and iso-
lated from other virtual machines. Virtual machines are
also convenient abstractions of server workloads, since
they cleanly encapsulate the entire state of a running sys-
tem, including both user-level applications and kernel-
mode operating system services.

In many computing environments, individual servers
are underutilized, allowing them to be consolidated as
virtual machines on a single physical server with little or
no performance penalty. Similarly, many small servers
can be consolidated onto fewer larger machines to sim-
plify management and reduce costs. Ideally, system ad-
ministrators should be able to flexibly overcommit mem-
ory, processor, and other resources in order to reap the
benefits of statistical multiplexing, while still providing
resource guarantees to VMs of varying importance.

Virtual machines have been used for decades to al-
low multiple copies of potentially different operating
systems to run concurrently on a single hardware plat-
form [8]. A virtual machine monitor (VMM) is a soft-
ware layer that virtualizes hardware resources, export-
ing a virtual hardware interface that reflects the under-
lying machine architecture. For example, the influential
VM/370 virtual machine system [6] supported multiple
concurrent virtual machines, each of which believed it
was running natively on the IBM System/370 hardware
architecture [10]. More recent research, exemplified
by Disco [3, 9], has focused on using virtual machines
to provide scalability and fault containment for com-
modity operating systems running on large-scale shared-
memory multiprocessors.

VMware ESX Server is a thin software layer designed
to multiplex hardware resources efficiently among vir-
tual machines. The current system virtualizes the Intel
IA-32 architecture [13]. It is in production use on servers
running multiple instances of unmodified operating sys-
tems such as Microsoft Windows 2000 Advanced Server
and Red Hat Linux 7.2. The design of ESX Server dif-
fers significantly from VMware Workstation, which uses
a hosted virtual machine architecture [23] that takes ad-
vantage of a pre-existing operating system for portable
I/O device support. For example, a Linux-hosted VMM
intercepts attempts by a VM to read sectors from its vir-
tual disk, and issues a read() system call to the under-
lying Linux host OS to retrieve the corresponding data.
In contrast, ESX Server manages system hardware di-
rectly, providing significantly higher I/O performance
and complete control over resource management.

The need to run existing operating systems without
modification presented a number of interesting chal-
lenges. Unlike IBM’s mainframe division, we were un-
able to influence the design of the guest operating sys-
tems running within virtual machines. Even the Disco
prototypes [3, 9], designed to run unmodified operat-
ing systems, resorted to minor modifications in the IRIX
kernel sources.
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This paper introduces several novel mechanisms and
policies that ESX Server 1.5 [29] uses to manage mem-
ory. High-level resource management policies compute
a target memory allocation for each VM based on spec-
ified parameters and system load. These allocations are
achieved by invoking lower-level mechanisms to reclaim
memory from virtual machines. In addition, a back-
ground activity exploits opportunities to share identical
pages between VMs, reducing overall memory pressure
on the system.

In the following sections, we present the key aspects
of memory resource management using a bottom-up
approach, describing low-level mechanisms before dis-
cussing the high-level algorithms and policies that co-
ordinate them. Section 2 describes low-level memory
virtualization. Section 3 discusses mechanisms for re-
claiming memory to support dynamic resizing of virtual
machines. A general technique for conserving memory
by sharing identical pages between VMs is presented
in Section 4. Section 5 discusses the integration of
working-set estimates into a proportional-share alloca-
tion algorithm. Section 6 describes the high-level al-
location policy that coordinates these techniques. Sec-
tion 7 presents a remapping optimization that reduces
I/O copying overheads in large-memory systems. Sec-
tion 8 examines related work. Finally, we summarize our
conclusions and highlight opportunities for future work
in Section 9.

2 Memory Virtualization

A guest operating system that executes within a vir-
tual machine expects a zero-based physical address
space, as provided by real hardware. ESX Server gives
each VM this illusion, virtualizing physical memory by
adding an extra level of address translation. Borrowing
terminology from Disco [3], a machine address refers to
actual hardware memory, while a physical address is a
software abstraction used to provide the illusion of hard-
ware memory to a virtual machine. We will often use
“physical” in quotes to highlight this deviation from its
usual meaning.

ESX Server maintains a pmap data structure for each
VM to translate “physical” page numbers (PPNs) to
machine page numbers (MPNs). VM instructions that
manipulate guest OS page tables or TLB contents are
intercepted, preventing updates to actual MMU state.
Separate shadow page tables, which contain virtual-to-
machine page mappings, are maintained for use by the
processor and are kept consistent with the physical-to-

machine mappings in the pmap.1 This approach per-
mits ordinary memory references to execute without ad-
ditional overhead, since the hardware TLB will cache
direct virtual-to-machine address translations read from
the shadow page table.

The extra level of indirection in the memory system
is extremely powerful. The server can remap a “phys-
ical” page by changing its PPN-to-MPN mapping, in a
manner that is completely transparent to the VM. The
server may also monitor or interpose on guest memory
accesses.

3 Reclamation Mechanisms

ESX Server supports overcommitment of memory to
facilitate a higher degree of server consolidation than
would be possible with simple static partitioning. Over-
commitment means that the total size configured for all
running virtual machines exceeds the total amount of ac-
tual machine memory. The system manages the alloca-
tion of memory to VMs automatically based on config-
uration parameters and system load.

Each virtual machine is given the illusion of having
a fixed amount of physical memory. This max size is
a configuration parameter that represents the maximum
amount of machine memory it can be allocated. Since
commodity operating systems do not yet support dy-
namic changes to physical memory sizes, this size re-
mains constant after booting a guest OS. A VM will be
allocated its maximum size when memory is not over-
committed.

3.1 Page Replacement Issues

When memory is overcommitted, ESX Server must
employ some mechanism to reclaim space from one or
more virtual machines. The standard approach used by
earlier virtual machine systems is to introduce another
level of paging [9, 20], moving some VM “physical”
pages to a swap area on disk. Unfortunately, an extra
level of paging requires a meta-level page replacement
policy: the virtual machine system must choose not only
the VM from which to revoke memory, but also which
of its particular pages to reclaim.

In general, a meta-level page replacement policy must
make relatively uninformed resource management deci-
sions. The best information about which pages are least

1The IA-32 architecture has hardware mechanisms that walk in-
memory page tables and reload the TLB [13].
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valuable is known only by the guest operating system
within each VM. Although there is no shortage of clever
page replacement algorithms [26], this is actually the
crux of the problem. A sophisticated meta-level policy
is likely to introduce performance anomalies due to un-
intended interactions with native memory management
policies in guest operating systems. This situation is
exacerbated by diverse and often undocumented guest
OS policies [1], which may vary across OS versions and
may even depend on performance hints from applica-
tions [4].

The fact that paging is transparent to the guest OS can
also result in a double paging problem, even when the
meta-level policy is able to select the same page that the
native guest OS policy would choose [9, 20]. Suppose
the meta-level policy selects a page to reclaim and pages
it out. If the guest OS is under memory pressure, it may
choose the very same page to write to its own virtual
paging device. This will cause the page contents to be
faulted in from the system paging device, only to be im-
mediately written out to the virtual paging device.

3.2 Ballooning

Ideally, a VM from which memory has been re-
claimed should perform as if it had been configured with
less memory. ESX Server uses a ballooning technique
to achieve such predictable performance by coaxing the
guest OS into cooperating with it when possible. This
process is depicted in Figure 1.

A small balloon module is loaded into the guest OS
as a pseudo-device driver or kernel service. It has no
external interface within the guest, and communicates
with ESX Server via a private channel. When the server
wants to reclaim memory, it instructs the driver to “in-
flate” by allocating pinned physical pages within the
VM, using appropriate native interfaces. Similarly, the
server may “deflate” the balloon by instructing it to deal-
locate previously-allocated pages.

Inflating the balloon increases memory pressure in the
guest OS, causing it to invoke its own native memory
management algorithms. When memory is plentiful, the
guest OS will return memory from its free list. When
memory is scarce, it must reclaim space to satisfy the
driver allocation request. The guest OS decides which
particular pages to reclaim and, if necessary, pages them
out to its own virtual disk. The balloon driver com-
municates the physical page number for each allocated
page to ESX Server, which may then reclaim the corre-
sponding machine page. Deflating the balloon frees up
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Figure 1: Ballooning. ESX Server controls a balloon mod-
ule running within the guest, directing it to allocate guest pages
and pin them in “physical” memory. The machine pages back-
ing this memory can then be reclaimed by ESX Server. Inflat-
ing the balloon increases memory pressure, forcing the guest
OS to invoke its own memory management algorithms. The
guest OS may page out to its virtual disk when memory is
scarce. Deflating the balloon decreases pressure, freeing guest
memory.

memory for general use within the guest OS.

Although a guest OS should not touch any physical
memory it allocates to a driver, ESX Server does not
depend on this property for correctness. When a guest
PPN is ballooned, the system annotates its pmap entry
and deallocates the associated MPN. Any subsequent at-
tempt to access the PPN will generate a fault that is han-
dled by the server; this situation is rare, and most likely
the result of complete guest failure, such as a reboot
or crash. The server effectively “pops” the balloon, so
that the next interaction with (any instance of) the guest
driver will first reset its state. The fault is then handled
by allocating a new MPN to back the PPN, just as if the
page was touched for the first time.2

Our balloon drivers for the Linux, FreeBSD, and Win-
dows operating systems poll the server once per sec-
ond to obtain a target balloon size, and they limit their
allocation rates adaptively to avoid stressing the guest
OS. Standard kernel interfaces are used to allocate phys-
ical pages, such as get free page() in Linux, and
MmAllocatePagesForMdl() or MmProbeAndLock-

Pages() in Windows.

Future guest OS support for hot-pluggable memory
cards would enable an additional form of coarse-grained
ballooning. Virtual memory cards could be inserted into

2ESX Server zeroes the contents of newly-allocated machine pages
to avoid leaking information between VMs. Allocation also respects
cache coloring by the guest OS; when possible, distinct PPN colors are
mapped to distinct MPN colors.
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Figure 2: Balloon Performance. Throughput of single
Linux VM running dbench with 40 clients. The black bars
plot the performance when the VM is configured with main
memory sizes ranging from 128 MB to 256 MB. The gray bars
plot the performance of the same VM configured with 256 MB,
ballooned down to the specified size.

or removed from a VM in order to rapidly adjust its
physical memory size.

To demonstrate the effectiveness of ballooning, we
used the synthetic dbench benchmark [28] to simulate
fileserver performance under load from 40 clients. This
workload benefits significantly from additional memory,
since a larger buffer cache can absorb more disk traffic.
For this experiment, ESX Server was running on a dual-
processor Dell Precision 420, configured to execute one
VM running Red Hat Linux 7.2 on a single 800 MHz
Pentium III CPU.

Figure 2 presents dbench throughput as a function
of VM size, using the average of three consecutive runs
for each data point. The ballooned VM tracks non-
ballooned performance closely, with an observed over-
head ranging from 4.4% at 128 MB (128 MB balloon)
down to 1.4% at 224 MB (32 MB balloon). This over-
head is primarily due to guest OS data structures that are
sized based on the amount of “physical” memory; the
Linux kernel uses more space in a 256 MB system than
in a 128 MB system. Thus, a 256 MB VM ballooned
down to 128 MB has slightly less free space than a VM
configured with exactly 128 MB.

Despite its advantages, ballooning does have limita-
tions. The balloon driver may be uninstalled, disabled
explicitly, unavailable while a guest OS is booting, or
temporarily unable to reclaim memory quickly enough
to satisfy current system demands. Also, upper bounds
on reasonable balloon sizes may be imposed by various
guest OS limitations.

3.3 Demand Paging

ESX Server preferentially uses ballooning to reclaim
memory, treating it as a common-case optimization.
When ballooning is not possible or insufficient, the sys-
tem falls back to a paging mechanism. Memory is re-
claimed by paging out to an ESX Server swap area on
disk, without any guest involvement.

The ESX Server swap daemon receives information
about target swap levels for each VM from a higher-
level policy module. It manages the selection of candi-
date pages and coordinates asynchronous page outs to a
swap area on disk. Conventional optimizations are used
to maintain free slots and cluster disk writes.

A randomized page replacement policy is used to pre-
vent the types of pathological interference with native
guest OS memory management algorithms described in
Section 3.1. This choice was also guided by the ex-
pectation that paging will be a fairly uncommon oper-
ation. Nevertheless, we are investigating more sophisti-
cated page replacement algorithms, as well policies that
may be customized on a per-VM basis.

4 Sharing Memory

Server consolidation presents numerous opportunities
for sharing memory between virtual machines. For ex-
ample, several VMs may be running instances of the
same guest OS, have the same applications or compo-
nents loaded, or contain common data. ESX Server ex-
ploits these sharing opportunities, so that server work-
loads running in VMs on a single machine often con-
sume less memory than they would running on separate
physical machines. As a result, higher levels of over-
commitment can be supported efficiently.

4.1 Transparent Page Sharing

Disco [3] introduced transparent page sharing as a
method for eliminating redundant copies of pages, such
as code or read-only data, across virtual machines. Once
copies are identified, multiple guest “physical” pages are
mapped to the same machine page, and marked copy-
on-write. Writing to a shared page causes a fault that
generates a private copy.

Unfortunately, Disco required several guest OS mod-
ifications to identify redundant copies as they were cre-
ated. For example, the bcopy() routine was hooked to
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enable file buffer cache sharing across virtual machines.
Some sharing also required the use of non-standard or
restricted interfaces. A special network interface with
support for large packets facilitated sharing data com-
municated between VMs on a virtual subnet. Interpo-
sition on disk accesses allowed data from shared, non-
persistent disks to be shared across multiple guests.

4.2 Content-Based Page Sharing

Because modifications to guest operating system in-
ternals are not possible in our environment, and changes
to application programming interfaces are not accept-
able, ESX Server takes a completely different approach
to page sharing. The basic idea is to identify page copies
by their contents. Pages with identical contents can be
shared regardless of when, where, or how those contents
were generated. This general-purpose approach has two
key advantages. First, it eliminates the need to mod-
ify, hook, or even understand guest OS code. Second,
it can identify more opportunities for sharing; by defini-
tion, all potentially shareable pages can be identified by
their contents.

The cost for this unobtrusive generality is that work
must be performed to scan for sharing opportunities.
Clearly, comparing the contents of each page with ev-
ery other page in the system would be prohibitively ex-
pensive; naive matching would require O( ��� ) page com-
parisons. Instead, hashing is used to identify pages with
potentially-identical contents efficiently.

A hash value that summarizes a page’s contents is
used as a lookup key into a hash table containing entries
for other pages that have already been marked copy-on-
write (COW). If the hash value for the new page matches
an existing entry, it is very likely that the pages are iden-
tical, although false matches are possible. A successful
match is followed by a full comparison of the page con-
tents to verify that the pages are identical.

Once a match has been found with an existing shared
page, a standard copy-on-write technique can be used
to share the pages, and the redundant copy can be re-
claimed. Any subsequent attempt to write to the shared
page will generate a fault, transparently creating a pri-
vate copy of the page for the writer.

If no match is found, one option is to mark the page
COW in anticipation of some future match. However,
this simplistic approach has the undesirable side-effect
of marking every scanned page copy-on-write, incurring
unnecessary overhead on subsequent writes. As an op-
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Figure 3: Content-Based Page Sharing. ESX Server
scans for sharing opportunities, hashing the contents of can-
didate PPN 0x2868 in VM 2. The hash is used to index into a
table containing other scanned pages, where a match is found
with a hint frame associated with PPN 0x43f8 in VM 3. If a
full comparison confirms the pages are identical, the PPN-to-
MPN mapping for PPN 0x2868 in VM 2 is changed from MPN
0x1096 to MPN 0x123b, both PPNs are marked COW, and the
redundant MPN is reclaimed.

timization, an unshared page is not marked COW, but
instead tagged as a special hint entry. On any future
match with another page, the contents of the hint page
are rehashed. If the hash has changed, then the hint page
has been modified, and the stale hint is removed. If the
hash is still valid, a full comparison is performed, and
the pages are shared if it succeeds.

Higher-level page sharing policies control when and
where to scan for copies. One simple option is to scan
pages incrementally at some fixed rate. Pages could be
considered sequentially, randomly, or using heuristics to
focus on the most promising candidates, such as pages
marked read-only by the guest OS, or pages from which
code has been executed. Various policies can be used
to limit CPU overhead, such as scanning only during
otherwise-wasted idle cycles.

4.3 Implementation

The ESX Server implementation of content-based
page sharing is illustrated in Figure 3. A single global
hash table contains frames for all scanned pages, and
chaining is used to handle collisions. Each frame is en-
coded compactly in 16 bytes. A shared frame consists
of a hash value, the machine page number (MPN) for
the shared page, a reference count, and a link for chain-
ing. A hint frame is similar, but encodes a truncated
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hash value to make room for a reference back to the cor-
responding guest page, consisting of a VM identifier and
a physical page number (PPN). The total space overhead
for page sharing is less than 0.5% of system memory.

Unlike the Disco page sharing implementation, which
maintained a backmap for each shared page, ESX Server
uses a simple reference count. A small 16-bit count is
stored in each frame, and a separate overflow table is
used to store any extended frames with larger counts.
This allows highly-shared pages to be represented com-
pactly. For example, the empty zero page filled com-
pletely with zero bytes is typically shared with a large
reference count. A similar overflow technique for large
reference counts was used to save space in the early
OOZE virtual memory system [15].

A fast, high-quality hash function [14] is used to
generate a 64-bit hash value for each scanned page.
Since the chance of encountering a false match due to
hash aliasing is incredibly small3 the system can make
the simplifying assumption that all shared pages have
unique hash values. Any page that happens to yield a
false match is considered ineligible for sharing.

The current ESX Server page sharing implementation
scans guest pages randomly. Although more sophisti-
cated approaches are possible, this policy is simple and
effective. Configuration options control maximum per-
VM and system-wide page scanning rates. Typically,
these values are set to ensure that page sharing incurs
negligible CPU overhead. As an additional optimiza-
tion, the system always attempts to share a page before
paging it out to disk.

To evaluate the ESX Server page sharing implemen-
tation, we conducted experiments to quantify its effec-
tiveness at reclaiming memory and its overhead on sys-
tem performance. We first analyze a “best case” work-
load consisting of many homogeneous VMs, in order to
demonstrate that ESX Server is able to reclaim a large
fraction of memory when the potential for sharing exists.
We then present additional data collected from produc-
tion deployments serving real users.

We performed a series of controlled experiments us-
ing identically-configured virtual machines, each run-
ning Red Hat Linux 7.2 with 40 MB of “physical” mem-
ory. Each experiment consisted of between one and ten

3Assuming page contents are randomly mapped to 64-bit hash val-
ues, the probability of a single collision doesn’t exceed 50% until ap-
proximately

� ����������	�

distinct pages are hashed [14]. For a static

snapshot of the largest possible IA-32 memory configuration with
��
 �

pages (64 GB), the collision probability is less than 0.01%.
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Figure 4: Page Sharing Performance. Sharing metrics
for a series of experiments consisting of identical Linux VMs
running SPEC95 benchmarks. The top graph indicates the ab-
solute amounts of memory shared and saved increase smoothly
with the number of concurrent VMs. The bottom graph plots
these metrics as a percentage of aggregate VM memory. For
large numbers of VMs, sharing approaches 67% and nearly
60% of all VM memory is reclaimed.

concurrent VMs running SPEC95 benchmarks for thirty
minutes. For these experiments, ESX Server was run-
ning on a Dell PowerEdge 1400SC multiprocessor with
two 933 MHz Pentium III CPUs.

Figure 4 presents several sharing metrics plotted as
a function of the number of concurrent VMs. Surpris-
ingly, some sharing is achieved with only a single VM.
Nearly 5 MB of memory was reclaimed from a single
VM, of which about 55% was due to shared copies of
the zero page. The top graph shows that after an initial
jump in sharing between the first and second VMs, the
total amount of memory shared increases linearly with
the number of VMs, as expected. Little sharing is at-
tributed to zero pages, indicating that most sharing is
due to redundant code and read-only data pages. The
bottom graph plots these metrics as a percentage of ag-
gregate VM memory. As the number of VMs increases,
the sharing level approaches 67%, revealing an over-
lap of approximately two-thirds of all memory between
the VMs. The amount of memory required to contain
the single copy of each common shared page (labelled
Shared – Reclaimed), remains nearly constant, decreasing
as a percentage of overall VM memory.
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Total Shared Reclaimed
Guest Types MB MB % MB %

A 10 WinNT 2048 880 42.9 673 32.9
B 9 Linux 1846 539 29.2 345 18.7
C 5 Linux 1658 165 10.0 120 7.2

Figure 5: Real-World Page Sharing. Sharing metrics
from production deployments of ESX Server. (a) Ten Windows
NT VMs serving users at a Fortune 50 company, running a va-
riety of database (Oracle, SQL Server), web (IIS, Websphere),
development (Java, VB), and other applications. (b) Nine
Linux VMs serving a large user community for a nonprofit
organization, executing a mix of web (Apache), mail (Major-
domo, Postfix, POP/IMAP, MailArmor), and other servers. (c)
Five Linux VMs providing web proxy (Squid), mail (Postfix,
RAV), and remote access (ssh) services to VMware employees.

The CPU overhead due to page sharing was negligi-
ble. We ran an identical set of experiments with page
sharing disabled, and measured no significant difference
in the aggregate throughput reported by the CPU-bound
benchmarks running in the VMs. Over all runs, the ag-
gregate throughput was actually 0.5% higher with page
sharing enabled, and ranged from 1.6% lower to 1.8%
higher. Although the effect is generally small, page shar-
ing does improve memory locality, and may therefore
increase hit rates in physically-indexed caches.

These experiments demonstrate that ESX Server is
able to exploit sharing opportunities effectively. Of
course, more diverse workloads will typically exhibit
lower degrees of sharing. Nevertheless, many real-world
server consolidation workloads do consist of numerous
VMs running the same guest OS with similar applica-
tions. Since the amount of memory reclaimed by page
sharing is very workload-dependent, we collected mem-
ory sharing statistics from several ESX Server systems
in production use.

Figure 5 presents page sharing metrics collected from
three different production deployments of ESX Server.
Workload � , from a corporate IT department at a For-
tune 50 company, consists of ten Windows NT 4.0 VMs
running a wide variety of database, web, and other
servers. Page sharing reclaimed nearly a third of all VM
memory, saving 673 MB. Workload � , from a nonprofit
organization’s Internet server, consists of nine Linux
VMs ranging in size from 64 MB to 768 MB, running
a mix of mail, web, and other servers. In this case, page
sharing was able to reclaim 18.7% of VM memory, sav-
ing 345 MB, of which 70 MB was attributed to zero
pages. Finally, workload � is from VMware’s own IT
department, and provides web proxy, mail, and remote
access services to our employees using five Linux VMs

ranging in size from 32 MB to 512 MB. Page sharing
reclaimed about 7% of VM memory, for a savings of
120 MB, of which 25 MB was due to zero pages.

5 Shares vs. Working Sets

Traditional operating systems adjust memory alloca-
tions to improve some aggregate, system-wide perfor-
mance metric. While this is usually a desirable goal,
it often conflicts with the need to provide quality-of-
service guarantees to clients of varying importance.
Such guarantees are critical for server consolidation,
where each VM may be entitled to different amounts
of resources based on factors such as importance, own-
ership, administrative domains, or even the amount of
money paid to a service provider for executing the VM.
In such cases, it can be preferable to penalize a less im-
portant VM, even when that VM would derive the largest
performance benefit from additional memory.

ESX Server employs a new allocation algorithm that
is able to achieve efficient memory utilization while
maintaining memory performance isolation guarantees.
In addition, an explicit parameter is introduced that al-
lows system administrators to control the relative impor-
tance of these conflicting goals.

5.1 Share-Based Allocation

In proportional-share frameworks, resource rights are
encapsulated by shares, which are owned by clients that
consume resources.4 A client is entitled to consume re-
sources proportional to its share allocation; it is guaran-
teed a minimum resource fraction equal to its fraction of
the total shares in the system. Shares represent relative
resource rights that depend on the total number of shares
contending for a resource. Client allocations degrade
gracefully in overload situations, and clients proportion-
ally benefit from extra resources when some allocations
are underutilized.

Both randomized and deterministic algorithms have
been proposed for proportional-share allocation of
space-shared resources. The dynamic min-funding revo-
cation algorithm [31, 32] is simple and effective. When
one client demands more space, a replacement algo-
rithm selects a victim client that relinquishes some of its
previously-allocated space. Memory is revoked from the

4Shares are alternatively referred to as tickets or weights in the lit-
erature. The term clients is used to abstractly refer to entities such as
threads, processes, VMs, users, or groups.
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client that owns the fewest shares per allocated page. Us-
ing an economic analogy, the shares-per-page ratio can
be interpreted as a price; revocation reallocates memory
away from clients paying a lower price to those willing
to pay a higher price.

5.2 Reclaiming Idle Memory

A significant limitation of pure proportional-share al-
gorithms is that they do not incorporate any informa-
tion about active memory usage or working sets. Mem-
ory is effectively partitioned to maintain specified ratios.
However, idle clients with many shares can hoard mem-
ory unproductively, while active clients with few shares
suffer under severe memory pressure. In general, the
goals of performance isolation and efficient memory uti-
lization often conflict. Previous attempts to cross-apply
techniques from proportional-share CPU resource man-
agement to compensate for idleness have not been suc-
cessful [25].

ESX Server resolves this problem by introducing an
idle memory tax. The basic idea is to charge a client
more for an idle page than for one it is actively using.
When memory is scarce, pages will be reclaimed prefer-
entially from clients that are not actively using their full
allocations. The tax rate specifies the maximum fraction
of idle pages that may be reclaimed from a client. If the
client later starts using a larger portion of its allocated
memory, its allocation will increase, up to its full share.

Min-funding revocation is extended to use an adjusted
shares-per-page ratio. For a client with � shares and an
allocation of � pages, of which a fraction � are active,
the adjusted shares-per-page ratio � is

��� �
���	�
���
���������������

where the idle page cost ����������������� for a given tax
rate  �!"�$#%� .

The tax rate � provides explicit control over the de-
sired policy for reclaiming idle memory. At one ex-
treme, ���& specifies pure share-based isolation. At
the other, �(')� specifies a policy that allows all of a
client’s idle memory to be reclaimed for more produc-
tive uses.

The ESX Server idle memory tax rate is a config-
urable parameter that defaults to 75%. This allows most
idle memory in the system to be reclaimed, while still
providing a buffer against rapid working set increases,

masking the latency of system reclamation activity such
as ballooning and swapping.5

5.3 Measuring Idle Memory

For the idle memory tax to be effective, the server
needs an efficient mechanism to estimate the fraction of
memory in active use by each virtual machine. How-
ever, specific active and idle pages need not be identified
individually.

One option is to extract information using native in-
terfaces within each guest OS. However, this is impracti-
cal, since diverse activity metrics are used across various
guests, and those metrics tend to focus on per-process
working sets. Also, guest OS monitoring typically relies
on access bits associated with page table entries, which
are bypassed by DMA for device I/O.

ESX Server uses a statistical sampling approach to ob-
tain aggregate VM working set estimates directly, with-
out any guest involvement. Each VM is sampled inde-
pendently, using a configurable sampling period defined
in units of VM execution time. At the start of each sam-
pling period, a small number � of the virtual machine’s
“physical” pages are selected randomly using a uniform
distribution. Each sampled page is tracked by invalidat-
ing any cached mappings associated with its PPN, such
as hardware TLB entries and virtualized MMU state.
The next guest access to a sampled page will be inter-
cepted to re-establish these mappings, at which time a
touched page count * is incremented. At the end of the
sampling period, a statistical estimate of the fraction �
of memory actively accessed by the VM is �$�+*,� � .

The sampling rate may be controlled to tradeoff over-
head and accuracy. By default, ESX Server samples
100 pages for each 30 second period. This results in at
most 100 minor page faults per period, incurring negli-
gible overhead while still producing reasonably accurate
working set estimates.

Estimates are smoothed across multiple sampling pe-
riods. Inspired by work on balancing stability and agility
from the networking domain [16], we maintain separate
exponentially-weighted moving averages with different
gain parameters. A slow moving average is used to pro-
duce a smooth, stable estimate. A fast moving average

5The configured tax rate applies uniformly to all VMs. While the
underlying implementation supports separate, per-VM tax rates, this
capability is not currently exposed to users. Customized or graduated
tax rates may be useful for more sophisticated control over relative
allocations and responsiveness.
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Figure 6: Active Memory Sampling. A Windows VM
executes a simple memory toucher application. The solid
black line indicates the amount of memory repeatedly touched,
which is varied over time. The dotted black line is the
sampling-based statistical estimate of overall VM memory us-
age, including background Windows activities. The estimate is
computed as the max of fast (gray dashed line) and slow (gray
dotted line) moving averages. The spike labelled ZPT is due to
the Windows “zero page thread.”

adapts quickly to working set changes. Finally, a version
of the fast average that incorporates counts from the cur-
rent sampling period is updated incrementally to reflect
rapid intra-period changes.

The server uses the maximum of these three values to
estimate the amount of memory being actively used by
the guest. This causes the system to respond rapidly to
increases in memory usage and more gradually to de-
creases in memory usage, which is the desired behavior.
A VM that had been idle and starts using memory is al-
lowed to ramp up to its share-based allocation quickly,
while a VM that had been active and decreases its work-
ing set has its idle memory reclaimed slowly via the idle
memory tax.

5.4 Experimental Results

This section presents quantitative experiments that
demonstrate the effectiveness of memory sampling and
idle memory taxation. Memory sampling is used to es-
timate the fraction of memory actively used by each
VM. These estimates are then incorporated into the idle
memory tax computations performed by the share-based
memory allocation algorithm.

Figure 6 presents the results of an experiment de-
signed to illustrate the memory sampling technique. For
this experiment, ESX Server was running on a dual-
processor Dell Precision 420, configured to execute one
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Figure 7: Idle Memory Tax. Two VMs with identical
share allocations are each configured with 256 MB in an over-
committed system. VM1 (gray) runs Windows, and remains
idle after booting. VM2 (black) executes a memory-intensive
Linux workload. For each VM, ESX Server allocations are
plotted as solid lines, and estimated memory usage is indicated
by dotted lines. With an initial tax rate of 0%, the VMs each
converge on the same 179 MB allocation. When the tax rate
is increased to 75%, idle memory is reclaimed from VM1 and
reallocated to VM2, boosting its performance by over 30%.

VM running Windows 2000 Advanced Server on a sin-
gle 800 MHz Pentium III CPU.

A user-level toucher application allocates and repeat-
edly accesses a controlled amount of memory that is var-
ied between 50 MB and 250 MB. An additional 10–
20 MB is accessed by standard Windows background
activities. As expected, the statistical estimate of ac-
tive memory usage responds quickly as more memory
is touched, tracking the fast moving average, and more
slowly as less memory is touched, tracking the slow
moving average.

We were originally surprised by the unexpected spike
immediately after the toucher application terminates, an
effect that does not occur when the same experiment is
run under Linux. This is caused by the Windows “zero
page thread” that runs only when no other threads are
runnable, clearing the contents of pages it moves from
the free page list to the zeroed page list [22].

Figure 7 presents experimental results that demon-
strate the effectiveness of imposing a tax on idle mem-
ory. For this experiment, ESX Server was running on
a Dell Precision 420 multiprocessor with two 800 MHz
Pentium III CPUs and 512 MB RAM, of which approx-
imately 360 MB was available for executing VMs.6

6Some memory is required for per-VM virtualization overheads,
which are discussed in Section 6.2. Additional memory is required for
ESX Server itself; the smallest recommended configuration is 512 MB.
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Two VMs with identical share allocations are each
configured with 256 MB “physical” memory. The
first VM that powers on runs Windows 2000 Advanced
Server, and remains idle after booting. A few min-
utes later, a second VM is started, running a memory-
intensive dbench workload [28] under Red Hat Linux
7.2. The initial tax rate is set to �+�  , resulting in a
pure share-based allocation. Despite the large difference
in actual memory usage, each VM receives the same
179 MB allocation from ESX Server. In the middle of
the experiment, the tax rate is increased to �%�) � ��� ,
causing memory to be reclaimed from the idle Windows
VM and reallocated to the active Linux VM running
dbench. The dbench workload benefits significantly
from the additional memory, increasing throughput by
over 30% after the tax rate change.

6 Allocation Policies

ESX Server computes a target memory allocation for
each VM based on both its share-based entitlement and
an estimate of its working set, using the algorithm pre-
sented in Section 5. These targets are achieved via the
ballooning and paging mechanisms presented in Sec-
tion 3. Page sharing runs as an additional background
activity that reduces overall memory pressure on the sys-
tem. This section describes how these various mecha-
nisms are coordinated in response to specified allocation
parameters and system load.

6.1 Parameters

System administrators use three basic parameters to
control the allocation of memory to each VM: a min
size, a max size, and memory shares. The min size is a
guaranteed lower bound on the amount of memory that
will be allocated to the VM, even when memory is over-
committed. The max size is the amount of “physical”
memory configured for use by the guest OS running in
the VM. Unless memory is overcommitted, VMs will be
allocated their max size.

Memory shares entitle a VM to a fraction of physical
memory, based on a proportional-share allocation pol-
icy. For example, a VM that has twice as many shares as
another is generally entitled to consume twice as much
memory, subject to their respective min and max con-
straints, provided they are both actively using their allo-
cated memory.

6.2 Admission Control

An admission control policy ensures that sufficient
unreserved memory and server swap space is available
before a VM is allowed to power on. Machine memory
must be reserved for the guaranteed min size, as well
as additional overhead memory required for virtualiza-
tion, for a total of min + overhead. Overhead mem-
ory includes space for the VM graphics frame buffer
and various virtualization data structures such as the
pmap and shadow page tables (see Section 2). Typi-
cal VMs reserve 32 MB for overhead, of which 4 to
8 MB is devoted to the frame buffer, and the remainder
contains implementation-specific data structures. Addi-
tional memory is required for VMs larger than 1 GB.

Disk swap space must be reserved for the remaining
VM memory; i.e. max � min. This reservation ensures
the system is able to preserve VM memory under any cir-
cumstances; in practice, only a small fraction of this disk
space is typically used. Similarly, while memory reser-
vations are used for admission control, actual memory
allocations vary dynamically, and unused reservations
are not wasted.

6.3 Dynamic Reallocation

ESX Server recomputes memory allocations dynami-
cally in response to various events: changes to system-
wide or per-VM allocation parameters by a system ad-
ministrator, the addition or removal of a VM from the
system, and changes in the amount of free memory that
cross predefined thresholds. Additional rebalancing is
performed periodically to reflect changes in idle mem-
ory estimates for each VM.

Most operating systems attempt to maintain a mini-
mum amount of free memory. For example, BSD Unix
normally starts reclaiming memory when the percentage
of free memory drops below 5% and continues reclaim-
ing until the free memory percentage reaches 7% [18].
ESX Server employs a similar approach, but uses four
thresholds to reflect different reclamation states: high,
soft, hard, and low, which default to 6%, 4%, 2%, and
1% of system memory, respectively.

In the the high state, free memory is sufficient and no
reclamation is performed. In the soft state, the system
reclaims memory using ballooning, and resorts to pag-
ing only in cases where ballooning is not possible. In
the hard state, the system relies on paging to forcibly re-
claim memory. In the rare event that free memory tran-
siently falls below the low threshold, the system con-
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tinues to reclaim memory via paging, and additionally
blocks the execution of all VMs that are above their tar-
get allocations.

In all memory reclamation states, the system com-
putes target allocations for VMs to drive the aggregate
amount of free space above the high threshold. A transi-
tion to a lower reclamation state occurs when the amount
of free memory drops below the lower threshold. Af-
ter reclaiming memory, the system transitions back to
the next higher state only after significantly exceeding
the higher threshold; this hysteresis prevents rapid state
fluctuations.

To demonstrate dynamic reallocation we ran a work-
load consisting of five virtual machines. A pair of VMs
executed a Microsoft Exchange benchmark; one VM ran
an Exchange Server under Windows 2000 Server, and
a second VM ran a load generator client under Win-
dows 2000 Professional. A different pair executed a Cit-
rix MetaFrame benchmark; one VM ran a MetaFrame
Server under Windows 2000 Advanced Server, and a
second VM ran a load generator client under Windows
2000 Server. A final VM executed database queries with
Microsoft SQL Server under Windows 2000 Advanced
Server. The Exchange VMs were each configured with
256 MB memory; the other three VMs were each con-
figured with 320 MB. The min size for each VM was set
to half of its configured max size, and memory shares
were allocated proportional to the max size of each VM.

For this experiment, ESX Server was running on
an IBM Netfinity 8500R multiprocessor with eight
550 MHz Pentium III CPUs. To facilitate demonstrat-
ing the effects of memory pressure, machine memory
was deliberately limited so that only 1 GB was avail-
able for executing VMs. The aggregate VM workload
was configured to use a total of 1472 MB; with the addi-
tional 160 MB required for overhead memory, memory
was overcommitted by more than 60%.

Figure 8(a) presents ESX Server allocation states dur-
ing the experiment. Except for brief transitions early in
the run, nearly all time is spent in the high and soft states.
Figure 8(b) plots several allocation metrics over time.
When the experiment is started, all five VMs boot con-
currently. Windows zeroes the contents of all pages in
“physical” memory while booting. This causes the sys-
tem to become overcommitted almost immediately, as
each VM accesses all of its memory. Since the Windows
balloon drivers are not started until late in the boot se-
quence, ESX Server is forced to start paging to disk. For-
tunately, the “share before swap” optimization described
in Section 4.3 is very effective: 325 MB of zero pages

0 10 20 30 40 50 60 70 80 90

low

hard

soft

high

A
llo

c 
S

ta
te

(a) State Transitions

0 10 20 30 40 50 60 70 80 90
0

500

1000

M
em

o
ry

 (
M

B
) Alloc

Active
Balloon
Shared

(b) All VMs

0 10 20 30 40 50 60 70 80 90
0

100

200

300

M
em

o
ry

 (
M

B
)

(c) Citrix Server

0 10 20 30 40 50 60 70 80 90

Time (min)

0

100

200

300

M
em

o
ry

 (
M

B
)

(d) SQL Server

Figure 8: Dynamic Reallocation. Memory allocation
metrics over time for a consolidated workload consisting of
five Windows VMs: Microsoft Exchange (separate server and
client load generator VMs), Citrix MetaFrame (separate server
and client load generator VMs), and Microsoft SQL Server.
(a) ESX Server allocation state transitions. (b) Aggregate al-
location metrics summed over all five VMs. (c) Allocation
metrics for MetaFrame Server VM. (d) Allocation metrics for
SQL Server VM.
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are reclaimed via page sharing, while only 35 MB of
non-zero data is actually written to disk.7 As a result of
sharing, the aggregate allocation to all VMs approaches
1200 MB, exceeding the total amount of machine mem-
ory. Soon after booting, the VMs start executing their
application benchmarks, the amount of shared memory
drops rapidly, and ESX Server compensates by using
ballooning to reclaim memory. Page sharing continues
to exploit sharing opportunities over the run, saving ap-
proximately 200 MB.

Figures 8(c) and 8(d) show the same memory al-
location data for the Citrix MetaFrame Server VM
and the Microsoft SQL Server VM, respectively. The
MetaFrame Server allocation tracks its active memory
usage, and also grows slowly over time as page sharing
reduces overall memory pressure. The SQL Server allo-
cation starts high as it processes queries, then drops to
160 MB as it idles, the lower bound imposed by its min
size. When a long-running query is issued later, its ac-
tive memory increases rapidly, and memory is quickly
reallocated from other VMs.

7 I/O Page Remapping

Modern IA-32 processors support a physical address
extension (PAE) mode that allows the hardware to ad-
dress up to 64 GB of memory with 36-bit addresses [13].
However, many devices that use DMA for I/O transfers
can address only a subset of this memory. For example,
some network interface cards with 32-bit PCI interfaces
can address only the lowest 4 GB of memory.

Some high-end systems provide hardware support that
can be used to remap memory for data transfers using a
separate I/O MMU. More commonly, support for I/O in-
volving “high” memory above the 4 GB boundary in-
volves copying the data through a temporary bounce
buffer in “low” memory. Unfortunately, copying can im-
pose significant overhead resulting in increased latency,
reduced throughput, or increased CPU load.

This problem is exacerbated by virtualization, since
even pages from virtual machines configured with less
than 4 GB of “physical” memory may be mapped to ma-
chine pages residing in high memory. Fortunately, this
same level of indirection in the virtualized memory sys-
tem can be exploited to transparently remap guest pages
between high and low memory.

7This is the peak amount of memory paged to disk over the entire
run. To avoid clutter, paging metrics were omitted from the graphs; the
amount of data swapped to disk was less than 20 MB for the remainder
of the experiment.

ESX Server maintains statistics to track “hot” pages
in high memory that are involved in repeated I/O op-
erations. For example, a software cache of physical-
to-machine page mappings (PPN-to-MPN) associated
with network transmits is augmented to count the num-
ber of times each page has been copied. When the
count exceeds a specified threshold, the page is trans-
parently remapped into low memory. This scheme has
proved very effective with guest operating systems that
use a limited number of pages as network buffers. For
some network-intensive workloads, the number of pages
copied is reduced by several orders of magnitude.

The decision to remap a page into low memory in-
creases the demand for low pages, which may become a
scarce resource. It may be desirable to remap some low
pages into high memory, in order to free up sufficient
low pages for remapping I/O pages that are currently
“hot.” We are currently exploring various techniques,
ranging from simple random replacement to adaptive ap-
proaches based on cost-benefit tradeoffs.

8 Related Work

Virtual machines have been used in numerous re-
search projects [3, 7, 8, 9] and commercial products
[20, 23] over the past several decades. ESX Server
was inspired by recent work on Disco [3] and Cellular
Disco [9], which virtualized shared-memory multipro-
cessor servers to run multiple instances of IRIX.

ESX Server uses many of the same virtualization tech-
niques as other VMware products. One key distinction
is that VMware Workstation uses a hosted architecture
for maximum portability across diverse desktop systems
[23], while ESX Server manages server hardware di-
rectly for complete control over resource management
and improved I/O performance.

Many of the mechanisms and policies we developed
were motivated by the need to run existing commodity
operating systems without any modifications. This en-
ables ESX Server to run proprietary operating systems
such as Microsoft Windows and standard distributions
of open-source systems such as Linux.

Ballooning implicitly coaxes a guest OS into reclaim-
ing memory using its own native page replacement algo-
rithms. It has some similarity to the “self-paging” tech-
nique used in the Nemesis system [11], which requires
applications to handle their own virtual memory opera-
tions, including revocation. However, few applications
are capable of making their own page replacement deci-
sions, and applications must be modified to participate in

12



an explicit revocation protocol. In contrast, guest operat-
ing systems already implement page replacement algo-
rithms and are oblivious to ballooning details. Since they
operate at different levels, ballooning and self-paging
could be used together, allowing applications to make
their own decisions in response to reclamation requests
that originate at a much higher level.

Content-based page sharing was directly influenced
by the transparent page sharing work in Disco [3]. How-
ever, the content-based approach used in ESX Server
avoids the need to modify, hook, or even understand
guest OS code. It also exploits many opportunities for
sharing missed by both Disco and the standard copy-on-
write techniques used in conventional operating systems.

IBM’s MXT memory compression technology [27],
which achieves substantial memory savings on server
workloads, provided additional motivation for page
sharing. Although this hardware approach eliminates re-
dundancy at a sub-page granularity, its gains from com-
pression of large zero-filled regions and other patterns
can also be achieved via page sharing.

ESX Server exploits the ability to transparently remap
“physical” pages for both page sharing and I/O page
remapping. Disco employed similar techniques for
replication and migration to improve locality and fault
containment in NUMA multiprocessors [3, 9]. In gen-
eral, page remapping is a well-known approach that is
commonly used to change virtual-to-physical mappings
in systems that do not have an extra level of “virtualized
physical” addressing. For example, remapping and page
coloring have been used to improve cache performance
and isolation [17, 19, 21].

The ESX Server mechanism for working-set estima-
tion is related to earlier uses of page faults to main-
tain per-page reference bits in software on architectures
lacking direct hardware support [2]. However, we com-
bine this technique with a unique statistical sampling ap-
proach. Instead of tracking references to all pages indi-
vidually, an aggregate estimate of idleness is computed
by sampling a small subset.

Our allocation algorithm extends previous research on
proportional-share allocation of space-shared resources
[31, 32]. The introduction of a “tax” on idle mem-
ory solves a significant known problem with pure share-
based approaches [25], enabling efficient memory uti-
lization while still maintaining share-based isolation.
The use of economic metaphors is also related to more
explicit market-based approaches designed to facilitate
decentralized application-level optimization [12].

9 Conclusions

We have presented the core mechanisms and policies
used to manage memory resources in ESX Server [29],
a commercially-available product. Our contributions in-
clude several novel techniques and algorithms for allo-
cating memory across virtual machines running unmod-
ified commodity operating systems.

A new ballooning technique reclaims memory from
a VM by implicitly causing the guest OS to invoke its
own memory management routines. An idle memory tax
was introduced to solve an open problem in share-based
management of space-shared resources, enabling both
performance isolation and efficient memory utilization.
Idleness is measured via a statistical working set esti-
mator. Content-based transparent page sharing exploits
sharing opportunities within and between VMs without
any guest OS involvement. Page remapping is also lever-
aged to reduce I/O copying overheads in large-memory
systems. A higher-level dynamic reallocation policy co-
ordinates these diverse techniques to efficiently support
virtual machine workloads that overcommit memory.

We are currently exploring a variety of issues re-
lated to memory management in virtual machine sys-
tems. Transparent page remapping can be exploited to
improve locality and fault containment on NUMA hard-
ware [3, 9] and to manage the allocation of cache mem-
ory to VMs by controlling page colors [17]. Additional
work is focused on higher-level grouping abstractions
[30, 31], multi-resource tradeoffs [24, 31], and adaptive
feedback-driven workload management techniques [5].
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