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Abstract

Energy management for servers is now necessary
for technical, financial, and environmental reasons.
This paper describes three policies designed to re-
duce energy consumption in web servers. The poli-
cies employ two power management mechanisms:
dynamic voltage scaling (DVS), an existing mech-
anism, and request batching, a new mechanism in-
troduced in this paper. The first policy uses DVS
in isolation, except that we extend recently intro-
duced task—based DVS policies for use in server en-
vironments with many concurrent tasks. The sec-
ond policy uses request batching to conserve energy
during periods of low workload intensity. The third
policy uses both DVS and request batching mecha-
nisms to reduce processor energy usage over a wide
range of workload intensities. All the policies trade
off system responsiveness to save energy. However,
the policies employ the mechanisms in a feedback—
driven control framework in order to conserve en-
ergy while maintaining a specified quality of service
level, as defined by a percentile-level response time.

We evaluate the policies using Salsa, a web server
simulator that has been extensively validated for
both energy and response time against measure-
ments from a commodity web server. Three day-
long static web workloads from real web server sys-
tems are used to quantify the energy savings: the
Nagano Olympics98 web server, a financial services
company web site, and a disk intensive web work-
load. Our results show that when required to main-
tain a 90th—percentile response time of 50ms, the
DVS and request batching policies save from 8.7% to
38% and from 3.1% to 27% respectively of the CPU
energy used by the base system. The two policies
provide these savings for complementary workload
intensities. The combined policy is effective for all
three workloads across a broad range of intensities,
saving from 17% to 42% of the CPU energy.

*This research has been supported in part by The Defense
Advanced Research Projects Agency under contract F33615-
00-C-1736.

1 Introduction

There are many technical, financial, and environ-
mental motivations to reduce server energy con-
sumption in Internet data centers. In this paper, we
describe three policies for reducing energy consump-
tion of server processors during web serving, a com-
mon application in data centers. The policies em-
ploy two energy management mechanisms: dynamic
voltage scaling, an existing mechanism, and request
batching, a new mechanism we introduce in this pa-
per. All three policies save energy while maintaining
server responsiveness at or better than a specified
quality of service level. We evaluate the policies
using Salsa, a web server simulator that has been
extensively validated for accuracy in both energy
consumption and response times against measure-
ments from a commodity server. The evaluation
uses three day-long static web serving workloads.

The first policy uses dynamic voltage scaling (DVS),
a mechanism that lets the processor frequency and
voltage be varied dynamically. DVS-based policies
leverage the fact that a given task can be completed
for less energy if executed at a lower processor fre-
quency and voltage. We extend recently introduced
task—based DVS policies [7, 14] for use in environ-
ments with many concurrent tasks, such as in web
servers. The second policy is based on a new mecha-
nism called request batching that groups requests re-
ceived by the server and executes them in batches,
placing the server processor in a low—energy state
between batches. These policies are complemen-
tary in two respects: they require different kinds of
support from the system hardware and are effective
over different ranges of workload intensities. The
third policy combines both request batching and
dynamic voltage scaling mechanisms to conserve en-
ergy across a broader range of workload intensities
than the individual policies. All three policies trade
off system responsiveness in order to save energy.
However, the policies employ a feedback—driven con-
trol framework in order to conserve energy while
maintaining a given quality of service level, as de-



fined by a percentile—level response time.

The request batching and dynamic voltage scaling
policies target complementary ranges of workload
intensities: for a given QoS level, request batch-
ing works well when the workload is light, while
DVS yields more savings as the workload intensi-
fies. The combined policy reduces energy consump-
tion over a broad range of workload intensities. For
the range of workloads and intensities examined in
this paper, we find that request batching provides
from 3.1% to 27% savings in CPU energy consump-
tion while dynamic voltage scaling provides from
8.7% to 38% savings. The combined policy pro-
vides savings in CPU energy consumption ranging
from 16.6% to 41.9%. All these savings are realized
while maintaining the 90th—percentile first—packet
response times at or better than 50ms.

This paper makes the following contributions:

e Presents a DVS-based policy for use in server
environments with concurrent tasks, an evolu-
tion of existing task—based DVS policies [7, 14].

e Introduces a new energy management mecha-
nism, request batching, and a policy that em-
ploys it.

e Leverages the DVS and request batching mech-
anisms into a combined policy that achieves en-
ergy savings across a broad range of workload
intensities.

e Demonstrates that by using a feedback—driven
framework, the policies achieve significant en-
ergy savings while maintaining system respon-
siveness at or better than a desired level.

The rest of this paper is organized as follows. Sec-
tion 2 explains why energy management is crucial
for Internet data centers. Section 3 contains a de-
scription of the three policies. Section 4 describes
the workloads used in this study, and Salsa, the sim-
ulator we use for evaluating the policies. The three
policies are evaluated in Section 5. A comparison
to related work is presented in Section 6. Finally,
Section 7 concludes the paper.

2 Why Manage Energy Usage in
Data Centers?

There are many technical, financial, and environ-
mental motivations to reduce server energy con-

sumption. For instance, data centers deploy thou-
sands of servers, densely packed to maximize floor
space utilization. Such dense deployment pushes the
limits of power delivery and cooling systems. Anec-
dotal evidence from data center operators points
to the intermittent failures of computing nodes in
densely packed systems due to insufficient cooling.
Furthermore, constraints on the amount of power
that can be delivered to server racks makes energy
conservation critical for fully utilizing the available
space on these racks.

Beyond these technical motivations for reducing en-
ergy usage, there are two compelling financial in-
centives for data centers in the United States to
manage server energy usage. Similar financial ar-
guments may also apply in other parts of the world.
First, data centers typically bundle energy costs into
the cost they charge consumers for hosting. For
instance, the average price to rent a full rack of
space (about 3ft x 3ft x 6ft) at a data center is
approximately US$1000 per month as of Septem-
ber 2002!. For this price, the data center provides
physical space, energy, energy backup (UPS), cool-
ing, and support services (offices). Bandwidth is
metered and is usually an extra charge. While the
amount of power provided per rack varies from one
data center to another, all centers include at least
4KW of power per rack, with some delivering up to
TKW. Thus, with energy costs averaging 8 cents per
kWh, rack energy usage alone could account for up
to 23% to 50% of colocation revenue. Similar argu-
ments apply for managed hosting (where the data
center controls and owns the IT equipment and pro-
vides the service) as well. Consequently, there is a
strong incentive to minimize server energy usage in
data centers.

Second, faced with the prospect of constructing new
facilities in order to meet the electricity demands of
data centers, many utilities have instituted rate tar-
iffs or upfront deposits [16, page 56]. For example,
Puget Sound Energy’s schedule 449 requires the cus-
tomer to bear costs associated with dedicated gener-
ation and/or delivery facilities [6]. Since a data cen-
ter can always supplement utility-provided power
with on-site generation, a center could lower its cap-
ital outlay by placing lower demands on the utility
and employing on-site generation during periods of

1 Approximate average colocation price
charged by hosting  centers such as Mzima
(www.mzimahosting.com/prodserv/promotionl.html),
XMission  (www.xmission.com/business/colocation.html),
and Terracom Network Services (www.tns.net/internet/co-
lo.html?gl).



peak power demand. Reducing the average energy
usage is critical for this strategy to be successful.

3 Energy Management Policies

Our policies focus on reducing server CPU energy
consumption. While CPU energy is only one com-
ponent of the system energy, our previous research,
based on measurements from an actual commodity
system that typifies servers currently deployed in
Internet Data Centers, determined that the CPU is
the dominant consumer of system energy [2]. Fur-
thermore, when considering active system compo-
nents, the CPU exhibits the most variation in en-
ergy consumption. Finally, these policies are ap-
plicable to individual web server systems and com-
plement energy management techniques for server
clusters [4, 5, 19].

3.1 Feedback—driven Control
work

Frame-

All three energy management policies use a
feedback—driven control framework to maintain the
system responsiveness at a specified level. The sys-
tem administrator establishes a percentile-based re-
sponse time goal. A 90th—percentile goal means that
90% of the requests received over a specific interval
must have a response time equal to or better than
the specified goal. In our policies we compute the
90th—percentile response time over an entire day,
but other intervals could be used (see Section 5.1).
The server continuously monitors the response time
of individual requests as measured by the difference
between the time the request was received at the
server and the time the first packet of the response
was sent to the client. The feedback—driven con-
trol framework adjusts policy parameters to increase
energy savings when measured response times are
lower (better) than the response time goal, or to
decrease energy savings when system is not meeting
its response time goal. This is done on a best-effort
basis and the system may not be able to meet the
goal under conditions of extreme load.

When evaluating the policies in this paper, we
mostly use a 90th—percentile response time goal of
50ms. Relaxing the server response time to 50ms
will have minimal effect on the client perceived re-
sponse times (CPRT). This is because the CPRT

is typically dominated by wide area network over-
heads [20], enabling a 50ms server response time to
be masked by the WAN delays. As a result, the
web server appears responsive to the end—user even
if it takes up to 50ms to respond to requests. We
also show how the energy savings change as both
the percentile and response time goal are varied.

While other responsiveness metrics (such as the
average response time) could be used, most ser-
vice level agreements are crafted based on a per-
centile goal (for instance, see the BS Web Services
SLA [22]). The response times for individual re-
quests can be ascertained through a combination of
the OS tagging incoming packets with their arrival
time, and the web server notifying the OS when
requests are serviced. Current versions of Linux al-
ready tag incoming packets with their arrival time
and support the SIOCGSTAMP ioctl which returns
the arrival time of the last packet passed to the ap-
plication on a specified socket. Web servers com-
monly generate a time stamp for each request com-
pletion, since this information is typically recorded
in the web server access log. Thus, computing server
response time should require at most one additional
ioctl and a simple calculation for each request. Note
that the control mechanism only needs to determine
the percentage of responses that meet the target, as
opposed to actually computing the 90th—percentile
response time, which can be computationally expen-
sive.

3.2 Dynamic Voltage Scaling Policy

Dynamic voltage scaling (DVS) policies reduce en-
ergy consumption by varying the processor operat-
ing point (frequency and voltage) according to the
rate at which work must be done. Recent research
in DVS policies set the processor operating point
using a task—based approach. For instance, Flaut-
ner et. al. employ a policy that sets CPU speed
on a per—task basis [7]. Lorch and Smith describe
an algorithm for improving the performance of task-
based DVS policies when task completion times can-
not be accurately predicted [14]. These techniques
perform well for desktop application workloads but
are unsuitable for environments with many concur-
rent tasks, such as server systems. Consequently,
while our DVS policy keeps track of the response
time of individual requests (“tasks”), it employs
a feedback—driven control framework (explained in
Section 3.1) to meet responsiveness requirements in
the aggregate, instead of for individual tasks. The



DVS policy adjusts the processor operating point
at regular intervals or quanta to meet the overall
responsiveness requirement.

At the beginning of each quantum, the DVS policy
selects an operating point (voltage and frequency)
for the next quantum based on the response times
for all previously serviced requests. If the system
is more responsive than required, the processor fre-
quency is decreased by one step (if not already at
its minimum) and the voltage is set accordingly. If
the response time goal is not being met, the fre-
quency is increased by one step (if not already at
the maximum) after the core voltage is sufficiently
raised.

Dynamic voltage scaling provides the most energy
benefits for moderately intense workloads. Since
the processor operating point cannot be lowered be-
low a certain level, DVS provides few benefits for
low intensity workloads. Likewise, DVS yields lit-
tle benefit for very heavy workloads, since the pro-
cessor must run mostly at full speed to meet the
responsiveness requirement. The operating point
that yields the most savings depends on the proces-
sor parameters and the DVS policy. For instance,
with the DVS processor we consider in this paper
(see Section 4.2 for the parameters), a DVS policy
that keeps the processor fully utilized by adapting
the operating point to the available load achieves
its maximum energy savings for a load that is ap-
proximately 58% of the processor’s capacity at its
highest frequency setting.

3.3 Request Batching Policy

Policies based on dynamic voltage scaling are not
very effective at low workload intensities. However,
previous studies have observed that Web servers
are relatively idle for large fractions of time [13].
Even when idle, server processors consume signif-
icant amounts of power. Unfortunately, since in-
coming requests arrive asynchronously, web servers
cannot afford to use energy conserving states with
significant wakeup penalties such as the “hiberna-
tion” mode commonly found in laptops.

Request batching is a mechanism that we have devel-
oped to conserve energy during periods of low work-
load intensities. In request batching, the servicing of
incoming packets from the network is delayed while
the main processor of the web server is kept in a
low power state. Incoming packets are accumulated

in memory until a packet has been kept pending
for longer than a specified batching timeout®. Re-
quest batching saves energy because while requests
are being accumulated, the processor can be placed
in a lower power state such as Deep Sleep [11, Page
82] instead of just idling it. Furthermore, since web
servers are typically idle or at low utilization much
of the time, the energy saved during idle periods can
result in significant energy savings. For example, if
placing the processor in Deep Sleep mode reduces
power consumption by 2.5 Watts, a web server that
is on average only 25% utilized could save 162 KJ
of energy per day.

Request batching provides the most energy saving
benefits for light workloads. For a given batching
timeout, the savings from request batching decrease
with increasing workload intensity (until the proces-
sor becomes fully utilized) 3. Increasing the batch-
ing timeout saves more energy at the expense of in-
creased response time. In order to meet the specified
quality of service (system responsiveness) level, we
use a feedback—driven control framework (explained
in Section 3.1) to dynamically adapt the batching
timeout.

When a processor is in Deep Sleep, it requires the
delivery of a specific set of signals in order to be reac-
tivated. Network adapters that support the Wake-
on-LAN feature [10] are already capable of waking
up a processor in Deep Sleep, and the same mech-
anisms could be employed here. Furthermore, most
network adapters are capable of DMA-ing incoming
packets into pre-specified buffers in memory. Simi-
larly, the disk can process pending commands and
DMA data into memory. The experience we gained
with our prototype (described in Section 4.2.1) in-
dicates that batching timeouts of up to 100ms will
not adversely affect TCP performance.

The request batching policy places the processor
into Deep Sleep mode when there are no pending re-
quests to be serviced. The policy adjusts the length
of the batching timeout based on the system respon-
siveness. The batching timeout is varied in steps of

2We also considered using a mazimum request backlog,
but discovered that the timeout, by itself, provides the level
of control needed.

3Consider requests arriving at \/sec, each taking T sec-
onds to process. Ignoring the time taken to wake up
from Deep Sleep, the energy savings from batching will
be (1 — A7) (Pigie — Pps) per unit time. Expressed as
a fraction over the base energy, the batching savings are:
(1 = A7) (Pigte = Pps)/[Pmaz AT + Pigie (1 — A7)]. This
decreases sublinearly as the request rate increases.
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Figure 1: Energy savings (over the base case) from
DVS and request batching for a range of workload
intensities.

10ms. If the system is more responsive than needed,
the timeout is increased one step. If it is not meet-
ing the specified responsiveness target, the timeout
is decreased one step. Since the processor operates
at full power during the wakeup sequence (x1.5ms),
it is not advantageous to decrease the timeout be-
low a certain limit. If the timeout falls below this
limit, the request batching mechanism is disabled
until the timeout is again larger than this limit.

3.4 Combined Policy

Dynamic voltage scaling and request batching tar-
get different workload intensity ranges on the server.
Figure 1 illustrates this behavior graphically. To
handle a range of workload intensities beyond what
each policy can handle individually, we have de-
vised a combined policy that leverages both request
batching and dynamic voltage scaling mechanisms.
The combined policy invokes the request batching
and voltage scaling mechanisms based on the ac-
tivity level of the server and reduces energy con-
sumption across a broad range of workload intensi-
ties while maintaining system responsiveness at the
required level.

When there are no pending requests to be serviced,
the processor is placed into DeepSleep mode as in
request batching. This policy adjusts the batching
timeout as in the request batching policy. When
the processor wakes up from Deep Sleep, it is placed
at the lowest operating frequency. From this point
onwards, the policy adjusts the processor frequency
and voltage as in the DVS policy.

4 Methodology
4.1 Workloads

We constructed workloads using web server logs
obtained from several production Internet servers.
The first workload, Olympics98, is derived from the
requests received on Feb 19, 1998 at one geograph-
ically replicated facility hosting the 1998 Winter
Olympics web site. The second workload, Finance,
is derived from the requests recorded on Oct 19,
1999 at the web site of a major financial services
company. The third workload, referred to as Disk-
Intense, is derived from the May 2, 2001 log of the
Silicon Valley (SV) proxy server operated by the In-
formation Resource Caching (IRCache) Project [12].
Strictly speaking, a proxy server is not a web server
in that it does not have its own content, but we in-
cluded this workload to represent a scenario of a web
server with extremely low cache locality and thus
high levels of disk activity. A complete description
of the methodology for generating workloads from
server access logs is given elsewhere [2].

The characteristics of the three workloads are sum-
marized in Table 1. The “peak requests per sec-
ond” is the highest observed rate for a one minute
period. The “average requests per connection” is
based on our technique of grouping requests into
connections [2]. The amount of memory needed to
hold the unique data for 97%/98%/99% of all re-
quests is tagged by that moniker.

From the three base workloads, we generate work-
loads representing a range of client load intensities
by scaling the inter-arrival time of connections by
a constant amount. A scalefactor of “2.5x” cor-
responds to reducing the inter-arrival time of con-
nections by a factor of 2.5. While this scaling in-
creases the connection arrival rate by the scalefac-
tor, it maintains the same basic pattern of connec-
tion arrivals. We preserve the inter-arrival times of
requests within a connection since these represent
user think times or network/client overheads in re-
trieving web page components. Chase et. al. have
adopted a similar approach [4].

4.2 Salsa: A Validated Web Server Sim-
ulator

In order to evaluate the policies, we have con-
structed Salsa, a simulator that estimates the en-



Workload Olympics98 Finance Disk-Intense
Avg requests (Peak requests) / sec 97 (171) 16 (46) 15 (30)

Avg requests / connection 8.5 31

Unique files (Total file size) 61,807 (705MB) | 16,872 (171MB) | 698,232 (6,205MB)
Distinct HT'TP Requests 8,370,093 1,360,886 1,290,196
Total response size (excl HI'TP headers) 49,871 MB 2,811 MB 10,172 MB
97%/98%/99% (MB) 24.8/50.9/141 | 3.74/6.46/13.9 | 2,498 /2,860 / 3,382

Table 1: Characteristics of three web server workloads over a 24-hour period.

ergy consumption and response time of a web server.
Salsa is based on a queuing model built using the
CSIM execution engine [15] and determines the
CPU time and energy taken to service web requests
using a model that is parameterized with energy
measurements from a commodity, 600MHz Intel
processor—based web server. Among other events,
Salsa models process scheduling and file cache hits
and misses. At present, Salsa does not model disk
delays, but models the extra energy expended by the
CPU (due to driver code execution) while making
disk accesses.

The processor we simulate with Salsa has maximum
power consumption P, = 27.2 Watts, idle power
consumption Pjg, = 4.97 Watts, and Deep Sleep
power consumption Ppeepsicep = 2.47 Watts. To
evaluate the DVS policy, we scaled data obtained
from a low—power processor to fit the 600MHz In-
tel processor’s maximum frequency and core oper-
ating voltage [18]. The DVS processor has a fre-
quency range of 300MHz - 600MHz variable in steps
of 33MHz, a time quantum of 20ms for varying fre-
quency and voltage, and a core operating voltage
ranging from 1.5V to 2V. The P,,,, and P;g. of the
DVS processor are the same as that of the 600MHz
non-DVS Intel processor.

Our decision to use a simulator to evaluate the poli-
cies was motivated entirely by pragmatic concerns.
If we had replayed the traces against a real web
server that implemented the policies, it would have
taken us over 55 days to create all the data points
in this paper 4. Faster computers could not have
speeded up this time. In contrast, the Salsa simula-
tions on a 1GHz Intel machine took under 4 hours
of wall clock time. However, as we describe below,
we have validated Salsa against a real web server
to ensure that its results can be meaningfully inter-
preted.

4Figure 4(a) alone would have taken 2x(10 points x 12
hrs + 10 points X 2 hrs + 9 points X 6 hrs) = 388 hours
(over 16 days).

The energy consumption reported by Salsa has been
validated against actual measurements for all three
workloads (none of these workloads were used to
calibrate Salsa). We used a modified version of
httperf [17] to replay the workload against the
server. Figure 2(a) shows the measured CPU en-
ergy consumed by the 600MHz system during the
execution, overlaid with the simulator output. The
Finance and Disk-Intense workloads exhibit similar
behavior. Table 2 summarizes the validation results
over a broad range of intensities, from light (Disk-
Intense-2x, Finance-12x) to heavy (Olympics98-
4x). For all three workloads, the error in predicted
energy is less than 6%.

We have also validated the response times predicted
by Salsa for the Olympics98 and Finance workloads
against those measured using the httperf tool. Fig-
ure 2(b) shows the response time predicted by the
simulator overlaid with the measured response times
for the Olympics98 workload at a 5X intensity (we
show data for the 5% intensity because the response
time shows little variation at lower intensities). For
both workloads, the average response time predicted
by the simulator has an error of at most 13.2%
compared to response times measured during exe-
cution. This error arises because the measured re-
sponse time data involves three components: the
server, the network, and the client, of which Salsa is
modeling only the server. Since Salsa does not yet
model disk delays, we have not attempted to vali-
date the response times predicted by Salsa for the
disk—intensive workload. However, when response
time is dominiated by disk access time, any increase
in response time due to CPU power management
will be marginal.



Workload Olympics98-4x Finance-12x Disk-Intense-2x
Measured CPU Energy (Joules) 1,232,710 711,415 627,977
Simulator CPU Energy (Joules) 1,253,652 739,200 663,648
Error in Total Energy 1.70% 3.91% 5.68%
Correlation Coefficient 0.9846 0.9960 0.8485

Table 2: Comparison of Measured to Simulated CPU energy for three workloads. Correlation coefficients

were computed based on the energy used in 30 second intervals over the length of the run.
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Figure 2: (a) Measured vs Simulated Energy Consumption for Olympics98-4x workload. (b) Measured vs
Simulated Response times for Olympics98-5x workload.

4.2.1 Salsa Validation For Request Batch-
ing

Before simulating the request batching policy in
Salsa, we wanted to gain a measure of confidence in
the simulation technique we used. We achieve this
confidence by validating Salsa’s predictions against
a prototype implementation of request batching.

The request batching prototype is implemented on
a commodity 600MHz server running the Apache
web server over a Linux 2.4.3 kernel. We modified
the web server to batch requests whenever all the
Apache child processes were in an idle state: ei-
ther waiting for a new connection or waiting for
new requests on an existing connection. Batching
is disabled when new work arrives until all child
processes become idle again. We batch packets by
leveraging the interrupt coalescing feature in the Al-
teon ACEnic Gigabit Ethernet card [1] on the web
server. Interrupt coalescing groups the interrupts
for a set of packet events (reception or transmis-
sion) into one single interrupt to the host processor
and was introduced to improve network through-

put by reducing interrupt processing overheads [1].
We modified the ACEnic device driver to allow the
packet count and timeout for interrupt coalescence
to be modified dynamically using an ioctl call.

To validate Salsa, we conducted an experiment
where the prototype batches requests with a time-
out of 100 milliseconds or a maximum backlog of 100
packets. There are two key differences between the
prototype and the Salsa implementation we discuss
in the later sections. First, the prototype does not
place the processor in Deep Sleep. Instead, we keep
track of the time that the processor would have been
in Deep Sleep mode, since this is a direct indicator of
the energy savings from batching. Second, the pro-
totype does not incorporate the response time based
feedback control explained in Section 3.1. Conse-
quently, for validation purposes, we execute Salsa
in “open—loop” mode without the feedback control,
and compare the predicted batching and response
times against the measured values.

Figure 3(a) shows the percentage of time for which
request batching was enabled averaged over 90-
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Figure 3: Salsa validation with batching (a) Measured vs Simulated Batch Time for Olympics98-4x work-
load. (b) Measured vs Simulated Response times for Olympics98-5x workload.

second intervals in both the prototype implemen-
tation and Salsa for the Olympics98-4x workload.
The Salsa predictions correlate well with measure-
ments of the prototype, with a correlation coefficient
of 0.828. Over the course of the run, the proto-
type batched requests for a total of 11,953 seconds
while Salsa predicted 12,373 seconds, an error of just
over 3.5%. Figure 3(b) shows the client response
time, averaged over 30-second intervals, for both
the prototype and Salsa executing the Olympics98-
5x workload. The correlation coefficient in response
times is 0.754. The average response time predicted
by the simulator has an error of 4.7% compared to
that measured using the prototype. The same diffi-
culties for validating response times that were out-
lined in Section 4.2 apply here as well. Finally, even
in a LAN environment, we observed that the proto-
type experienced extra TCP retransmissions of less
than 0.1% for a batching timeout of 100ms.

5 Evaluation

We begin by evaluating the DVS and request batch-
ing policies, explaining first how much energy each
policy is able to save when the 90th—percentile re-
sponse time goal is varied. Next, we set the 90th—
percentile response time goal to be 50ms and eval-
uate how both policies behave in terms of energy
savings as the workload intensity is changed. Fi-
nally, we evaluate the combined policy showing how
it is able to sustain energy savings across different

workload intensities for a 90th—percentile response
time goal of 50ms. We also show how the combined
policy behaves as the percentile cutoff is relaxed to
80% and tightened to 95% for a response time goal
of 50ms.

5.1 Dynamic Voltage Scaling Policy

Figure 4(a) shows the energy savings from the DVS
policy over the base system for a range of 90th—
percentile response time goals. The three workloads
exhibit different energy savings because of differing
workload intensities. Relaxing the response time
goal increases the amount of energy savings, up to
a point. For example, the energy savings for the
Disk-Intense-2x and Finance-12x workloads level
off at response time goals higher than 20ms. In
fact, the 20ms response time goals for these two
workloads can be satisfied by running the DVS pro-
cessor at no more than the minimum frequency of
300MHz. In contrast, for a heavier workload such
as Olympics98-4x, the energy savings diminish only
after the 90th—percentile response time goal is re-
laxed to about 100ms. This heavier workload bene-
fits from DVS to a greater extent. Table 3 shows the
energy consumption with and without DVS for the
three workloads when the 90th—percentile response
time goal is 50ms.

Fortunately, the figure shows that the extent to
which the response time goal must be relaxed to
capture the major fraction of the energy savings is
well within acceptable QoS norms. Relaxing the
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Figure 4: (a) Dependence of DVS energy savings on the response time goal. Note: Olympics98-4x does not
have a 10ms data point, since the baseline 90th—percentile response time is itself 12.3ms. (b) Dependence
of DVS energy savings on workload intensity for a 50ms 90th—percentile response time goal.

goal beyond the knee of the curve provides little
improvement in energy savings at the expense of
worsened responsiveness.

Figure 4(b) depicts the effect of workload inten-
sity on the energy savings obtained from the DVS
policy for a 90th—percentile response time goal of
50ms. Here, the x-axis indicates the scalefactor of
the Olympics98 and Disk-Intense workloads, and
the scalefactor divided by 5 for the Finance work-
load. Consistent with the analysis above, the results
show that the energy savings from DVS improve
with increasing workload intensity — but only up to
a point. The largest savings are obtained when the
intensity is between the light and heavy extremes.
Changing the response time goal affects the magni-
tude of the savings, but not the intensity at which
the gains are maximized.

Despite measuring 90th—percentile response time
over an entire day, our control framework is surpris-
ingly robust. Even for the most intense workloads
we consider here, the 90th—percentile goal was at-
tained for 84%, 86%, and 89% respectively of all
5-minute intervals of the Olympics98, Finance, and
Disk-Intense workloads. A more complete discus-
sion of the effect of the control system parameters
on the system responsiveness is beyond the scope of
this paper.

The results make two important points. First,
for moderately intense workloads, dynamic voltage
scaling can provide significant energy savings. Sec-

ond, dynamic voltage scaling is less effective for
workloads that are either light or intense.

5.2 Request Batching Policy

Figure 5(a) illustrates the energy savings due to re-
quest batching as the 90th—percentile response time
goal is varied from 10ms to 200ms. The response
time goal has a significant effect on the energy sav-
ings from request batching. Consistent with the
analysis presented in Section 3.3, our simulation re-
sults show that increasing the response time goal
yields diminishing returns in energy savings. Ta-
ble 3 shows the energy consumption with and with-
out request batching for a 90th—percentile response
time goal of 50ms. The Finance and Disk-Intense
workloads exhibit higher savings because of the pro-
longed periods of very low request rates in these
workloads. For example, the Finance workload has
a very low request rate until about 9:30am (see Fig-
ure 6). Request batching achieves high energy sav-
ings by placing the processor in the Deep Sleep state
for a significant fraction of this time. In contrast,
the Olympics98 workload has relatively fewer peri-
ods where requests can be batched. Compared to
the 90th—percentile response time without request
batching, the 50ms goal is several factors larger.
However, as explained in Section 3.1, the effect on
the client—perceived response time will be minimal
due to the CPRT’s dependence on the WAN delay
between the client and the server.
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Workload Olympics98-4 x Finance-12x Disk-Intense-2x
Base energy — no DVS or Batching (J) 1,253,672 739,212 663,648
Base 90th-percentile response time (ms) 12.3 6.4 3.0

DVS Joules (% savings)

915,204 (27%)

518,844 (30%)

494,082 (25%)

Request batching Joules (% savings)

1,166,128 (7.0%)

606,468 (18.0%)

525,836 (20.8%)

(a) Dependence of request batching energy savings on the response time goal (b) Dependence of
request batching energy savings on workload intensity for a 50ms 90th—percentile response time goal.

Table 3: Energy savings from DVS and Request Batching for a 90th—percentile response time goal of 50ms.

Figure 5(b) illustrates the energy savings with a
90th—percentile response time goal of 50ms com-
pared to the base case where requests are not
batched. The x-axis represents the workload inten-
sity for the Olympics98 and Disk-Intense workloads,
and the intensity divided by 5 for the Finance work-
load. Note that the savings decrease with intensity,
as explained in Section 3.3. As in the case of DVS,
changing the response time goal affects the resultant
energy savings, but does not alter where the gains
from request batching are maximized.

In summary, request batching is an extremely ef-
fective strategy for saving energy when the work-
load has significant periods of low activity. While
increasing the response time goal has a positive ef-
fect on the energy savings, most of the savings can
be captured using a response time goal of around
50ms, without adversely affecting either the client-
perceived response time or TCP/IP performance.

5.3 Combined Policy

Figure 6 shows the savings from DVS and request
batching superimposed over the request rate dur-
ing the course of the Finance-12x workload for a
90th—percentile response time goal of 50ms The fig-
ure clearly shows the effectiveness of request batch-
ing at low request rates or workload intensities, e.g.,
until 9:30am. After a steep climb at 9:30am, the re-
quest rate remains relatively high until about 6pm.
During this interval, request batching provides re-
duced energy savings. In contrast, it is precisely
during this period that DVS provides maximum sav-
ings. This complementary behavior clearly illus-
trates the potential benefits of a policy that em-
ploys both mechanisms for improved energy savings
across a broad range of workload intensities.

Figure 7 compares the energy savings from the
DVS, request-batching, and combined policies for
the Disk-Intense workload at intensities from 1x
to 6x. We can see the DVS and request-batching
mechanisms complementing each other: when the
workload is light, request batching provides the
most savings. As the workload becomes more and
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Figure 6: Energy savings from DVS and request
batching with a 90th—percentile response time goal
of 50ms for Finance-12x, superposed with the re-
quest rate (intensity). All values averaged over 6—
minute windows.

more intense, requests are batched less and less
frequently (if at all), and DVS provides the most
savings. The combined policy provides savings of
between 30.7% and 39% as the workload intensity
varies from 1x to 6x, illustrating that the combina-
tion of request batching and voltage scaling captures
the best features of both policies.

Figure 8(a) shows the energy savings yielded by
the combined policy on all three workloads. The
combined policy outperforms the individual request
batching and voltage scaling policies across the
range of workloads and intensities. However, while
the energy savings for both Finance and Olympics98
are above 40% at low workload intensities, the sav-
ings drop to about 26% and 17% respectively as the
workload intensifies to a scale of 6. The savings de-
crease because higher intensities require more pro-
cessor involvement in order to service incoming re-
quests. In particular, the baseline 90th—percentile
response time (with no energy saving policy in ef-
fect) for the Olympics98-6x workload is 42ms, im-
plying that the system has little room to save energy
while maintaining the 90th—percentile response time
at 50ms.

Figure 8(b) shows the variation in savings as the
percentile goal is varied from 80% to 95% for the
Olympics98 and Disk-Intense workloads. The Fi-
nance workload exhibits similar behavior. As the
percent of response times that must fall at or be-
low 50ms is tightened from 80% to 95%, the en-
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Figure 7: Energy savings from the DVS, re-
quest batching, and combined policies with a 90th—
percentile response time goal of 50ms for Disk-
Intense over a range of intensities.

ergy savings decrease. In the case of Disk-Intense
at 6x intensity, the savings fall from 33.5% to 9.5%.
This experiment illustrates that energy savings can
be obtained not only by relaxing the response time
goal, but also by relaxing the percent of requests
that must be satisfied within that goal.

5.4 Projections for Faster Processors

The results we report in this paper are for a simu-
lated server with a 600MHz processor. Current pro-
cessors use clock rates as high as 3.0 GHz, and even
faster processors will be available in the near fu-
ture. In this section we project how our three energy
management policies will perform in systems with
faster processors. We use a hypothetical 3.0 GHz
processor model that supports a low—power Deep
Sleep mode and dynamic voltage scaling, and per-
form simulations using our three web server work-
loads. The key attributes of our 3.0 GHz processor

Processor State Power Consumption
Busy (at 3GHz) 60W
Idle (Halted) 10W
Deep Sleep 5W

DVS Frequency Range
1.5 GHz - 3.0 GHz, in 10 steps of 150MHz

Table 4: Attributes of a hypothetical 3.0 GHz DVS
processor
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Figure 8: Energy savings from the combined policy. (a) Savings for all three workloads for the 90th—
percentile response time goal of 50ms. (b) Savings range as percentile goal is varied for Disk-Intense and
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Figure 9: Energy savings from the combined pol-
icy for a 3.0 GHz processor for the 90th—percentile
response time goal of 50ms.

model are presented in Table 4. These attributes
are based loosely on reported power consumption
for current high performance processors, with DVS
support similar to that assumed for our 600MHz
processor (Section 4.2). Note however that we have
not validated our simulator against an actual 3.0
GHz processor, so the results in this section are in-
tended only to establish the basic trend in effective-
ness of our policies as CPU speed increases.

With faster processors, the savings from DVS (as a
percentage of the total energy consumed) is likely to
remain the same. The savings from request batch-

ing are likely to increase if the energy consumed
during Deep Sleep is a smaller fraction of the idle
power consumption. Indeed, this is true for most
(if not all) Intel processors that are faster than the
one we consider in this paper. Figure 9 shows the
energy savings achieved by the combined policy on
all three workloads and energy savings from DVS
and request batching for the Disk-Intense workload
using the 3.0 GHz processor model. These results
confirm the expected trends described above. Cal-
ibrating and validating a new processor model in
Salsa is a time intensive activity, and we have left
a more complete evaluation of our policies on faster
processors as future work.

5.5 Extensions to Other Environments

The results we report in this paper are for static
workloads. Dynamic workloads introduce two new
factors. First, requests take longer to service, caus-
ing significantly fewer periods where no requests are
being processed. To handle dynamic requests, the
batching policy we described in Section 3.1 will have
to place the processor in Deep Sleep when all pro-
cesses are blocked, as opposed to when no requests
are being serviced. Second, dynamic requests can
take significantly longer to process than static re-
quests. Thus, the response time requirements must
be relaxed beyond that we have used for static re-
quests in order to permit the energy conservation
policies to be applied. Furthermore, partitioning
the QoS levels for static and dynamic requests will



prevent the service times of one class from overshad-
owing the responsiveness metric used by the policies.

Several vendors have introduced “blade” systems
that incorporate low-power processors in a spatially
dense form factor [21]. While the policies described
in this paper can be employed with low-power pro-
cessors, the resulting large CPU energy savings may
not translate into significant system energy savings
since the CPU energy consumption may be a small
component of the system energy in these systems.
However, when such systems are clustered, poli-
cies that target server clusters by switching off en-
tire systems become applicable [4, 19], and can be
used in conjunction with the single-node policies
described in this paper.

In earlier work [5], we studied combinations of
cluster-level and single-node power management
policies and found that fine—grained single-node en-
ergy management techniques can be very compli-
mentary to typical cluster—level energy management
mechanisms, which tend to be more coarse-grained
in their effect on energy consumption and system
performance. In addition, frequent powering off of
systems may adversely affect the reliability of cer-
tain components, particularly disk drives, making
single-node power management techniques more de-
sirable for achieving energy savings from small or
short term fluctuations in workload. Finally, single—
node energy management policies are necessary for
web sites that do not receive sufficient traffic to re-
quire multiple servers.

6 Related Work

Policies to reduce CPU energy consumption using
dynamic voltage scaling have been widely studied.
Early work used the CPU utilization over a re-
cent set of intervals as a predictor of future sys-
tem load, and then set the processor voltage and
frequency for the next time internal so as to han-
dle this load [9, 23]. Flautner et. al. explored a
DVS policy that sets CPU speed on a per—task ba-
sis rather than for time intervals [7]. Lorch et. al.
describe PACE, an algorithm to optimize task-based
DVS policies when task completion times cannot be
accurately predicted [14]. While these techniques
perform well for desktop workloads, they are unsuit-
able for server environments with many concurrent
tasks. Our DVS policy keeps track of the response
time of individual requests ( “tasks”), but employs a

feedback—driven control framework to meet respon-
siveness requirements in the aggregate, instead of
for individual tasks.

A number of recent papers have considered tech-
niques for reducing energy consumption of web
servers in large data centers. Pinheiro et. al. [19]
proposed a simple policy for managing energy use
in server clusters by powering machines on and off.
Chase et. al. have employed this mechanism in
the context of an economic framework in which web
sites “bid” on resources based on their current work-
load [4]. In prior work, we explored the combination
of the power-on/power-off technique with voltage
scaling [5] to reduce energy consumption for a clus-
ter of servers. The energy management techniques
proposed in this paper are applicable to individual
web server systems, and therefore complement ef-
forts to manage energy for web server clusters.

Several researchers have developed tools for simu-
lating the power consumption of computer systems.
Brooks et. al. have developed Wattch, a micro-
processor power analysis tool based on a microar-
chitecture simulator [3]. Flinn and Satyanarayanan
describe PowerScope, a tool for profiling the energy
usage of applications [8]. Our Salsa simulator is sub-
stantially faster, because it is targeted specifically
for web serving workloads.

7 Conclusions

This paper describes three policies for reducing the
energy consumption of server processors during web
serving. The first policy uses dynamic voltage scal-
ing (DVS), an existing energy-saving mechanism,
but employs it in a feedback—driven control frame-
work. The second policy is based on request batch-
ing, a new mechanism we introduce in this paper,
that groups requests under periods of low work-
load intensity and executes them in batches, other-
wise placing the processor in a Deep Sleep mode to
conserve energy. These two policies target comple-
mentary ranges of workload intensities. While DVS
is most effective for moderately intense workloads,
request batching saves energy for light workloads.
The third policy leverages both request batching
and DVS mechanisms in a policy that saves en-
ergy across a wide range of workload intensities.
All three policies conserve energy while maintain-
ing a given quality of service level, as defined by a
percentile-level response time.



The policies are evaluated using Salsa, a web serving
simulator that has been validated for both energy
and response times against an actual web server.
The effectiveness of the policies are measured us-
ing three day-long workloads derived from real web
server systems. When 90% of the requests must be
serviced within a response time of 50ms, the DVS
policy saves from 8.7% to 38% of the CPU energy
used by the base system. The request batching pol-
icy provides from 3.1% to 27% savings for the same
response—time requirement. However, the two po-
lices provide these savings for different regions of
the workloads. The combined policy is effective for
all three workloads across a broad range of intensi-
ties, saving from 17% to 42% of the CPU energy.
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