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Abstract and other networked systems, using kernel integration to

For operating system intensive applications, the abifity o avoid perfc_)rr_nance problem_s becomes unreahs_tlc. As are-
designers to understand system call performance behavigHIt: €xamining the interaction between operating systems
is essential to achieving high performance. Conventionafnd user processes remains a useful area of investigation.
performance tools, such as monitoring tools and profilers, Much of the earlier work focusing on the kernel-user in-
collect and present their information off-line or via odt-o  terface centered around developing new system calls that
band channels. We believe that making this informatiorre more closely tailored to the needs of particular appli-
first-classand exposing it to applications via-bandchan- ~ cations. In particular, zero-copy /0 [17, 31] and scal-
nels on aper-call basis presents opportunities for perfor- able event delivery [9, 10, 23] are examples of techniques
mance analysis and tuning not available via other mechahat have been adopted in mainstream operating systems,
nisms. Furthermore, our approach provides direct feedback@ calls such assendfile(), transmtfile(),
to applications on time spent in the kernel, resource conkevent (), andepol | (), to address performance issues
tention, and time spent blocked, allowing them to immedi-for servers. Other approaches, such as allowing processes
ately observe how their actions affect kernel behavior. Not0 declare their intentions to the OS [32], have also been
only does this approach provide greatmnsparencyinto proposed and implemented. Some system calls, such as
the workings of the kernel, but it also allows applicatioms t MadVvi se() , provide usage hints to the OS, but with op-
control how performance information is collected, filtered €rating systems free to ignore such requests or restrict the
and correlated with application-level events. to mapped files, programs cannot rely on their behavior.

To demonstrate the power of this approach, we show that Some recent research uses the reverse approach, where
our implementation, DeBox, obtains precise informationapplications determine how the “black box” OS is likely
about OS behavior at low cost, and that it can be used o behave and then adapt accordingly. For example, the
debugging and tuning application performance on compleslash Web Server [30] uses thencor e() system call to
workloads. In particular, we focus on the industry-staddar determine memory residency of pages, and combines this
SpecWebh99 benchmark running on the Flash Web Serveinformation with some heuristics to avoid blocking. The
Using DeBox, we are able to diagnose a series of problemgray box” approach [7, 15] manages to infer memory res-
atic interactions between the server and the OS. Addressdency by observing page faults and correlating them with
ing these issues as well as other optimization opportuniknown replacement algorithms. In both systems, memory-
ties generates an overall factor of four improvement in ourresident files are treated differently than others, imprgvi
SpecWeb99 score, throughput gains on other benchmarkggerformance, latency, or both. These approaches depend
and latency reductions ranging from a factor of 4 to 47.  on the quality of the information they can obtain from the
. operating system and the accuracy of their heuristics. As
1 Introduction workload complexity increases, we believe that such infer-
Operating system performance continues to be an activences will become harder to make.
area of research, especially as demanding applications tes To remedy these problems, we propose a much more di-
OS scalability and performance limits. The kernel-userect approach to making the OS transparent: make system
boundary becomes critically important as these applicaeall performance informationfést-classresult, and return
tions spend a significant fraction, often a majority, of thei it in-band In practice, what this entails is having each sys-
time executing system calls. In the past, developers coultem call fill a “performance result” structure, providing in
expect to put data-sharing services, such as NFS, into thiermation about what occurred in processing the call. The
kernel to avoid the limitations stemming from running in termfirst-class resulspecifies that it gets treated the same
user space. However, with the rapid rate of developmentas other results, such as errno and the system call return
in HTTP servers, Web proxy servers, peer-to-peer systemsalue, instead of having to be explicitly requested via othe



system or library calls. The terin-bandspecifies thatitis 2 Design Philosophy
returned to the caller immediately, instead of being Ioggecb

o eBox is designed to bridge the divide in performance
or processed by some other monitoring processes. Whllgnal sis across the kernel and user boundary by exposin
it is much larger and more detailed than #ver no global Y y by eXp g

. O . .. kernel performance behavior to user processes, with a focus
variable, they are conceptually similar. Simply monitor- I . .
n server-style applications with demanding workloads. In

ing at the system call boundary, the scheduler, page fau&ese environments, performance problems can occur on ei-

h_andlers,_and_ functlor_l entry and exitis S“f“c'e.”t 10 Pro- o1 side of the boundary, and limiting analysis to only one
vide detailed information about the inner working of the _. . - . )
side potentially eliminates useful information.

operating system. This approach not only eliminates guess- We present our observations about performance analysis
work about what happens during call processing, but als? o )
or server applications as below. While some of these mea-

gives the application control over how this information is . .
) - ._surements could be made in other ways, we believe that
collected, filtered, and analyzed, providing more custemiz ) . . .
DeBox’s approach is particularly well-suited for these en-

ab"? and parrqwl_y—targeted performance debugging than ironments. Note that replacing any of the existing tools is
available in existing tools.

an explicit non-goal of DeBox, nor do we believe that such
We evaluate the flexibility and performance of our im- @ goal is even feasible.
plementation, DeBox, running on the FreeBSD operatlnq_”gh overheads hide bottlenecksThe cost of the debug-

system. D_el_30x ‘?‘”O_WS us to determine where application ing tools may artificially stress parts of the system, thus
spend their time inside the kernel, what causes them to lo

; h d . dh asking the real bottleneck at higher load levels. Prob-
pher Ermarlw%e,r:/v at reiources arehurr\] ercoEItenélor_wr,hanﬂ Y¥ms that appear only at high request rates may not appear
F € Kernel behavior changes with the workloa - 1ne eX'Whenaprofilercauses an overall slowdown. Our tests show
|b|||ty of DeBox allows us to measure very _specmc infor- oot for server workloads, kerngpr of has 40% perfor-
mation, such as the kemel CPU consumption caused by g ¢ degradation even when low resolution profiling is

single call site in a program. configured. Others tracing and event logging tools gener-

Our throughput experiments focus on ana|yzing and Op.ate Iarge quantities Of da.ta, Up to 05MB/S in Lil’lux Trace
timizing the performance of the Flash Web Server on thel00lkit [42]. For more demanding workloads, the CPU or
industry-standard SpecWeb99 benchmark [39]. Using Defilesystem effects of these tools may be problematic.

Box, we are able to diagnose a series of problematic in- We design DeBox not only to exploit hardware perfor-
teractions between the server and the Operating system dpance counters to reduce Overhead, but also to allow users
this benchmark. The resulting system shows an overall facto specify the level of detail to control the overall costs.
tor of four improvement in SpecWeb99 score, throughput-urthermore, by splitting the profiling policy and mecha-
gains on other benchmarks, and latency reductions ranginsm in DeBox, applications can decide how much effort to
from a factor of 4 to 47. Most of the issues are addressed b§xpend on collecting and storing information. Thus, they
app"ca‘[ion redesign and the resu'ting System is portab'e' may SeIeCtiVely process the data, discard redundant er triv
we demonstrate by showing improvements on Linux. oural information, and store only useful results to reduce the
kernel modifications, optimizing of treendf i | e() sys-  COSts. Not only does this approach make the cost of profil-
tem call, have been integrated into FreeBSD. ing controllable, but one process desiring profiling dods no

affect the behavior of others on the system. It affects only
DeBox is specifically designed for performance anal-its own share of system resources.

ysis of the interactions between the OS and applica- o ) ) )
tions, especially in server-style environments with com-USer-leveltiming can be misleadingFigure 1 shows user-
plex workloads. Its combination of features and flexibility |€vel iming measurement of teendf i | e() system call
is novel, and differentiates it from other profiling-reldte N @n event-driven server. This server uses nonblocking
approaches. However, it is not designed to be a genera;;_ockets and myokes sendfile (_)nly for m—memory_data.. As
purpose profiler, since it currently does not address appli@ "esult, the high peaks on this graph are troubling, since
cations that spend most of their time in user space or in thé1€y suggest the server is blocking. A similar measurement
“bottom half” (interrupt-driven) portion of the kernel. usingget rusage() also falsely implies the same. Even
though the measurement calls immediately precede and fol-
The rest of this paper is organized as follows. In Secqow the system call, heavy system activity causes the sched-
tion 2 we motivate the approach of DeBox. The detailed deuler to preempt the process in that small window.
sign and implementation are described in Section 3. We de- |In DeBox, we integrate measurement into the system call
scribe experimental setup and workloads in Section 4, theprocess, so it does not suffer from scheduler-induced mea-
show a case study using DeBox to analyze and optimizeurement errors. The DeBox-derived measurements of the
the Flash Web Server in Section 5. Section 6 contains fursame call are shown in Figure 2, and do not indicate such
ther experiments on latency and Section 7 demonstrates thgarp peaks and blocking. Summary datafendf i | e

portability of our optimizations. We discuss related work andaccept (in non-blocking mode) are shown in Table 1.
in Section 8 and conclude in Section 9.
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Figure 1:User-space timing of theendf i | e call on a server Figure 2: The same system call measured using DeBox shows
running the SpecWeb99 benchmark — note the sharp peaks) whic much less variation in behavior.
may indicate anomalous behavior in the kernel.

accept () sendfile() and by call site, instead of being aggregated by call number
User | DeBox User | DeBox inside the kernel. Users may choose to save accumulated
Min 5.0 5.0 8.0 6.0 results, record per-call performance history over time, or
Median 10.0 6.0 60.0 53.0 fully store some of the anomalous call trace.
Mean 14.8 10.5 86.6 77.5 . . "
Max | 521601 174.01 129520 998.0 Out-of-band reporting misses useful opportunities. As

the kernel-user boundary becomes a significant issue for
demanding applications, understanding the interaction be
tween operating systems and user processes becomes es-
sential. Most existing tools provide measurements out-
of-band, making online data processing harder and possi-
fny missing useful opportunities. For example, the online
method allows an application @bort () or record the

Table 1:Execution time (in usec) of two system calls measured
in user application and DeBox — Note the large differenceaxm
imums stemming from the measuring technique.

Statistical methods miss infrequent eventsProfilers and
monitoring tools may only sample events, with the belie
that any event of interest is likely to take “enough” time to S
eventually be sampled. However, the correlation betweeﬁFatuS yvhen a performance gnomaly occurs, butitis impos-
frequency and importance may not always hold. Our exper§Ible with out-of-band reporting.

iments with the Flash web server indicate that addinga 1 ms When applications receive performance information tied
delay to one out of every 1000 requests can degrade Iaten(’ig each system call via in-band channels, they can choose
e filtering and aggregation appropriate for the program'’s

by a factor of 8 while showing little impact on throughput. t

This is precisely the kind of behavior that statistical grofi context. They can easﬂy_correlgte mformaﬂon about sys-
ers are likely to miss. tem calls with the underlying actions that invoke them.

We eliminate this gap by allowing applications to exam- 3 Design & Implementation
ine every system call. Applications can implement their

own sampling policy, controlling overhead while still cap- This section describes our DeBox prototype implementa-
turing the details of interest to them. tion in FreeBSD and measures its overhead. We first de-

scribe the user-visible portion of DeBox, and then the ker-

Data aggregation hides anomalieswhole-system profil-  ne| modifications. We compare overhead for DeBox sup-
ing and logging tools may aggregate data to keep completgyort and active use versus an unmodified kernel. Examples
ness and reduce overhead at the same time. This approagfhow to fully use DeBox and what kinds of information it
makes it hard to determine which call invocation experi-provides are deferred to the case study in Section 5.
enced problems, or sometimes even which process or call o .
site was responsible for high-overhead calls. This probler3.1 User-Visible Portion
gets worse in network server environments where the sysfFhe programmer-visible interface of DeBox is intentiopall
tems are complex and large quantities of data are generatesimple, since it consists of some monitoring data strusture
Itis not uncommon for these applications to have dozens odnd a new system call to enable and disable data gather-
system call sites and thousands of invocations per seconthg. Figure 3 shows DeBoxInfo, the data structure that
For example, the Flash server consists of about 40 systeimandles the DeBox information. It serves as the “perfor-
calls and 150 calling sites. In these conditions, either dismance information” counterpart to other system call rasult
carding call history or logging full events is infeasible. like er r no. Programs wishing to use DeBox need to per-

By making performance information a result of systemform two actions: declare one or more of these structures
calls, developers have control over how the kernel profil-as global variables, and call DeBoxControl to specify how
ing is performed. Information can be recorded by processnuch per-call performance information it desires.



typedef struct PerSleeplnfo {

int nunBl eeps; /* # sleeps for the same reason */
struct timeval blockedTine; /* how long the process is blocked */
char wmresg[ 8] ; /* reason for sleep (resource |abel) */
char bl ocki ngFil e[ 32]; /* file name causing the sleep */

int bl ockingLi ne; /* 1ine nunber causing the sleep */

int numAitersEntry; /* # of contenders at sleep */

int numMitersExit; /* # of contenders at wake-up */

} Per Sl eepl nfo;

typedef struct CallTrace {

unsigned long callSite; /* address of the caller */
int deltaTime; /* elapsed tine in timer or CPU counter */
} Call Trace;

typedef struct DeBoxlnfo {
int syscal | Num /* which systemcall */
union Call Time {
struct tineval call Tineval;

I ong cal | Cycl es; /* wall-clock tinme of entire call */
} CallTine;
int nunPGraul ts; /* # page faults */
int nunPer Sl eepl nf o; /* # of filled PerSleeplnfo el enents */
int traceDepth; /* # functions called in this systemcall */
struct PerSleeplnfo psi[5]; /* sleeping info for this call */
struct Call Trace ct[200]; /* call trace info for this call */
} DeBoxI nf o;

int DeBoxControl (DeBoxl nfo *resul tBuf, int maxSleeps, int naxTrace);
Figure 3:DeBox data structures and function prototype

At first glance, the DeBoxInfo structure appears verycess control block. This copy records information while the
large, which would normally be an issue since its size couldsystem call executes, avoiding many small copies between
affect system call performance. This structure size is nokernel and user. Prior to system call return, the requested
a significant concern, since the process specifies limits omformation is copied back to user space.

how much of it is used. Most of the space is consumed At system call entry, all non-array fields of the process’s
by two arrays, PerSleepinfo and CallTrace. The PerSleepeBoxInfo are cleared. Arrays do not need to be explicitly
Info array contains information about each of the times thesleared since the counters indicating their utilizatiomeha
system call blocks (sleeps) in the course of processing. Thgeen cleared. Call number and start time are stored in the
CallTrace array provides the history of what functions weregntry. We measure time using the CPU cycle counter avail-
called and how much time was spent in each. Both arraygple on our hardware, but we could also use timer interrupts
are generously sized, and we do not expect many calls tgr other facilities provided by the hardware.

fully utilize either one. o Page faults that occur during the system call are counted
DeBoxControl can be called multiple times over the by modifying the page fault handler to check for DeBox
course of a process execution for a variety of reasons. Proystivation. We currently do not provide more detailed in-
grammers may wish to have several DeBoxInfo structure$yrmation on where faults occur, largely because we have
and use different structures for different purposes. Theyot opserved a real need for it. However, since the DeBox-

can also vary the number of PerSleepinfo and CallTracenfo structure can contain other arrays, more detailed page
items recorded for each call, to vary the level of detail gen+5 it information can be added if desired.

erated. Finally, they can specify a NULL value for result-

. . o The most detailed accounting in DeBoxInfo revolves
Buf, which deactivates DeBox monitoring for the process. g

around the “sleeps”, when the system call blocks waiting on

32 InK l Imol . some resource. When this occurs in FreeBSD, the system
) n-Kernel Implementation call invokes the sl eep() function, which passes control

The kernel support for DeBox consists of performing theto the scheduler. When the resource becomes available, the

necessary bookkeeping to gather the data in the DeBoxInfaakeup() function is invoked and the affected processes

structure. The points of interest are system call entry andre unblocked. Kernel routines invoking! eep() pro-

exit, scheduler sleep and wakeup routines, and function ervide a human-readable label for use in utilities likep.

try and exit for all functions reachable from a system call. We define a new macro fors| eep() in the kernel header
Since DeBox returns performance information whenfiles that permits us to intercept any sleep points. When

each system call finishes, the system call entry and exithis occurs, we record in a PerSleepinfo element where the

code is modified to detect if a process is using DeBox. Oncsleep occurred (blockingFile and blockingLine), what time

a process calls DeBoxControl and specifies how much oft started, what resource label was involved (wmesg), and

the arrays to use, the kernel stores this information and akhe number of other processes waiting on the same resource

locates a kernel-space DeBoxInfo reachable from the protnumWaitersEntry). Similarly, we modify th@akeup()



DeBoxI nf o:
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3.3 Overhead

For DeBox to be attractive, it should generate low kernel
overhead, especially in the common case. To quantify this
overhead, we compare an unmodified kernel, a kernel with
DeBox support, and the modified kernel with DeBox acti-
vated. We show these measurements in Table 2. The first
column indicates the various system callget pi d(),
getti neof day(), andpread() with various sizes.
The second column indicates the time required for these
calls on an unmodified system. The remaining columns in-
dicate the additional overhead for various DeBox features.

| *
| *
| *
| *
| *

systemcal |l # */

call time, mcrosecs */

# of page faults */

# of PerSleeplnfo used */

# of CallTrace used (disabled) */

Per Sl eepl nf o[ 0] :
1270

723903

bi owr
kern/vfs_bio.c
2727

1

0

/*
/*
/*
/*
/*
/*
/*

# occurrences */

time blocked, mcrosecs */
resource | abel */

file where bl ocked */

I'ine where bl ocked */

# processes on entry */

# processes on exit */

Per Sl eepl nfo[ 1] :
325
2710256

/*
/*

# occurrences */
tine bl ocked, nmicrosecs */

spread /* resource |abel */ DeBox without DeBox
mi scf s/ specf s/ spec_vnops. ¢ /* file where bl ocked */ callname| base call trace call trace

2y ;fo‘é“ggggsbggcgﬁfr;’*, or read size| time off | on off | on

0 /* # processes on exit */ | getpid| 0.46] +0.00] +0.50] +0.03| +1.45|

Figure 4:Sample DeBox output showing the system call perfor-| gettlmeofday| .07 | +0.00 | +0.43 | +0.03 | +1.52 |
mance of copying a 10MB mapped file pread 128B| 3.27| +0.02| +0.56| +0.21| +2.03
256 bytes| 3.83| +0.00| +0.59| +0.26 | +2.02
512 bytes| 4.70| +0.00| +0.69| +0.28 | +2.02
routine to provide numWaitersExit and calculate how muct) 1024 bytes| 6.74| +0.00| +0.68| +0.27 | +2.02
time was spent blocked. If the system call sleeps more than™ 2048 bytes| 10.58 | +0.03| +0.68| +0.26 | +2.01
once at the same location, that information is aggregated™ 4096 bytes| 18.43| +0.03| +0.74| +0.29| +2.16

into a single PerSleepinfo entry.
g P 4 Table 2:DeBox microbenchmark overheads — Base time uses an

The process of tracing which kernel functions are calledunmodified system. All times are in microseconds
du_rllng. a system call is slightly more involved, largely tq We separate the measurement for call history tracing
minimize overhead. Conceptually, all that has to occur is_.

i o since we do not expect it will be activated continuously.
that every function entry and exit point has to record th
. . : - hese numbers show that the cost to support most DeBox
currenttime and function name when it started and finished

C : .~ features is minimal, and the cost of using the measurement
similar to what call graph profilers use. The gcc compiler

allows entry and exit functions to be specified via the “in- infrastructure is tolerable. Since these costs are borlye on
strument functions” option, but these are invoked by ex-

by the applications that choose to enable DeBox, the over-
plicit function calls. As a result, function call overhead head to the whole system is even lower. The performance
increases by roughly a factor of three. Our current solu

tion involves manually inserting entry and exit macros into
reachable functions. The entry macro pushes current fun
tion address and time in a temporary stack. The exit mac

pops out the function address, calculates the wall clocl§
time, and records these information in the CallTrace array,
Automating this modification process should be possible in

the future, and we are investigating using treount ()

impact with DeBox disabled, indicated by the 3rd column,

is virtually unnoticeable. The cost of supporting call trac

ing, shown in the 5th column, where every function en-

r%?y and exit point is affected, is higher, averaging approxi

mately 5% of the system call time. This overhead is higher
han ideal, and may not be desirable to have continuously
énabled. However, our implementation is admittedly crude,

and better compiler support could integrate it with the func

tion prologue and epilogue code. We expect that we can

reduce this overhead, along with the overhead of using the
To show what kind of information is provided in DeBox, call tracing, with optimization.

we give a sample output in Figure 4. We memory-map a

kernel function used for kernel profiling.

10MB file, and use thewr i t e() system call to copy its tar-gz a directory with make
contents to another file. The main DeBoxInfo structure 1MB file 10MB file kernel
shows that system call 4fi t e() ) was invoked, and it base time| 275.61 ms| 3078.50 ms| 236.96 s
used about 3.6 seconds of wall-clock time. It incurred 989 basicon| +0.97ms| +22.73ms| +1.74s
page faults, and blocked in two unique places in the ker- | full support| +1.03ms| +44.58ms| +7.49s

nel. The first PerSleepinfo element shows that it blocked Table 3:DeBox macrobenchmark overheads

1270 times at line 2727 in vio.c on “biowr”, whichis  gince microbenchmarks do not indicate what kinds of
the block 1/O write routine. The second location was ||nes|owdowns may be typ|ca"y Observed, we provide some
729 of specvnops.c, which caused 325 blocks at “spread”,macrobenchmark results to give some insight into these

read of a special file. The writes blocked for roughly 0.7 costs in Table 3. The three systems tested are: an unmodi-
seconds, and the reads for 2.7 seconds.



fied system, one with only “basic” DeBox without calltrace 5 Case Study
support, and one with complete DeBox support. The firsﬁ
two columns are times for archiving and compressing file
of different sizes. The last column is for building the ker-
nel. The overheads of DeBox support range from less tha
1% to roughly 3% in the kernel build. We expect that many
environments will tolerate this overhead in exchange fer th
flexibility provided by DeBox.

n this section, we demonstrate how DeBox’s features can
Sbe used to analyze and optimize the behavior of the Flash
Web Server. We discover a series of problematic interac-
Hons, trace their causes, and find appropriate solutions to
avoid them or fix them. In the process, we gain insights into

the causes of performance problems and how conventional
solutions, such as throwing more resources at the problem,
4 Experimental Setup & Workload may exacerbate the problem. Our optimizations quadruple

i i our SpecWeb99 score and also sharply decrease latency.
We describe our experimental setup and the relevant soft-

ware components of the system in this section. All of our5.1 Initial experiments
experiments, except for the portability measuremer® o first run of SpecWeb99 on the publicly available ver-
pgrformed On a uniprocessor server running FreeBSD 4.8ion of the Flash Web Server yields a SpecWeb99 re-
with a 933MHz Pentium I1l, 1GB of memory, one 5400 gjt of roughly 200 simultaneous connections, much lower
RPM Maxtor IDE disk, and a single Netgear GA621 giga-than the published score of 575 achieved on compara-
p|t ethernetnetwork a.dapter. The clients consist of ten I_Z‘erb|e hardware using TUX, an in-kernel Linux-only HTTP
tium Il machines running at 300 MHz connected to a switChgeryer, At 200 simultaneous connections, the datasetsize |
using Fast Ethernet. All machines are configured to use thPougth 770MB, which is smaller than the amount of phys-
default (1500 byte) MTU as required by SpecWeb99. ical memory in the machine. Not surprisingly, the work-
Our main application is the event-driven Flash Web|oad is CPU-bound, and a quick examination shows that
Server, although we also perform some tests on the widelytheni ncor e() system call is consuming more resources
used multi-process Apache [6] server. The Flash Welhan any other call in Flash.
Server consists of a main process and a number of helper The underlying problem is the use of linked lists in the
processes. The main process multiplexes all client conFreeBSD virtual memory subsystem for handling virtual
nections, is intended to be nonblocking, and is expecteghemory objects. The heavy use of memory-mapped files
to serve all requests only from memory. The helpers loagn Flash generates large numbers of memory objects, and
disk data and metadata into memory to allow the main prog jinear walk utilized byni ncor e() generates signifi-
cess to avoid blocking on disk. The number of main pro-cant overhead. We apply a patch from Alan Cox of Rice
cesses in the system is generally equal to the number Qfinjversity that replaces the linked lists with splay trees,
physical processors, while the number of helper processagd this bringsri ncor e() in line with other calls. Our
iS dynamica”y adjusted based on |0ad. In preViOUS teStSSpeCwebgg score rises to rough'y 320’ a 60% improve_
the Flash Web Server has been shown to compare favorablent. At this point, the working set has increased to
to high-performance commercial Web servers [30]. We rum 13GB, slightly exceeding our physical memory.
with logging disabled to simplify comparison with Apache,  once theni ncor e() problem is addressed, we still
where enabling logging degrades performance noticeably gppear to be CPU-bound, and suspect the data copying is
We focus on the SpecWeb99 benchmark, an industrythe bottleneck. So we update the Flash server to use the
standard test of the overall scalability of Web servers unzero-copy I/O system caiendf i | e() . However, using
der realistic conditions. It is designed by SPEC, the desendfi | e() requires that file descriptors be kept open,
velopers of the widely-used SpecCPU workloads [38], andyreatly increasing the number of file descriptors in use by
is based on traffic at production Web sites. Although notFlash. To mitigate this impact, we implement support for
common in academia, it is thae factostandard in indus- sendfil e() concurrently with support fokevent (),
try [27], with over 190 published results, and is different which is a scalable event delivery mechanism recently in-
from most other Web server benchmarks in its complexcorporated into FreeBSD. After these changes, we are not
ity and requirements. It measures scalability by reportingsurprised by the drop in CPU utilization, but are surprised
the number of simultaneous connections the server can haghat the SpecWeb99 score drops to 300.
dle while meeting a specified quality of service. The data
set and working set sizes increase with the number of si9.2  Successive refinement of detail
multaneous connections, and quickly exceed the physicalith the server exhibiting idle CPU time but an inability to
memory of commodity systems. 70% of the requests aréneet SpecWeb99’s quality-of-service requirements, an ob-
for static content, with the other 30% for dynamic content,vious candidate is blocking system calls. However, Flash’s
including a mix of HTTP GET and POST requests. 0.15%main process is designed to avoid blocking. We tried trac-
of the requests require the use of a CGI process that mugig the problem using existing tools, but found they suf-
be spawned separately for each request. fered from the problems discussed in section 2. These ex-
1The Linux kernel crashes on our existing server hardware periences motivated the creation of DeBox.




| biord/166] inode/127]| getblk/1] sfpbsy/1| revealing which call induced the problem may not suffice a

open162 || readlink84 || closél || sendfilél complete picture, because the reason of invoking that call
read’3 operi28 is unclear. In a system with multiple identical system galls
unlink/1 read9 existing tools do not have an efficient way to find which one
stai6 causes the problem and the calling path involved.

Table 4: Summarized DeBox output showing blocking counts — Because DeBox information is returned in-band, the
The layout is organized by resource label and system calenam USer-space context is also available once kernel perfor-
For example, of the 127 times this test blocked with the “efod mance anomaly is detected. On finding a blocking invo-
label, 28 were from thepen() system calll cation ofopen(), we capture the path through the user
code by callingabort () and usinggdb to dump the

The DeBox structures provide various levels of detail,stack. This approach uncovers a subtle performance bug in
allowing applications to specify what to measure. A typi- Flash induced by mapped-file cache replacement. Flash has
cal use would first collect the basic DeBoxInfo to observetwo independent caches — one for URL-to-filename trans-
anomalies, then enable more details to identify the aftectelations (name cache), and another for memory-mapped re-
system calls, invocations, and finally the whole call trace. gions (data cache). For this workload, the name cache does

We first use DeBox to get the blocking information, not suffer from capacity misses, while the data cache may
which is stored in the PerSleeplinfo field. The PerSleepinfaevict the least recently used entries. Under heavy load, a
data shows seven different system calls blocking in the kemame cache hit and a data cache capacity miss causes Flash
nel, and examination of the resource labels (wmesg) shows® erroneously believe that it had just recently performed
four reasons for blocking. These results are shown in Tathe name translation and has the metadata cached. When
ble 4, where each column header shows the resource labelash callsopen() to access the file in this circumstance,
causing the blocking, followed by the total number of timesthe metadata associated with the name conversion is miss-
blocked at that label. The elements in the column are théng, causing blocking. We solve this problem by allowing
system calls that block on that resource, and the number ahe second set of helpers, the read helpers, to return file de-
invocations involved. As evidenced by the calls involved,scriptors if the main process does not already have them
the “biord” (block 1/0 read) and “inode” (vnode lock) la- open. After fixing this bug, we are able to handle 390 si-
bels are both involved in opening and retrieving files, whichmultaneous connections, and a 1.34GB dataset.
Lienrsgrsyu(;?ilhs;n%asér;(i:nee.our data set exceeds the physm%.4 Tracking call histories

The finest-grained kernel information is provided in the With all blocking eliminated and with a much higher re-
CallTrace structure, and we enable this level of detail oncéluest rate, we return to the issue of CPU consumption. By
the PerSleeplinfo identifies possible candidates. The maifitoring the CallTime field of each system call, we can track
process should only be accessing cached data, so the fgegr-call performance by invocation, both to observe trends
that it blocks on disk-related calls is puzzling. For poittab and to identify time-related problems. Traditional profil-
ity, the main process in Flash uses the helpers to demandig tools usually report average CPU consumption of each
fetch disk data and metadata into the OS caches, and repedgiction, thus hiding any performance trends. User space
the operation immediately after the helpers have completetiming functions may catch the general trend in spite of the
loading, assuming that the recently loaded informatioh wil measurement error, but involve much more work to track
prevent it from blocking. Observing the full CallTrace of €ach system call and find the problematic ones.
some of these blpcking invocations shows the blqcking iS54.1 Process creation overhead
not caused b_y .d'Sk access, bUt. content_lon on f|Iesyster§y recording all CPU time values, we find that the largest
locks. Combining the blocking information from helper

Is that when th . block tcaII times are for thé or k() system call and that its cost
processes reveals that when the main process bIocks, Mg, s with the number of invocations, approaching 130

helpers are operating on similarly-named files as the mai sec. Figure 5 shows the per-call time as a function of

Process. We solve _th|s prob_lem by having the _helpers "Civocation. We observe th&or k() time increases as the
turn open file descriptors usirgendnsg() , eliminating

duplication of work in the main process. With this change program runs, starting as low as 0.3 MSec. These calls stem
ble to handle 370 simultaneoﬁs connections fro’from the SpecWeb99 workload’s_ requirement that 0.15% of
we are a . . The requests be handled by forking new processes.
SpecWeb99, with a dataset size of 1.28GB. A full call trace indicates thator k() spends the bulk
5.3 Capturing rare anomaly paths of its time copying file descriptors and VM map entries (for
We find that thesendnsg() change solves most of the mMapped regions). Rather than changing the implementa-
filesystem-related blocking. However, oapen() callin  tionoff or k() , we opt to slightly modify the Flash archi-
Flash still shows occasional blocking at the label “biord” 2Alternately, we could invoké or k() followed byabor t () to keep

(reaqmg a disk blO_Ck)i but only after the server has beeRye process running while still obtaining a snapshot, orsxédrecord the
running for some time and under heavy workloads. Onlycall path manually
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Figure 5:Call time off or k() as a function of invocation Figure 6:Call time ofrmap() as a function of invocation
tecture. We introduce a new helper process that is responsi- Our measurements show that the single call site respon-
ble for creating the CGI processes. Since this new processible for most of the time is where the main process reads
does not map files or cache open filesfite k() timeis  fromthe CGls, consuming 20% of all kerneltime, (176 sec-
not affected by the main process size. This change yields ands out of 891 seconds total). Writing the request to the
10% improvement, to 440 simultaneous connections and &Gl processes is much smaller, requiring only 24.3 seconds
1.50GB dataset size. of system call time. This level of detail demonstrates the
power of making performance a first-class result, since ex-
5.4.2 Memory lookup overhead isting kernel profilers would not have been able to separate

Though the dataset size now exceeds physical memory W€ time for ther ead() calls by call sites. By modify-
over 50%, the system bottleneck remains CPU. Examiningg our CGl interface slightly, the main process writes only
the time consumption of each system call again reveals thahe HTTP header to the client, and passes the socket to the

most time is being spent in memory residency checkingCGl application to let it write the data directly. This chang
Though our modified Flash useendfile(), it uses allows us to reach 710 connections (2.35GB dataset).

ni ncor e() to determine memory residency, which re- S o
quires that files be memory-mapped. The cumulative over-5'6 Other optimization opportunities

head of memory-map operations is the largest consumer &y replacing our exact memory residency check with
CPU time. As can be seen in Figure 6, the per-call overhea@ Cheaper heuristic, we gain performance, but intro-
of mmap() is significant and increases as the server runsduce blocking into thesendfi | e() system call. New

The cost increase is presumably due to finding availabl&€rSleepinfo measurements of the blocking behavior of

space as the process memory map becomes fragmented.S€ndf i | e() are shown in Table 5.

To avoid the memory-residency overheads, we use - - -
Flash’'s mapped-file cache bookkeeping as the sole heuristic | time | label]| : kernelfile | line |
for guessing memory residency. We eliminateratap, 6492 | sfbufa | kern/uipcsyscalls.c| 1459
m ncore, and munmap calls but keep track of what 702 | getblk kern/kernlock.c | 182
pieces of files have been recently accessed. Sizing the | 984544| biord kern/vfsbio.c | 2724

cache conservatively with respect to main memory, we save  Table 5:New blocking measurements séndf i | e()
CPU overhead butintroduce a small risk of having the main - The resource label “sfbufa” indicates that the kernel has
process block. The CPU savings of this change is substarsyhaysted the sendfile buffers used to map filesystem pages
tial, allowing us to reach 620 connections (2GB dataset). jnto kernel virtual memory. We confirm that increasing the

- . number of buffers during boot time may mitigate this prob-
5.5 Profiling by call site lem in our test. However, based on the results of previous
We take advantage of DeBox’s flexibility by separating thecopy-avoidance systems [17, 31], we opt instead to imple-
kernel time consumption based on call site rather than calinent recycling of kernel virtual address buffers. With this
name. We are interested in the cost of handling dynamichange, many requests to the same file do not cause mul-
content since SpecWeb99 includes 30% dynamic requestiple mappings, and eliminates the associated virtual mem-
which could be processed by various interfaces. Flash usesy and physical map (pmap) operations. Caching these
a persistent CGl interface similar to FastCGl [28] to reusemappings may temporarily use more wired memory than
CGl processes when possible, and this mechanism commune caching, but the reduction in overhead and address space
nicates over pipes. Although thheead() andwri t e() consumption outweighs the drawbacks.
system calls are used by the main process, the helpers, andThe other two resource labels, “getblk” and “biord”, are
all of the CGI processes, we measure the overhead of onlselated to disk access initiated withéendf i | e() when
those involved in communication with CGI processes. the requested pages are not in memory. Even though the



socket being used is nonblocking, that behavior is limited 900

only to network buffer usage. We introduce a new flag to § s 0-—- - —"— — —
sendfil e() so that it returns a differergr r no value g OO ————
if disk blocking would occur. This change allows ust0 » 600 4+— — — — — — — — @
achieve the same effect as we had wiihncor e() , but % 500 +— — — — — — — — @ "‘g
with much less CPU overhead. We may optionally have ; 40040 — — — — — — - =33
the read helper process send data directly back to the cllentg_ 300 +— — Es¥m % od 3
on a filesystem cache miss, but have not implemented thisn 200 4 *g = i ONR <
optimization. 1004 -g =g 5

However, even with blocking eliminated, we find per- o4 > a2
formance barely changes when usggndf il e() ver- i1 2 3 4 5 6 7 8
suswr i t ev(), and we find that the problem stems from Server Configuration

handling small writes. HTTP responses consist of a smalFigure 8: Specweb99 summary — 1. Original 2. VM patch
header followed by file data. Theri t ev() code aggre- 3. Using sendfile() 4. FD-passing helpers 5. Fork helper iG-El
gates the header and the first portion of the body data intsmate mmap 7. New CGl interface 8. New sendfile()
one packet, benefiting small file transfers. In SpecWeb99,
35% of all static requests are for files 1KB or smaller. SpecWeb99 results of our modifications can be seen in Fig-
The FreeBSDsendfil e() call includes parameters ure 8, where we show the scores for all of the intermedi-
specifying headers and trailers to be sent with the dategte modifications we made. Our final result of 820 com-
whereas the Linux implementation does not. Linux intro-pares favorably to published SpecWeb99 scores, though no
duces a new socket option, TAFORK, to delay transmis- directly comparable systems have been benchmarked. We
sion until full packets can be assembled. While FreeBSD’outperform all uniprocessor systems with similar memory
“monolithic” approach provides enough information to configurations but using other server software — the highest
avoid sending a separate header, its implementation usesore for a system with less than 2GB of memory is 575.
a kernel version ofw i t ev() for the header, thus gen-  Most of our changes are portable architectural modifica-
erating an extra packet. We improve this implemen-tions to the Flash Web Server, including (1) passing file de-
tation by creating an mbuf chain using the header andcriptors between the helpers and the main process to avoid
body data before sending it to lower levels of the net-most disk operations in the main process, (2) introducing
work stack. This change generates fewer packets, improwa newf or k() helper to handle forking CGI requests, (3)
ing performance and network latency. Results of theseliminating the mapped file cache, and (4) allowing CGI
changes on a microbenchmark are shown in Figure 7processes to write directly to the clients instead of wyitin
With the sendfi | e() changes, we are able to achieve to the main process. Figure 9 shows the original and new
a SpecWeb99 score of 820, with a dataset size of 2.7GB. architectures of the static content path for the server.

start end
. 2: ! ' j modified sen't:!file I . Accept L, Read Flnp [ send "Read File |
g R Seielo g writey ----e---7 Conn Request F|IeJ | Header ' ™| Send Data |
S 20 | S @ sendfile a4
x
o 18 e " Pathname Respj [ Mmaped
8 16 g ‘ Translation ‘ Header‘ File
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2 17 BN Architecture flename filename}
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D &
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6 . . : : : : — URL [ Header [ Sendfile
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Figure 7: Microbenchmark performance comparison of writev, File Header Helper
sendfile, and modified sendfile — In this test, all clients estja (b) New Cache Lache ‘
single file at full speed using persistent connections. Architecture filename / fd
Classify
5.7 Case Study Summary + Open

By addressing the interaction areas identified by DeBoxFigure 9:Architectural changes — The architecture is greatly sim-
we achieve a factor of four improvementin our Specwebgg)hfled by using file descriptor passing and eliminating nmexbfile
score, supporting four times as many simultaneous Cc)ncachlng Modified components are indicated with dark boxes.
nections while also handling a data set that almost three The changes we make to the operating system focus on

times as large as the physical memory of our machine. Theendfi | e(), including (1) adding a new flag and return



value to indicate when blocking on disk would occur, (2) 5%(ms) | 50%(ms)| 95%(ms)| mean(ms)
caching kernel address space mapping to avoid unnecgs- static 0.51 1.45 59.81 9.92
sary physical map operations, and (3) sending headers andlynamic 0.99 2.83 91.31 12.19
file data in a single mbuf chain to avoid multiple packets
for small responses. Additionally, we apply a virtual mem-
ory system patch that ultimately is superfluous since we reg 2  Diskbound static workload
move the memory-mapped file cache. We have provideq. : . .
o 0 determine our latency benefit on a more disk-bound
our modifications to the FreeBSD developer group and all :
S ) . workload and to compare our results with those of other re-
three optimizations have been incorporated into FreeBSD. . T
searchers, we construct a static workload similar to the one
used to evaluate the Haboob server [41]. In this workload,
6 Latency 1020 simulated clients generate static requests to a 3.3GB

Since we identify and correct many sources of blockin data set. Persistent connections are used, with clients iss
y g’ing 5 requests per connection before closing it. To avoid

we are interested in the effects of our changes on server L
. overload, the request rate is fixed at 2300 requests/second,

latency. We first compare the effect of our changes onthe . , i
hich is roughly 90% of the slowest server’s capacity.

SpecWeh99 workload, and then reproduce workloads used . ) i
. . : . We compare several configurations to determine the la-
by other researchers in studying static content latenties. : . o
: ) tency benefits and the impact of parallelism in the server.
all cases, we compare latencies using a workload below th\%

: : . e run the new and original versions of Flash with a single
maximum of the slowest server configuration under test. . . .
instance and four instances, to compare uniprocessor con-

figurations with what would be expected on a 4-way SMP.
6.1 SpecWeb99 workload We also run Apache with 150 and 300 server processes.

On the SpecWeb99 workload, we find that mean response

Table 6:Separating SpecWeb99 static and dynamic latencies

time is reduced by a factor of four by our changes. The cu-= * T
mulative distribution of latencies can be seen in Figure 10. v / P

We use 300 simultaneous connections, and compare thé o® ) R

new server with the original Flash running on a patched VM 2 o6 7

system. Since 30% of the requests are for longer-runningg 7f 44

dynamic content, we also test the latencies of a SpecWeb9& ., ; e et

test with only static requests. The mean of this workload > / (neew Flash) —e—
is 7.1 msec, lower than the 10.6 msec mean for the neWé 0.2 [l T g A he 00m e
server running the complete workload. This difference sug-£ / A (Ol Pibehan) v
gests that further optimization of dynamic content hamgllin & ;5 Pl o0 7950 To000
may lead to even better performance. To compare the dif- Tinme (msec)

ference between static and dynamic request handling, weFigure 11:Response latencies for the 3.3GB static workload
calculate the &, 50, and 95" percentiles of the latencies

for requests on the SpecWeb99 workload. These result$ 5% | median 95% | mean
are shown in Table 6, and indicate that dynamic content (ms) (ms) (ms)| (ms)
is served at roughly half the speed of its static counterpart New Flash| 0.37 0.79 7 45 756
The latency difference between the new server and the origi Naw Flash, 4p| 0.38 0.82 751 772
inal Flash on this test is not as large as expected because the OldFlash 3361 37591 32640 9237

working set still fits in physical memory. Old Flash. 4p| 7.05 | 142.65| 1924.42] 420.85

Apache 150p| 0.70 6.64 | 1599.50| 360.62
’ Apache 300p| 0.78 | 124.98| 2201.63| 545.93
08 Table 7:Summaries of the static workload latencies
., The results, given in Figure 11 and Table 7, show the re-
06 sponse time of our new server under this workload exhibits
% ' improvements of more than a factor of twelve in mean re-
i sponse time, and a factor of 47 in median latency. With
0.2 /' four instances, the differences are a factor of 54 in mean re-
/ /7 new, static Specweb99(mean: 7.1 msec) —+— sponse time and 174 in median time. We measure the max-

0.4

//’l,ﬁew, standard SpecWeb99 (mean: 10.6 msec) ---X---

o i, pid, standard SpecwehSs {mean: 49.0 msec) - % imum capacities of the servers when run in infinite-demand
0.1 1 10 100 1000 10000
Ti me (nsec)

Figure 10:Latency summary for 300 SpecWeb99 connections

Probability [Response tine <= x]

mode, and these results are shown in Table 8. While the
throughput gain from our optimizations is significant, the
scale of gain is much lower than the SpecWeb99 test, in-



data set| Apache| Old Flash| New Flash
500MB 240.3 485.2 660.9
1.5GB| 230.7 410.6 580.3
3.3GB| 210.6 264.5 326.4

disable logging. Both the original Flash and the new Flash
server use the maximum available cache size for LRU. We
also adjust the cache size in Haboob for the best perfor-

mance. The throughputresults, shown in Table 10, are quite
surprising. The Haboob server, despite having aggressive
optimizations and event-driven stages, performs slightly
dicating that our latency benefits do not stem purely frombetter than Apache on diskbound workload but worse than
extra capacity. Apache on an in-memory workload. We believe that its

. dependence on excess parallelism (via its threaded design)
6.3 Excess parallelism may have some impact on its performance. The new Flash
We also observe that all servers tested show latency degraerver gains about 17-24% over the old one for the smaller
dation when running with more processes, though the effeaiorkloads, and all four servers have similar throughput on
is much lower for our new server. This observation is in linethe larger workload because of diskbound.

with the self-interference between the helpers and the main

Flash process which we described earlier. We increase the Throughput (Mb/s)

number of helper processes and measure its effect on thé data set| Haboob| Apache| Flash | New Flash
SpecWeh99 results, as shown in Table 9. We observe tha

Table 8:Server static workload capacities (Mb/s)

o > - ! 500MB | 3249 | 434.3 | 1098.1| 1284.7
too few helpers is insufficient to fully utilize the disk, and 15GB | 3034 3754 | 6617 8905
increasing their number initially helps performance. How- —===pT—827 1774 | 1738 199 1

ever, the blocking from self-interference increases, gven
ally decreasing performance. A similar phenomenon, stem-
ming from the same problem, is also observed with Apache.

Response Time (ms)
profile | Haboob| Apache| Flash | New Flash

Using DeBox, we find that Apache with 150 processes, 5% | 782 0.22 0.21 0.15
sleeps 3667 times per second, increasing to 3994 times per median| 414.3 | 0.61 1.56 0.42
second at 300 processes. This behavior is responsible for  95% | 1918.9 | 661.8 | 4125 3.68
Apache’s latency increase in Figure 11. mean| 656.2 | 418.0 | 5125 141.9

Table 10:Throughput measurement on Linux with 1GB memory

| #ofhelpersy 1 | 5 | 10 | 15 |
Blocking count| 114 295 339 394 1 SR —
% Conforming| 40.9% | 95.1% | 96.9% | 89.5% _
Table 9: Parallelism benefits and self-interference — The §  °® ™™ Apache g
conformance measurement indicates how many requests meeg T
SpecWeb99's quality-of-service requirement. % o6
This result suggests that excess parallelism, where serveé ., s e
designers use parallelism for convenience, may actually de% // ‘
grade performance noticeably. This observation may ex-g¢ oz |-/ ‘,.""*ﬂhfmh
plain the latency behavior reported for Haboob [41]. /
o L
7 Results Portability ot ' Y me oy oo aeo0e

The main goal of this work is to provide developers with ~ Figure 12:Response time on Linux with 3.3GB dataset
tools to diagnose and correct the performance problems in Despite similar throughputs at the 3.3GB data set size,
their own applications. Thus we hope that the optimiza-the latencies of the servers, shown in Figure 12 and Ta-
tions made on one platform also have benefit on other platsle 10, are markedly different. The Haboob latency profile
forms. To test this premise, we test the performance oris very close to their published results, but are beatenlby al
Linux, which has no DeBox support. of the other servers. We surmise that the minimal amount
Unfortunately, we were unable to get Linux to run prop- of tuning done to configurations of Apache and the original
erly on our existing hardware, despite several attempts t&lash yield much better results than the original Haboob
resolve the issue on the Linux kernel list. So, for thesecomparison [41]. The benefit of our optimization is still
numbers, we use a server machine with a 3.0 GHz Pentiumalid on this platform, with a factor of 4 both in median
4 processor and two Intel Pro1000/MT Gigabit adaptersand mean latency over the original Flash. One interesting
1GB of memory, and a similar disk. The experiments wereobservation is that the 95% latency of the new Flash is a
performed on 2.4.21 kernel witthpol | () support. factor of 39 lower than the mean value. This result suggests
We compare the throughput and latency of four serversthat the small fraction of long-latency requests is the majo
Apache 1.3.27, Haboob, Flash, and the new Flash. We incontribution to the mean latency. Though our Linux re-
crease the max number of clients to 1024 in Apache andgults are not directly comparable to our FreeBSD ones due



to the hardware differences, we do notice this phenomenoeasily isolate problematic paths and their call sites, Wwhic
is less obvious on FreeBSD. Presumably one of the caus&3CPI’s aggregation makes more difficult.

of this is the blocking disk 1/O feature afendfi | e() e System activity monitors — Tools such ast op

on Linux. Another reason may be Linux’s filesystem Per- st at netstat,iostat, andsystat can be used

formance, since this throughput is worse than what we ob- . : . ;
to monitor a running system or determine a first-order cause
served on FreeBSD.

for system slowdowns. The level of precision varies greatly

with t op showing per-process information on CPU us-
8 Related Work age, memory consumption, ownership, and running time,
To compare DeBox’s approach of making performance into virst at showing only summary information on mem-
formation a first-class result, we describe three categorieory usage, fault rates, disk activity, and CPU usage.
of tools currently in use, and explain how DeBox relates toe  Trace tools— Trace tools provide a means of observ-
these approaches. ing the system call behavior of processes without access to
e Function-based profilers— Programs such gsr of, ~ source code. Tools such@suss, PCT [11],st race [2],
gpr of [18], and their variants are often used to detect hot-andkt r ace are able to show some details of system calls,
spots in programs and kernels. These tools use compiler agtch as parameters, return values, and timing information.
sistance to add bookkeeping information (count and time)Recent tools, such as Kitrace [21] and the Linux Trace
Data is gathered while running and analyzed offline to re-Toolkit [42], also provide data on some kernel state that
veal function call counts and CPU usage, often along edgeghanges as a result of the system calls. These tools are in-
in the call graph. tended for observing another process, and as a result, pro-
e Coverage-based profilers- These profilers divide the ducing out-of-band measurements and data aggregation, of-
program of interest into regions and use a clock interrupt€n requiring post-processing to generate usable output.
to periodically sample the location of the program counter® Timing calls — Usingget ti meof day() or similar
Like function-based profilers, data gathering is done on<alls, programmers can manually record the start and end
line while analysis is performed offline. Tools such astimes of events to infer information based on the difference
profil (), kernbb, andt cov can then use this infor- Thegetrusage() call adds some information beyond
mation to show what parts of the program are most likely tofimings (context switches, faults, messages and I/O cpunts
consume CPU time. Coverage-only approaches may misdhd can similarly used. If per-call information is required
infrequently-called functions entirely and may not be ablenot only do these approaches introduce many more system
to show call graph behavior. Coverage information com-calls, but the information can be misleading.

bined_with compilgr analysis can be used to show usage on pegox compares favorably with a hypothetical merger
a basic-block basis. of the timing calls and the trace tools in the sense that tim-
e Hardware-assisted profilers— These profilers are sim-  jng information is presented in-band, but so is the other in-
ilar to coverage-based profilers, but use special featdres @ormation. In comparison with the Linux Trace Toolkit, our

the microprocessor (event counters, timers, programmablgcuys differs in that we gather the most significant pieces of

interrupts) to obtain high-precision information at lower gata related to performance, and we capture it at a much
cost. The other major difference is that these profilerdy suchigher level of detail.

as DCPI [4], Morph [43], VTune [19], Oprofile [29], and

PP[3] tend to be whole system profilers, capturing activity® Microbenchmarks —Tools such as Imbench [24] and
across all processes and the operating system. hbench:OS [13] can measure best-case times or the isolated

cost of certain operations (cache misses, context switches

In this category, DeBox is logically closest to kernel etc.). Common usage for these tools is to compare different
gpr of , though it provides more than just timing infor- operating systems, different hardware platforms, or possi
mation. DeBox’s full call trace allows more complete call ble optimizations.
graph generation than gprof’s arc counts, and with the data Latency tools— Recent work on attempting to find the
compression and storage performed in user space, overhesdurce of latency on desktop systems not designed for real-
is moved from the kernel to the process. Compared to pattime work have yielded insight and some tools. The Intel
profiling, DeBox allows developers to customize the levelReal-Time Performance Analyzer [33] helps automate the
of detail they want about specific paths, and it allows thenprocess of pinpointing latency. The work of Cota-Robles
to act on that information as it is generated. In compari-and Held [16] and Jones and Regehr [20] demonstrate the
son to low-level statistical profilers such as DCPI, coverag benefits of successive measurement and searching.
differs since DeBox measures functions directly used dure Instrumentation — Dynamic instrumentation tools pro-
ing the system call. As a result, the difference in approaclvide mechanisms to instrument running systems (processes
yields some differences in what can be gathered and the dibr the kernel) under user control, and to obtain pre-
ficulty in doing so — DCPI can gather bottom-half informa- cise kernel information. Examples include Dyninst [14],
tion, which DeBox currently cannot. However, DeBox can Kerninst [40], ParaDyn [25], Etch [35], and ATOM [37].



The appeal of this approach versus standard profilers is thBox improves our experimental results an overall factor of
flexibility (arbitrary code can be inserted) and the cost (nofour in SpecWeb99 score, despite having a data set size
overhead until use). Information is presented out-of-band nearly three times as large as our physical memory. Fur-
) ) thermore, our latency analysis demonstrates gains between
Since DeBox_measures the pgrformance O_f calls in the|5 factor of 4 to 47 under various conditions. Further re-
natural usage, it resembles the instrumentation tools. Des'ults show that fixing the bottlenecks identified using De-

Box gains some erX|b|I!ty by pres_entlng this dgta t.o theBox also mitigates most of the negative impact from excess
application, which can filter it on-line. One major differ- garallelism in application design

ence between DeBox and kernel instrumentation is that wi . .
We have shown how DeBox can be used in a variety of

provide a rich set of measurements to any process, rather : . .
than providing information only to privileged processes. examples, allowing developers to shape profiling policy and
react to anomalies in ways that are not possible with other

Beyond these performance analysis tools, the idea of oldools. Although DeBox does require access to kernel source
serving kernel behavior to improve performance has apeode for achieving the highest impact, we do not believe
peared in many different forms. We share similarities withthat such a restriction is significant. FreeBSD, NetBSD,
Scheduler Activations [5] in observing scheduler actitity and Linux sources are easily available, and with the ad-
optimize application performance, and with the Infokernelvent of Microsoft's Shared Source initiatives, few hardevar
system by Arpaci-Dusseau et al. [8]. Our goals differ, sinceplatforms exist for which some OS source is not available.
we are more concerned with understanding why blockingAlso, general information about kernel behavior instead of
occurs rather than reacting to it during a system call. Ousource code may be enough to help application redesign.
non-blockingsendf i | e() maodification is patterned on Our performance portability results also demonstrate that
non-blocking sockets, but it could be used in other systenpur new system achieves better performance even without
calls as well. In a similar vein, RedHat has applied for akernel modification. A further implication of this is that it
patent on a new flag to th@pen() call, which aborts if is possible to perform analysis and modifications while run-
the necessary metadata is not in memory [26]. ning on one operating system, and still achieve some degree

Our observations on blocking and its impact on latencyof benefit in other environments.
may impact server design. Event-driven designs for net- In this paper we focused on how DeBox can be used as
work servers have been a popular approach since the pedi-performance analysis tool, but we have not discussed its
formance studies of the Harvest Cache [12] and the Flashtility in general-purpose monitoring because of space lim
server [30]. Schmidt and Hu [36] performed much of theits. Given its low overheads, DeBox is an excellent candi-
early work in studying threaded architectures for improv-date for monitoring long-running applications. We are ap-
ing server performance. A hybrid architecture was usegroaching this problem by modifying the bc library and
by Welsh et al. [41] to support scheduling, while Larus associated header files so that a simple recompile and relink
and Parkes [22] demonstrate that such scheduling can alsuill enable monitoring of applications using DeBox. It is
be performed in event-driven architectures. Qie et al. [34klso possible to process results automatically by allowing
show that such architectures can also be protected againséer-specified analysis policies. We are working on such a
denial-of-service attacks. Adya et al. [1] discuss the unifi tool, which will allow passive monitoring of daemons, but
cation of the two models. We believe that DeBox can bea full discussion of it is beyond the scope of this paper.
used to identify problem areas in other servers and archi- \while we have shown DeBox to be effective in identi-
tectures, as our latency measurements of Apache suggestying performance problems in the interaction between the
OS and applications, the current version of DeBox does not
handle the bottom-half activities in the kernel. DeBox’s
This paper presents the design, implementation and evagurrent focus on the system call boundary also makes it less
uation of DeBox, an effective approach to provide moreuseful for tracing problems arising purely in user space.
OS transparency, by exposing system call performance adowever, we believe that both of these limitations can be
a first-class result via in-band channels. DeBox providegiddressed, and we are continuing work in these areas.
direct performance feedback from the kernel on a per-call
pasis, e_nabling programmers to diagnose kernel and us@{cknowledgments
interactions correlated with user-level events. Furttegem
we believe that the ability to monitor behavior on-line pro- This work was partially supported by an NSF CAREER
vides programmatic flexibility of interpreting and analyz- Award. We would like to thank our shepherd, Remzi
ing data not present in other approaches. Arpaci-Dusseau, and our anonymous reviewers for their

Our case study using the Flash Web Server with thdeedback and insight. We would also like to thank the
SpecWeb99 benchmark running on FreeBSD demonstratdseeBSD developers, particularly Mike Silbersack and
the power of DeBox. Addressing the problematic interac-Alan Cox, for their efforts in integrating osrendf i | e()
tions and optimization opportunities discovered using De-modifications.
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