
1

Concepts in Object-Oriented
Programming Languages

Slides Today Taken From
John Mitchell

Outline of lecture

�Object-oriented design

�Primary object-oriented language concepts

• dynamic lookup

• encapsulation

• inheritance

• subtyping

�Program organization

• Work queue, geometry program, design patterns

�Comparison

• Objects as closures?

Objects

�An object consists of

• hidden data

instance variables, also called
member data

hidden functions also possible

• public operations

methods or member functions

can also have public variables
in some languages

�Object-oriented program:

• Send messages to objects

hidden data

method1msg1

.

methodnmsgn

What’s interesting about this?

�Universal encapsulation construct

• Data structure

• File system

• Database

• Window

• Integer

�Metaphor usefully ambiguous

• sequential or concurrent computation

• distributed, sync. or async. communication

Object-oriented programming

�Programming methodology

• organize concepts into objects and classes

• build extensible systems

�Language concepts

• encapsulate data and functions into objects

• subtyping allows extensions of data types

• inheritance allows reuse of implementation

Object-oriented Method [Booch]

�Four steps

• Identify the objects at a given level of abstraction

• Identify the semantics (intended behavior) of objects

• Identify the relationships among the objects

• Implement these objects

�Iterative process

• Implement objects by repeating these steps

�Not necessarily top-down

• “Level of abstraction” could start anywhere

2

This Method

�Based on associating objects with components
or concepts in a system

�Why iterative?

• An object is typically implemented using a number of
constituent objects

• Apply same methodology to subsystems, underlying
concepts

�Car object:

• Contains list of main parts (each an object)

– chassis, body, engine, drive train, wheel assemblies

• Method to compute weight

– sum the weights to compute total

�Part objects:

• Each may have list of main sub-parts

• Each must have method to compute weight

Example: Compute Weight of Car

Comparison to top-down design

� Similarity:

• A task is typically accomplished by completing a
number of finer-grained sub-tasks

�Differences:

• Focus of top-down design is on program structure

• OO methods are based on modeling ideas

• Combining functions and data into objects makes
data refinement more natural (I think)

Object-Orientation

�Programming methodology

• organize concepts into objects and classes

• build extensible systems

�Language concepts

• dynamic lookup

• encapsulation

• subtyping allows extensions of concepts

• inheritance allows reuse of implementation

Dynamic Lookup

� In object-oriented programming,

object � message (arguments)

code depends on object and message

�In conventional programming,

operation (operands)

meaning of operation is always the same

Fundamental difference between abstract data types and objects

Example

�Add two numbers x � add (y)

different add if x is integer, complex

�Conventional programming add (x, y)

function add has fixed meaning

Very important distinction:
Overloading is resolved at compile time,
Dynamic lookup at run time

3

Language concepts

�“dynamic lookup”

• different code for different object

• integer “+” different from real “+”

�encapsulation

�subtyping

�inheritance

Encapsulation

�Builder of a concept has detailed view

�User of a concept has “abstract” view

�Encapsulation is the mechanism for separating
these two views

message

Object

Comparison

�Traditional approach to encapsulation is through
abstract data types

�Advantage

• Separate interface from implementation

�Disadvantage

• Not extensible in the way that OOP is

We will look at ADT’s example to see what problem is

Abstract data types

abstype q

with
mk_Queue : unit -> q
is_empty : q -> bool
insert : q * elem -> q
remove : q -> elem

is …
in

program
end

Priority Q, similar to Queue

abstype pq

with mk_Queue : unit -> pq

is_empty : pq -> bool

insert : pq * elem -> pq

remove : pq -> elem

is …

in

program

end

But cannot intermix pq’s and q’s

Abstract Data Types

�Guarantee invariants of data structure

• only functions of the data type have access to the
internal representation of data

�Limited “reuse”

• Cannot apply queue code to pqueue, except by
explicit parameterization, even though signatures
identical

• Cannot form list of points, colored points

�Data abstraction is important part of OOP,
innovation is that it occurs in an extensible form

4

Language concepts

�“dynamic lookup”

• different code for different object

• integer “+” different from real “+”

�encapsulation

�subtyping

�inheritance

Subtyping and Inheritance

�Interface

• The external view of an object

�Subtyping

• Relation between interfaces

�Implementation

• The internal representation of an object

�Inheritance

• Relation between implementations

Object Interfaces

�Interface

• The messages understood by an object

�Example: point

• x-coord : returns x-coordinate of a point

• y-coord : returns y-coordinate of a point

• move : method for changing location

�The interface of an object is its type.

Subtyping

�If interface A contains all of interface B, then
A objects can also be used B objects.

�Colored_point interface contains Point

• Colored_point is a subtype of Point

Point
x-coord

y-coord

move

Colored_point
x-coord
y-coord
color
move
change_color

Inheritance

�Implementation mechanism

�New objects may be defined by reusing
implementations of other objects

Example

class Point

private

float x, y

public

point move (float dx, float dy);

class Colored_point

private

float x, y; color c

public

point move(float dx, float dy);

point change_color(color newc);

�Subtyping

• Colored points can be

used in place of points

• Property used by client

program

�Inheritance

• Colored points can be

implemented by resuing

point implementation

• Propetry used by

implementor of classes

5

OO Program Structure

�Group data and functions

�Class

• Defines behavior of all objects that are instances of
the class

�Subtyping

• Place similar data in related classes

�Inheritance

• Avoid reimplementing functions that are already
defined

Example: Geometry Library

�Define general concept shape

�Implement two shapes: circle, rectangle

�Functions on implemented shapes

center, move, rotate, print

�Anticipate additions to library

Shapes

�Interface of every shape must include

center, move, rotate, print

�Different kinds of shapes are implemented
differently

• Square: four points, representing corners

• Circle: center point and radius

Subtype hierarchy

Shape

Circle Rectangle

�General interface defined in the shape class

�Implementations defined in circle, rectangle

�Extend hierarchy with additional shapes

Code placed in classes

�Dynamic lookup

• circle � move(x,y) calls function c_move

�Conventional organization

• Place c_move, r_move in move function

r_printr_rotater_mover_centerRectangle

c_printc_rotatec_movec_centerCircle

printrotatemove center

Example use: Processing Loop

Remove shape from work queue

Perform action

Control loop does not know the
type of each shape

6

Subtyping differs from inheritance

Collection

Set

Sorted Set

Indexed

Array Dictionary

String
Subtyping

Inheritance

Design Patterns

�Classes and objects are useful organizing
concepts

�Culture of design patterns has developed
around object-oriented programming

• Shows value of OOP for program organization and
problem solving

What is a design pattern?

�General solution that has developed from
repeatedly addressing similar problems.

�Example: singleton

• Restrict programs so that only one instance of a class
can be created

• Singleton design pattern provides standard solution

�Not a class template

• Using most patterns will require some thought

• Pattern is meant to capture experience in useful form

Standard reference: Gamma, Helm, Johnson, Vlissides

OOP in Conventional Language

�Records provide “dynamic lookup”

�Scoping provides another form of encapsulation

Try object-oriented programming in ML.

Will it work? Let’s see what’s fundamental to OOP

Dynamic Lookup (again)

receiver � operation (arguments)

code depends on receiver and operation

This is may be achieved in conventional languages

using record with function components

Stacks as closures

fun create_stack(x) =

let val store = ref [x] in

{push = fn (y) =>

store := y::(!store),

pop = fn () =>

case !store of

nil => raise Empty |

y::m => (store := m; y)

} end;

val stk = create_stack(1);

stk = {pop=fn,push=fn} : {pop:unit -> int, push:int -> unit}

7

Does this work ???

�Depends on what you mean by “work”

�Provides

• encapsulation of private data

• dynamic lookup

�But

• cannot substitute extended stacks for stacks

• only weak form of inheritance

– can add new operations to stack

– not mutually recursive with old operations

Varieties of OO languages

�class-based languages

• behavior of object determined by its class

�object-based

• objects defined directly

�multi-methods

• operation depends on all operands

This course: class-based languages

History

�Simula 1960’s

• Object concept used in simulation

�Smalltalk 1970’s

• Object-oriented design, systems

�C++ 1980’s

• Adapted Simula ideas to C

�Java 1990’s

• Distributed programming, internet

Next lectures

�Simula and Smalltalk

�C++

�Java

Summary

�Object-oriented design

�Primary object-oriented language concepts

• dynamic lookup

• encapsulation

• inheritance

• subtyping

�Program organization

• Work queue, geometry program, design patterns

�Comparison

• Objects as closures?

Example: Container Classes

�Different ways of organizing objects

• Set: unordered collection of objects

• Array: sequence, indexed by integers

• Dictionary: set of pairs, (word, definition)

• String: sequence of letters

�Developed as part of Smalltalk system

