
1

Subtyping

COS 441
Princeton University

Fall 2004

Inclusive vs. Coercive
Relationships

• Inclusive
– Every cat is a feline
– Every dog is a canine
– Every feline is a mammal

• Coercive/isomorphism
– Integers can be converted into floating point numbers
– Booleans can be converted into interegers
– Mammals with a tail can be converted to a mammals

without a tail (ouch!)

Subtype Relation

Read τ1 <: τ2 as τ1 is a subtype of τ2 or τ2 is
a supertype of τ1

Subtype relation is reflexive and transitive

We say (τ1 = τ2) iff (τ1 <: τ2) and (τ2 <:τ1)

τ1 <: τ2

refl

τ1 <: τ3

τ1 <: τ2 τ2 <: τ3 trans

Implicit vs Explicit

Typing rules for subtyping can be rendered
in either implicit or explicit form

cast

Simplification for Type-Safety

• Inclusive/Coercive distinction independent
of Implicit/Explicit distinction

• Harper associates inclusive with implicit
typing and coercive with explicit typing
because it simplifies the type safety proof
– You can have a inclusive semantics with

explicit type casts
– You can have a coercive semantics with

implicit typing

Dynamic Semantics

• For inclusive system primitives must
operate equally well for all subtypes of a
give type for which the primitive is defined

• For coercive systems dynamic semantics
simply must cast/convert the value
appropriately

2

Varieties of Systems

• Implicit, Inclusive – Described by Harper
• Explicit, Coercive – Described by Harper
• Implicit, Coercive – Non-deterministic

insertion of coercions
• Explicit, Inclusive – Type casts are no-ops

in the operational semantics

Subtype Relation (cont.)

Given

via transitivity we can conclude
(bool <: float)

bool <: int
b2i

int <: float
i2f

Subtyping of Functions

(mammal *

(mammal → float))→ unit

printInfo:

feline→ floatpitchOfMeow:

(feline *

(feline → float))→ unit

printFelineInfo:

feline→ intnumberOfWiskers:

mammal→ intnumberOfTeeth:

mammal→ floatweight:

Subtyping Quiz

mammal→ int <: mammal→ float

feline→ int <: feline→ float

mammal→ float <: feline→ float

mammal→ int <: feline→ int

mammal→ int <: feline→ float

Co/Contra Variance

τ1 → τ2 <: τ1’ → τ2’
τ1’ <: τ1 τ2 <: τ2’

(τ1 * τ2) <: (τ1’ * τ2’)
τ1 <: τ1’ τ2 <: τ2’

argument is contravariant return type is covariant

both are covariant

Width vs Depth Subtyping

Consider the n-tuple (τ1 * … * τn)

Width Subtyping
(int * int * float) <: (int * int)

Depth Subtyping
(int * int) <: (float * float)

(τ1 * … * τn) <: (τ’1 * … * τ’n)
τ1 <: τ’1 … τn <: τ’n depth

(τ1 * … * τm) <: (τ1 * … * τn)
m > n

width

3

Width and Depth for Records

Similar rule for records {l1 : τ1,…,ln:τn}
Width considers any subset of labels since
order of labels doesn’t matter.

Implementing this efficiently can be tricky
but doable

Subtyping and Mutability

Mutability destroys the ability to subtype
τ ref = {get:unit → τ, set:τ → unit}
τ’ ref = {get:unit → τ’, set:τ’ → unit}

Assume τ <: τ’ from that we conclude
unit → τ <: unit → τ’ and
τ’ → unit <: τ → unit

Subtyping Defines Preorder/DAG

Subtyping relation can form any DAG

mammal

feline canine

dogcat tiger wolf

domesticated wild

Typechecking With Subtyping

With explicit typing every expression has a
unique type so we can use type synthesis
to compute the type of an expression

Under implicit typing an expression may
have many different types, which one
should we choose?

e.g. CalicoCat : mammal,
CalicoCat : feline, and CalicoCat : cat

Which Type to Use?

Consider weight: mammal→ float

countWiskers: feline→ int

let val c = CalicoCat
in (weight c,countWiskers c)
end

What type should we use for c?

Which Type to Use?

Consider weight: mammal→ float

countWiskers: feline→ int

let val c: mammal = CalicoCat
in (weight c,countWiskers c)
end

What type should we use for c?

4

Which Type to Use?

Consider weight: mammal→ float

countWiskers: feline→ int

let val c: feline = CalicoCat
in (weight c,countWiskers c)
end

How do we know this is the “best” solution?

Which Type to Use?

Consider weight: mammal→ float

countWiskers: feline→ int

let val c: cat = CalicoCat
in (weight c,countWiskers c)
end

Choose the most specific type.

Principal Types

Principal type is the “most specific” type. It is
the least type in a given pre-order defined
by the subtype relation

Lack of principal types makes type synthesis
impossible with implicit subtyping unless
programmer annotates code

Not at as big a problem for explicit subtyping
rules

Subtyping Defines Preorder/DAG

Q: What is the least element “principal type”
for “mammal”?

mammal

feline canine

dogcat tiger wolf

domesticated wild

Subtyping Defines Preorder/DAG

A: “mammal” has no principal type in the
subtyping relation defined below

mammal

feline canine

dogcat tiger wolf

domesticated wild

Implementing Subtyping

For inclusive based semantics maybe hard
to implement or impose restrictions on
representations of values

Coercive based semantics give more
freedom on choosing appropriate
representation of values

Can use “type-directed translation” to
convert inclusive system to coercive
system

5

Subtyping with Coercions

Define a new relation τ1 <: τ2 � v

Where v is a function of type (τ1 → τ2)

Subtyping with Coercions (cont)

Implementing Record Subtyping

Implementing subtyping on tuples is easy
since address index “does the right thing”
((1, 2, 3) : (int * int * int)).2

((1, 2, 3) : (int * int)).2
Selecting the field label with records is more

challenging
({a=1,b=2,c=3} : {a:int,b:int,c:int}).c

({a=1,b=2,c=3} : {a:int,c:int}).c

Approaches to Record Subtyping

Represent record as a “hash-table” keyed by label
name

Convert record to tuple when coercing create new
tuple that represents different record with
appropriate fields

Two level approach represent record as “view” and
value. Dynamically coerce views.

(Java interfaces are implemented this way, but you
can statically compute all the views in Java)

By Name vs Structural Subtyping

Harper adopts a structural view of subtyping.
Things are subtypes if they are some how
isomorphic.

Java adopts a “by name” view. Things are
subtypes if they are structurally compatible and
the user declared them as subtypes.

Java approach leads to simpler type-checking and
implementation but is arguably less modular
than a pure structural approach

Summary

Coercive vs Inclusive
Operational view of what subtyping means

Implicit vs Explicit
How type system represents subtyping

Systems can support all possible combinations

Need to think things through to avoid bugs
Tuples/records have both width and depth subtyping
Functions are contravariant in argument type
References are invariant

