Symbol Tables

Symbol tables
Ordered array
Unordered linked list

Reference: Chapter 12, Algorithms in Java, 3¢ Edition, Robert Sedgewick.

Princeton University + COS 226 - Algorithms and Data Structures - Spring 2004 - Kevin Wayne - http://www.Princeton.EDU/~cos226

Symbol Table ADT

Symbol table: key-value pair abstraction.
. Insert avalue with specified key. ¢ In this lecture, we
. Search for value given key. assume key is a String.

Example: key = URL, value = IP address.
. Insert URL with specified IP address.
. Given URL, find corresponding IP address.

Web Site IP Address

Www.cs.princeton.edu| 128.112.136.11
www.princeton.edu 128.112.128.15
www.yale.edu 130.132.143.21
www.harvard.edu 128.103.060.55
wWww.simpsons.com 209.052.165.60
T 1t
key value

Other Symbol Table Applications

Other applications.

. Online phone book: look up a name to find telephone number.
Google: look up phrase and return most relevant web pages.
Spell checker: look up a word to find if it's there or present alternative.

= . DNS: look up name of web site to find IP address.

Java compiler: look up variable name to find its type and value.
File sharer: look up song to find host machines.
File system: look up file name to find location on hard drive.
University registrar: look up student to find grades.
Web traffic analyzer: look up host to find humber of hits.
Web cache: cache frequently accessed pages.
Routing table: look up routing info for IP.
Browser: highlight visited links in purple.
Chess: detect a repetition draw.
Bayesian spam filter: use frequencies of spam and ham words to filter email.
Language modeling: determine frequency of next letter given prefix.
Book index: determine pages on which each word appears.
"Associative memory."
Index of any kind.

Abstract Data Types

Interface. Description of data type, basic ops.
Client. Program using ops defined in interface.
Implementation. Actual code implementing ops.

algorithms

Symbol Table Client: DNS Lookup

DNS lookup client program.
. st.put(key, value) inserts a key-value pair into symbol table.
. st.get (key) searches for the given key and returns the value.

public static void main(String[] args) {
SymbolTable st = new SymbolTable() ;

key value
st.put ("www.cs.princeton.edu", "128.112.136.11");
st.put ("www.princeton.edu", "128.112.128.15") ;
st.put ("www.yale.edu", "130.132.143.21") ;
st.put ("www.simpsons.com", "209.052.165.60") ;
st["wwg.simpsons.com"] = "209.052.165.60"

System.out.println(st.get("www.cs.princeton.edu")) ;
System.out.println(st.get ("www.harvardsucks.com")) ;
System.out.println(st.get ("www.simpsons.com")) ;

st["www.simpsons.com"]
128.112.136.11
null

209.052.165.60

Symbol Table Client: Remove Duplicates

Remove duplicates (e.g., from commercial mailing list).
. Read in a key.
. If key is not in symbol table, print out key and insert.

public class DeDup {
public static void main(String[] args) {
SymbolTable st = new SymbolTable() ;
while (!StdIn.isEmpty () {
String key = StdIn.readString() ;
if (st.get(key) == null) {
System.out.println (key) ;
st.put (key, "");
} T

} insert empty string as value

Object

Class object.
. All objects "inherit" from the special class opject.
. All objects have certain pre-defined methods.

Method Description Default Typical Usage

tostring | convert to string memory address "hello " + s

are two memory

equals e bie e 1? if (s.equals(t))
= are two objects equa addresses equal? 4
hashCode convert fo integer memory address s.hashCode ()
Consequences.

. Can have a symbol table of any object, e.g, string or student.
. Programmer may need to override default methods.

Symbol Table: Sorted Array Implementation

Maintain array of keys and values.
. Store in sorted order by key.
. keys[i] = i™ largest key.
. values[i] = value associated with ith largest key.

public class ST {
private Object[] values = new Object[14];
private String[] keys = new Object[14];
private int N = 0; d4m number of elements ™ initial capacity

Symbol Table Search: Sorted Array Implementation

Binary search.

. Examine the middle key. E

. If it matches, return the value.
. Otherwise, search either the left or right half.

public Object get(String key) {

int left = 0;

int right = N-1;

while (left <= right) {
int mid = (left + right) / 2;
if (equal (key, keys[mid])) return values[mid]; found
if (less (key, keys[mid])) right mid - 1; left half
else left mid + 1; right half

}

return null; not found

Symbol Table Insert: Sorted Array Implementation

Insert.
. Need to maintain entries in ascending order.
Find insertion point and move larger keys to the right.

FR2ss

‘ 4 ‘ 6 ‘14‘20‘26‘32‘47‘55‘56‘58‘82 OSBRSS ey = value = int

i
DO 28 32 47 55 56 58 82 i ENESREE
A A

Sorted Array Implementation: Performance

Advantages: not much code, fast search.

% java DeDup < toSpamList.txt % java Dedup < mobydick.txt
wayne@cs.princeton.edu moby
rs@cs.princeton.edu dick
dgabai@cs.princeton.edu EEREmn
. . melville
pcalamia@cs.princeton.edu i1
ca
sgaw@cs.princeton.edu
me
ishmael
some
years

ago 210,028 words
... 16,834 distinct

Disadvantage: insert is hopelessly slow for large inputs.
T

hours to dedup Moby Dick

Sorted Array Implementation Analysis

Claim. Worst-case number comparisons to binary search in a sorted
array of size N is O(log N)?
. Divide list in half each fime. 625 = 312 =156 = 78 = 39 =18 = 9 = 4 = 2 =1

Proof. Worst-case number of steps satisfies:

. C(N)=1+C(N/2) (integer division)
. C(D=0 625,, = 1001110001,

= C(N)= HOQZ (N+1)—| [log, (626)1= 10
Same recurrence as # bits in binary representation of N.

Worst Case Average Case

Delete Search Insert Delete

Implementation Search Insert

Sorted array

Symbol Table: Linked List Implementation

Maintain a linked list of key-value pairs.
. Insert new key-value pair at beginning of list.
. Key = string, value = object.
. Use exhaustive search to search for a key.

13

Symbol Table: Linked List Implementation

Linked List Implementation: Performance

Advantages: not much code, fast insertion.

Disadvantage: search is hopelessly slow for large inputs.
T

hours to dedup Moby Dick

Linked List Implementation: Analysis

Insertion. Constant time.

Search. Need to look at every entry if not found.

Worst Case Average Case
Implementation Search Insert Delete Search Insert Delete

1

N/2

given reference to
element to be deleted

Can we achieve log N performance for all ops?

