
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Elementary Sorts

Insertion sort

Selection sort

Bubble sort

Reference: Chapter 6, Algorithms in Java, 3rd Edition, Robert Sedgewick.

2

Basic Terms

Ex: student record in a University.

Sort: rearrange records such that keys are in ascending order.

3

Sorting Applications

Applications.
� Sort a list of names.
� Organize an MP3 library.
� Display Google PageRank results.

� Find the median.
� Find the closest pair.
� Binary search in a database.
� Identify statistical outliers.
� Find duplicates in a mailing list.

� Data compression.
� Computer graphics.
� Computational biology.
� Supply chain management.
� Simulate a system of particles.
� Book recommendations on Amazon.
� Load balancing on a parallel computer.
�

obvious applications

problems become easy once
items are in sorted order

non-obvious applications

4

Why Study Sorting Algorithms?

Q. Isn't the system sort good enough.

A. Maybe.
� Is your file randomly ordered?
� Need guaranteed performance?
� Stable?
� Multiple key types?
� Multiple keys?
� Deterministic?
� Keys all distinct?
� Linked list or arrays?
� Large or small records?

A. An elementary sorting algorithm may be the method of choice.
A. Use well understood topic to study basic issues.

many more combinations of
attributes than algorithms

5

Fox 1 A 243-456-9091 101 Brown

Quilici 1 C 343-987-5642 32 McCosh

Chen 2 A 884-232-5341 11 Dickinson

Kanaga 3 B 898-122-9643 343 Forbes

Andrews 3 A 874-088-1212 121 Whitman

Furia 3 A 766-093-9873 22 Brown

Rohde 3 A 232-343-5555 115 Holder

Battle 4 C 991-878-4944 308 Blair

Gazsi 4 B 665-303-0266 113 Walker

Aaron 4 A 664-480-0023 097 Little

@#%&@!!
records with
key value 3

no longer in order
on first key

Aaron 4 A 664-480-0023 097 Little

Andrews 3 A 874-088-1212 121 Whitman

Battle 4 C 991-878-4944 308 Blair

Chen 2 A 884-232-5341 11 Dickinson

Fox 1 A 243-456-9091 101 Brown

Furia 3 A 766-093-9873 22 Brown

Gazsi 4 B 665-303-0266 113 Walker

Kanaga 3 B 898-122-9643 343 Forbes

Rohde 3 A 232-343-5555 115 Holder

Quilici 1 C 343-987-5642 32 McCosh

Stability

A stable sort preserves the relative order of records with equal keys.

Ex: sort file on first key

Then sort file on
second key

6

Selection Sort

Selection sort.
� � scans from left to right.
� Elements to the left of � are fixed and in ascending order.
� No element to left of � is larger than any element to its right.

in final order

7

Selection Sort Example

8

Selection Sort Inner Loop: Maintaining the Invariant

Selection sort inner loop.

� Select minimum.

� Exchange into position.

int min = i;
for (int j = i+1; j <= R; j++)

if (a[j] < a[min]) min = j;

double swap = a[j];
a[j] = a[j-1];
a[j-1] = swap;

9

Selection Sort in Java

public class SelectionSorter {
public static void main(String[] args) {

int N = Integer.parseInt(args[0]);
double[] a = new double[N];
for (int i = 0; i < N; i++)

a[i] = Math.random();
for (int i = 0; i < N; i++) {

int min = i;
for (int j = i+1; j < N; j++)

if (a[j] < a[min]) min = j;
double swap = a[i];
a[i] = a[min];
a[min] = swap;

}
for (int i = 0; i < N; i++)
System.out.println(a[i]);

}
}

SelectionSorter.java

create an array of N real
numbers between 0 and 1

selection sort it

print results

10

Abstract Comparisons

Goal: specify sort key such that code is reusable.

Make record implement the Comparable interface.
� Write compareTo method so that a.compareTo(b)

– returns a negative integer if a is "less" than b
– returns zero if a is "equal" to b
– returns a positive integer if a is "greater" than b

� It is the programmer's responsibility to ensure consistency, e.g.,
transitivity: a < b, b < c � a < c.

Ex: implementation of compareTo to sort by Student GPA.

public int compareTo(Object obj) {
Student a = this;
Student b = (Student) obj;
return a.gpa - b.gpa;

}

11

Data Type for Student Database Records

public class Student implements Comparable {
private String first, last, email;
private int section;
Student(String first, String last, String email, int section) {

this.first = first;
this.last = last;
this.email = email;
this.section = section;

}
public int compareTo(Object obj) {

Student a = this;
Student b = (Student) obj;
return a.section - b.section;

}
public String toString() {

return section + " " + first + " " + last + " " + email;
}

}

a.compareTo(b) compares a and b

must implement compareTo

12

Sorting Student Database Records

A sample client program to process student records.

public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
Student[] students = new Student[N];
for (int i = 0; i < N; i++) {

String first = StdIn.readString();
String last = StdIn.readString();
String email = StdIn.readString();
int section = StdIn.readInt();
students[i] = new Student(first, last, email, section);

}
ArraySort.sort(students, 0, N-1);
for (int i = 0; i < N; i++)

System.out.println(students[i]);
}

we will implement this next

13

Sample Output

% java SedgewickSort 79 < students.txt
1 Alicia Myers amyers
1 Amy Trangsrud atrangsr
1 Anand Dharan adharan
1 Arthur Shum ashum
1 Ashley Evans amevans
1 Bryant Chen bryantc
1 Charles Alden calden
1 Cole Deforest cde
1 David Astle dastle
1 Elinor Keith ekeith
1 John Kim johnkim
1 Josh Probst jprobst
1 Julia Ressler jressler
1 Kira Hohensee hohensee
1 Maria Miguez mmiguez
1 Michael Reilly mcreilly
1 Nancy Khov nkhov
1 Tarik Jones tarikj
2 Alexander Thorn athorn
2 Benjamin Amster bamster
. . .
5 Tom Brennan tpbrenna
5 Yiting Jin ycjin

% more students.txt
Abraham Flamholz flamholz 3
Aditi Shrivastava ashrivas 4
Alexander Thorn athorn 2
Alicia Myers amyers 1
Amy Trangsrud atrangsr 1
Anand Dharan adharan 1
Anshuman Sahoo asahoo 3
Arthur Shum ashum 1
Arti Sheth asheth 5
Ashley Evans amevans 1
Avi Ziskind aziskind 5
Benjamin Amster bamster 2
Bryant Chen bryantc 1
Cameron Brien cbrien 3
Caroline Teichner cteichne 3
Charles Alden calden 1
Cole Deforest cde 1
Daniel Potter dpotter 3
Darin Sleiter dsleiter 3
David Astle dastle 1
. . .
Leizhi Sun leizhis 3
Lester MacKey lmackey 3

14

Abstract Pointer Sort

Write abstract sorting routine ArraySort.
� Maintain array of Java reference to records.

� Rearrange references using abstract comparisons.

– avoids excessive data movement with large records
– rule of thumb: cost of compare similar to cost of exchange

15

Abstract Selection Sort in Java

public class ArraySort {
private static boolean less(Comparable v, Comparable w) {

return v.compareTo(w) < 0;
}
private static void exch(Comparable[] a, int i, int j) {

Comparable swap = a[i];
a[i] = a[j];
a[j] = swap;

}
public static void sort(Comparable a[], int L, int R) {

for (int i = L; i < R; i++) {
int min = i;
for (int j = i+1; j <= R; j++)

if (less(a[j], a[min]))
min = j;

exch(a, i, min);
}

}
}

selection sort a[L] to a[R]

swap references a[i] and a[j]

is v less than w?

16

Insertion Sort

Insertion sort.
� Scans from left to right.
� Element to right of � are not touched.
� Invariant: elements to the left of � are in ascending order.

in order not touched

17

Insertion Sort Example

18

Insertion Sort Inner Loop: Maintaining the Invariant

Insertion sort inner loop.
� Save current element.

� Shift right all larger elements on left.

� Store v in vacant spot.

in order not yet seen

Comparable v = a[i];

int j = i;
while (j > L && less(v, a[j-1])) {

a[j] = a[j-1];
j--;

}

a[j] = v;

don't run off end of array

19

(Optimized) Insertion Sort in Java

public static void sort(Comparable a[], int L, int R) {
for (int i = R; i > L; i--)

if (less(a[i-1], a[i]))
exch(a, i-1, i);

for (int i = L + 2; i <= R; i++) {
Comparable v = a[i];
int j = i;
while (less(v, a[j-1])) {

a[j] = a[j-1];
j--;

}
a[j] = v;

}
}

put smallest element
into position to act
as "sentinel"

with sentinel, no need to
worry about end of array

20

Bubble Sort

Bubble sort.
� � scans from left to right.
� Compare and exchange element at � with element on its right.

Implications.
� First pass puts max element into position.
� Like selection sort, but with more data movement.

21

Bubble Sort Example

22

Performance for Randomly Ordered Files

Insertion.
� Each element moves halfway back.
� (1 + 2 + ... + N) / 2 ~ N2 / 4 compares.

~ N2 / 4 exchanges.

Selection.
� Always search through right part.
� (1 + 2 + ... + N) ~ N2 / 2 compares.

~ N exchanges.

Bubble.
� Mostly compare-exchanges.
� (1 + 2 + ... + N) ~ N2 / 2 compares.

~ N2 / 2 exchanges.

Bottom line: insertion, selection similar; never use bubble.

23

Sorting Challenge 1

Problem: sort a file of huge records with tiny keys.
Ex: reorganizing your MP3 files.

Which sorting method to use?
a) system sort, guaranteed to run in time N log N
b) insertion sort
c) selection sort
d) bubble sort

25

Sorting Challenge 2

Problem: sort a huge randomly-ordered file of small records.
Ex: process transaction records for a phone company.

Which sorting method to use?
a) system sort
b) insertion sort
c) selection sort
d) bubble sort

27

Sorting Challenge 3

Problem: sort a huge number of tiny files (each file is independent)
Ex: daily customer transaction records.

Which sorting method to use?
a) system sort
b) insertion sort
c) selection sort
d) bubble sort

29

Sorting Challenge 4

Problem: sort a huge file that is already almost in order.
Ex: re-sort a huge database after a few changes.

Which sorting method to use?
a) system sort
b) insertion sort
c) selection sort
d) bubble sort

31

Visual Sorting Puzzle

A. Insertion sort.
B. Selection sort.
C. Bubble sort.

random

sorted

reverse

sorted

