
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Shortest Paths

Dijkstra's algorithm

Bellman-Ford algorithm

2

Fastest Route from CS Dept to Einstein's House

3

Shortest Path Problem

Shortest path network.
� Directed graph.
� Source s, destination t.
� cost(v-w) = cost of using edge from v to w.

Shortest path problem: find shortest directed path from s to t.
� Cost of path = sum of arc costs in path.

Cost of path s-2-3-5-t
= 9 + 23 + 2 + 16
= 48.

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6

4

Brief History

Shimbel (1955). Information networks, min-sum algebra.

Ford (1956). RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957).
Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958). Simplex method for linear programming.

Bellman (1958). Dynamic programming.

Moore (1959). Routing long-distance telephone calls for Bell Labs.

Dijkstra (1959). Simpler and faster version of Ford's algorithm.

5

Applications

More applications.
� Robot navigation.
� Typesetting in TeX.
� Urban traffic planning.
� Tramp steamer problem.
� Optimal pipelining of VLSI chip.
� Telemarketer operator scheduling.
� Subroutine in higher level algorithms.
� Routing of telecommunications messages.
� Approximating piecewise linear functions.
� Exploiting arbitrage opportunities in currency exchange.
� Open Shortest Path First (OSPF) routing protocol for IP.
� Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L.
Magnanti, and J. B. Orlin, Prentice Hall, 1993.

6

Graphs

communication

Graph

telephones, computers

Vertices Edges

fiber optic cables

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

scheduling tasks precedence constraints

software systems functions function calls

internet web pages hyperlinks

games board positions legal moves

social relationship people, actors friendships, movie casts

neural networks neurons synapses

protein networks proteins protein-protein interactions

chemical compounds molecules bonds

7

Shortest Path

Some versions of the problem that we consider.
� Undirected.
� Directed.
� Single source.
� All-pairs.
� Arc costs are � 0.
� Points in plane with Euclidean distances.

3

45

5

4

3

Euclidean

(0, 0) (4, 0)

(4, 3)

next programming assignment

8

Shortest Path: Edge Relaxation

Valid weights. For all v, wt[v] is length of some path from s to v.

Edge relaxation.
� Consider edge v-w with G.cost(v, w).
� If path from s to v plus edge v-w is better than current path to w,

then update.

s w

v

47

11

33

11

0 47X
44

wt[w]

G.cost(v-w)

if (wt[w] > wt[v] + G.cost(v, w)) {
wt[w] = wt[v] + G.cost(v, w);
pred[w] = v;

} edge relaxation

wt[v]

9

Edsger W. Dijkstra

The question of whether computers can think is like the
question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple
on the surface of our culture. In their capacity as
intellectual challenge, they are without precedent in the
cultural history of mankind.

The use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques
of the past: it creates a new generation of coding bums.

10

Dijkstra's Algorithm

Dijkstra's algorithm.
� Finds the shortest path from s to all other vertices.
� Shortest paths from s form a tree.

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

32

34

50

45

0

11

Dijkstra's Algorithm: Implementation

Dijkstra's algorithm.
� Initialize wt[v] = � and wt[s] = 0.
� Insert all vertices v onto PQ with priorities wt[v].
� Repeatedly delete node v from PQ that has min wt[v].

– add v to S
– for each v-w, relax v-w

while (!pq.isEmpty()) {
int v = pq.delMin();
IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
if (wt[w] > wt[v] + G.cost(v, w)) {

wt[w] = wt[v] + G.cost(v, w);
pq.decrease(w, wt[w]);
pred[w] = v;

}}} Main Loop

14

wt[v] � wt*[v] � wt*[y] = wt[y] � wt[v]

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each vertex v, wt[v] is length of shortest s-v path whose
internal vertices are in S; for each vertex v in S, wt[v] = wt*[v] .
Proof: by induction on |S|.
Base case: |S| = 0 is trivial.
Induction step:

� Let v be next vertex added to S by Dijkstra's algorithm.
� Let P be a shortest s-v path, and let x-y be first edge leaving S.

� We show wt[v] = wt*[v].

S

s

y

v

x
P

length of shortest s-v path

wt[v] length
of some path

nonnegative
weights

induction Dijkstra chose v
before y

15

Dijkstra's Algorithm: Implementation Cost Summary

Observation: algorithm is almost identical to Prim's MST algorithm!
Priority first search: variations on a theme.

† Individual ops are amortized bounds

Operation

insert
delete-min

decrease-key

Binary heap

log V
log V
log V

Fib heap †

1
log V

1

Array

V
V
1

is-empty 1 11

Priority Queue

total E log V E + V log VV2

Dijkstra

V
V
E
V

d-way Heap

d log d V
d log d V
log d V

1
E log E / V V

16

Shortest Path in Euclidean Graphs

Euclidean graph (map).
� Vertices are points in the plane.
� Edges weights are Euclidean distances.

Sublinear algorithm.
� Assume graph is already in memory.
� Start Dijkstra at s.
� Stop as soon as you reach t.

Exploit geometry. (A* algorithm)
� For edge v-w, use weight d(v, w) + d(w, t) – d(v, t).
� Dijkstra's proof of correctness still applies.
� In practice only O(V 1/2) vertices examined. Euclidean distance

17

Currency

UK Pound

Euro

Japanese Yen

Swiss Franc

£

1.0000

1.4599

189.050

2.1904

US Dollar

Gold (oz.)

1.5714

0.004816

Euro

0.6853

1.0000

129.520

1.4978

1.0752

0.003295

¥

0.005290

0.007721

1.0000

0.011574

0.008309

0.0000255

Franc

0.4569

0.6677

85.4694

1.0000

0.7182

0.002201

$

0.6368

0.9303

120.400

1.3929

1.0000

0.003065

Gold

208.100

304.028

39346.7

455.200

327.250

1.0000

Shortest Path Application: Currency Conversion

Given currencies and exchange rates, what is best way to convert one
ounce of gold to US dollars?

� 1 oz. gold � $327.25.
� 1 oz. gold � £208.10 � 208.10 (1.5714) � $327.00.
� 1 oz. gold � 455.2 Francs � 304.39 Euros � $327.28.

18

Shortest Path Application: Currency Conversion

Graph formulation.
� Create a vertex for each currency.
� Create a directed edge for each possible transaction, with weight

equal to the exchange rate.
� Find path that maximizes product of weights.

$G

£ EF

0.003065

0.7182208.100 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

19

Shortest Path Application: Currency Conversion

Reduction to shortest path problem.
� Let �vw be exchange rate from currency v to w.
� Let cvw = - lg �vw.
� Shortest path with costs c corresponds to best exchange sequence.

$G

£ EF

0.003065

0.7182208.100 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309
-lg(455.2) = -8.8304

0.5827

-0.1046

20

Dijkstra's Algorithm With Negative Costs

Dijkstra's algorithm fails if there are negative weights.
� Ex: Selects vertex v immediately after s.

But shortest path from s to v is s-x-y-v.

Challenge: shortest path algorithm that works with negative costs.

Dijkstra proof of correctness breaks down
since it assumes cost of P is nonnegative.

s

v

x

2

4

y-9

6

S

s

y

v

x
P

22

Dynamic Programming

Dynamic programming.
� Initialize wt[v] = �, wt[s] = 0.
� Repeat V times: relax each edge v-w.

Invariant. At end of phase i, wt[v] � length of any path from s to v
using at most i edges.
Running time. �(E V).

for (int i = 1; i <= V; i++) {
for (int v = 0; v < V; v++) {

IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
if (wt[w] > wt[v] + G.cost(v, w)) {

wt[w] = wt[v] + G.cost(v, w);
pred[w] = v;

}}}}

phase i

relax v-w

23

Practical improvement.
� If wt[v] doesn't change during phase i, don't relax any edges of

the form v-w in phase i+1.
� Programming solution: maintain queue of nodes that have changed.

Running time. Still �(E V) in worst case, but linear in practice!

Bellman-Ford-Moore Algorithm

while (!q.isEmpty()) {
int v = q.dequeue();
IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
if (wt[w] > wt[v] + G.cost(v, w)) {

wt[w] = wt[v] + G.cost(v, w);
pred[w] = v;
q.enqueue(w);

}}}

discard duplicates

relax v-w

24

Negative Cycles

Negative cycle. Directed cycle whose sum of edge costs is negative.

Caveat. Bellman-Ford terminates and finds shortest (simple) path
after at most V phases if and only if no negative cycles.

Observation. If negative cycle on path from s to t, then shortest path
can be made arbitrarily negative by spinning around cycle.

s t
C

-6

7

-4

negative cost cycle

-6 + 7 – 4 = -5

25

Shortest Path Application: Arbitrage

Arbitrage.
� Is there an arbitrage opportunity in currency graph?
� Ex: $1 � 1.3941 Francs � 0.9308 Euros � $1.00084.
� Is there a negative cost cycle?
� Fastest algorithm very valuable!

$G

£ EF

0.003065

1.3941208.100 455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

-0.4793

0.5827

-0.1046

-0.4793 + 0.5827 - 0.1046 < 0

26

Bellman-Ford-Moore Algorithm

Finding the shortest path itself.
� Trace back pred[v] as in Dijkstra's algorithm.

Finding a negative cycle.
� If any node v is enqueued V times, there must be a negative cycle.
� Fact: can trace back pred[v] to find cycle.

s

3

t

2

6

7

4
5

pred[t]

27

Single Source Shortest Paths Implementation: Cost Summary

Remark 1: negative weights makes the problem harder.
Remark 2: negative cycles makes the problem intractable.

Algorithm

Dijkstra (classic) †

Dijkstra (heap) †

Worst Case

V2

E log V

Best Case

V2

linear

Space

linear

linear

Dynamic Programming ‡

Bellman-Ford ‡
E V

E V

E V

linear

linear

linear

† nonnegative costs
‡ no negative cycles or negative cycle detection

