
1

Performance Tuning

CS 217

2

Principles
• Don’t optimize your code

� Your program might be fast enough already
� Machines are getting faster and cheaper every year
� Memory is getting denser and cheaper every year
� Hand optimization may make the code less readable, less robust,

and more difficult to test

• Performance tuning of bottlenecks
� Identify performance bottlenecks
� Machine-independent algorithm improvements
� Hardware-dependent improvements

• Try not to sacrifice correctness, readability and robustness

3

Amdahl’s Law: Only Bottlenecks Matter

• Definition of speedup:

• Amdahl’s law (1967):

� f is the fraction of program enhanced
� s is the speedup of the enhanced portion

s

f
f

edupOverallSpe
+−

=
)1(

1

Enhanced

Original
Speedup =

Speedup

Original
Enhanced =

4

Examples
• Amdahl’s law

• What is the overall speedup if
you make 10% of a program 90
times faster?

• What is the overall speedup if
you make 90% of a program 10
times faster

11.1
9011.0

1

90
1.0

)1.01(

1 ≈≈
+−

26.5
19.0

1

10
9.0

)9.01(

1 ≈=
+−

s

f
f

edupOverallSpe
+−

=
)1(

1

5

Identify Performance Bottlenecks
• Use tools such as gprof to learn where the time goes

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

76.21 3.46 3.46 6664590 0.00 0.00 partition

16.74 4.22 0.76 54358002 0.00 0.00 swap

3.74 4.39 0.17 1 0.17 0.17 fillArray

2.86 4.52 0.13 1 0.13 4.35 quicksort

0.44 4.54 0.02 printArray

• More sophisticated tools
� Tools that use performance counters to show cache miss/hit etc

(e.g. VTune)
� Tools for multiprocessor systems (for multi-threaded programs)
� Tools to investigate where I/O operations take place

6

Strategies to Speedup
• Use a better algorithm

� Complexity of the algorithm makes a big difference

• Simple code optimizations
� Extract common expression: f(x*y + x*z) + g(x*y+x*z)
� Loop unrolling:

for (i=0; i<N; i++)
x[i]=y[i];

for (i=0; i<N; i+=4) { /* if N is divisible by 4 */
x[i] = y[i];
x[i+1] = y[i+1];
x[i+2] = y[i+2];
x[i+3] = y[i+3];

}

• Enable compiler optimizations
� Modern compilers perform most of the above optimizations
� Example: use level 3 optimization in gcc:

gcc –O3 foo.c

7

Strategies to Speedup, con’d
• Improve performance with deep memory hierarchy

� Make the code cache-aware
� Reduce the number of I/O operations

• Inline procedures
� Remove the procedure call overhead (compilers can do this)

• Inline assembly
� Almost never do this unless you deal with hardware directly
� Or when the high-level language is in the way

8

Memory Hierarchy
• Hardware trends

� CPU clock rate doubles every 18-24
months (50% per year)

� DRAM and disk Access times improve at
a rate about 10% per year

� Memory hierarchy is getting deeper (L1,
L2 and L3 caches)

• Software performance has become
more sensitive to cache misses
� Register: 1 cycle
� L1 cache hit: 2-4 cycles
� L2 cache hit: ~10 cycles
� L3 cache hit: ~50 cycles
� L3 miss: ~500 cycles
� Disk I/O: ~30M cycles

Register

L1 cache

L2 cache

L3 cache

DRAM

Disk

9

Memory Hierarchy
• Typical numbers:

� Size
– L1 cache: 8K
– L2 cache: 256K

� Granularity of movement
– “Cache line size:” 128 bytes
– “Memory page size:” 4K or 8K

• Some properties:
� “Inclusion property”
� Upon a “miss,” a whole line (or page) is

brought up from the lower level
� “Eviction” from higher level to make

space
� Caches managed by hardware
� Memory managed by OS (software)

Register

L1 cache

L2 cache

DRAM

Disk

page

line

line

word

10

Example: Matrix Multiply

int i, j, k;
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

• Matrix B stored in “row major order”

• How many cache misses?

• Execution time on tux (N=1000, -O3 with gcc): 18.5sec

= ×A BC

11

Example: Matrix Multiply

int i, j, k;
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

• Matrix B stored in “row major order”

• How many cache misses?

• Execution time on tux (N=1000, -O3 with gcc): 18.5sec

= ×A BC

a cache line

12

Transpose Matrix B First

int i, j, k;
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * BT[j][k];

• Matrix B stored in “column-major” order

• What about the cache miss situation now?

• Execution time on tux (N=1000, -O3 with gcc): 13sec

= ×A BTC

13

Transpose Matrix B First

int i, j, k;
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * BT[j][k];

• Matrix B stored in “column-major” order

• What about the cache miss situation now?

• Execution time on tux (N=1000, -O3 with gcc): 13sec

= ×A BTC

14

A Blocked Matrix Multiply

int i, j, ii, jj, k, block;
block = 10;
for (ii=0; ii<N; ii+=block)

for (jj=0; jj<N; jj+=block)
for (i=ii; i<ii+block; i++)

for (j=jj; j<jj+block; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * BT[j][k];

• Execution time on tux (N=1000, -O3 with gcc): 4.4sec

= ×A BTC

15

Inline Procedure
• To specify an inline procedure

static inline int plus5(int x)
{

return x + 5;
}

• Is this better than using macro?
#define plus5(x) (x+5)

16

Why Inline Assembly?
• For most system modules (>99%), programming in C

delivers adequate performance

• It is more convenient to write system programs in C
� Robust programming techniques apply to C better
� Modular programming is easier
� Testing is easier

• When do you have to use assembly?
� You need to use certain instructions that the compiler don’t generate

(MMX, SSE, SSE2, and IA32 special instructions)
� You need to access some hardware, which is not possible in a high-

level language

• A compromise is to write most programs in C and as little
as possible in assembly: inline assembly

17

Inline Assembly
• Basic format for gcc compiler

asm [volatile] ("asm-instructions");
__asm__ [volatile] ("asm-instructions");
� “asm-instructions” will be inlined into where this statement is in the C

program
� The key word “volatile” is optional: telling the gcc compiler not to

optimize away the instructions
� Need to use “\n\t” to separate instructions. Otherwise, the strings

will be concatenated without space in between.

• Example
� asm volatile("cli");
� __asm__(“pushl %eax\n\t”

“incl %eax”);

• But, to integrate assembly with C programs, we need a
contract on register and memory operands

18

Extended Inline Assembly
• Extended format

asm [volatile]
(“asm-instructions": out-regs: in-regs: used-
regs);

� Both “asm” and “volatile” can be enclosed by “__”
� “volatile” is telling gcc compiler not to optimize away
� “asm-instructions” are assembly instructions
� “out-regs” provide output registers (optional)
� “in-regs” provide input registers (optional)
� “used-regs” list registers used in the assembly program (optional)

19

Summary
• Don’t optimize your code, unless it is really necessary

• Use a better algorithm is choice #1

• Then, tune the bottleneck first (Amdahl’s law)
� Identify the bottlenecks by using tools
� Make program cache aware
� Reduce I/O operations
� Inline procedures
� Inline assembly (to access hardware including special instructions)

• Additional reading besides the textbook
� Jon Bentley’s Writing Efficient Programs (Prentice-Hall, 1982),

Programming Pearls and More Programming Pearls (Addision
Wesley, 1986 and 1988)

� John Hennessy and David Patterson’s Computer Organization and
Design: The Hardware/Software Interface (Morgan Kaufman, 1997) 20

The Final Exam
• Time: Friday, 1/21, 8:30am – 10:30am

• Location: CS 104

• Cumulative

• Open book and open notes

