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Performance Tuning

CS 217

2

Principles
• Don’t optimize your code

� Your program might be fast enough already
� Machines are getting faster and cheaper every year
� Memory is getting denser and cheaper every year
� Hand optimization may make the code less readable, less robust, 

and more difficult to test

• Performance tuning of bottlenecks
� Identify performance bottlenecks
� Machine-independent algorithm improvements
� Hardware-dependent improvements

• Try not to sacrifice correctness, readability and robustness
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Amdahl’s Law: Only Bottlenecks Matter

• Definition of speedup: 

• Amdahl’s law (1967):

� f is the fraction of program enhanced
� s is the speedup of the enhanced portion
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Examples
• Amdahl’s law

• What is the overall speedup if 
you make 10% of a program 90 
times faster?

• What is the overall speedup if 
you make 90% of a program 10 
times faster

11.1
9011.0

1

90
1.0

)1.01(

1 ≈≈
+−

26.5
19.0

1

10
9.0

)9.01(

1 ≈=
+−

s

f
f

edupOverallSpe
+−

=
)1(

1



5

Identify Performance Bottlenecks
• Use tools such as gprof to learn where the time goes

Each sample counts as 0.01 seconds.

%   cumulative   self              self total           

time   seconds   seconds calls   s/call   s/call  name    

76.21      3.46     3.46 6664590     0.00     0.00 partition

16.74      4.22     0.76 54358002     0.00     0.00 swap

3.74      4.39     0.17        1     0.17     0.17 fillArray

2.86      4.52     0.13        1     0.13     4.35  quicksort

0.44      4.54     0.02                             printArray

• More sophisticated tools 
� Tools that use performance counters to show cache miss/hit etc 

(e.g. VTune)
� Tools for multiprocessor systems (for multi-threaded programs)
� Tools to investigate where I/O operations take place
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Strategies to Speedup
• Use a better algorithm

� Complexity of the algorithm makes a big difference

• Simple code optimizations
� Extract common expression: f(x*y + x*z) + g(x*y+x*z)
� Loop unrolling:

for (i=0; i<N; i++)
x[i]=y[i];

for (i=0; i<N; i+=4) {   /* if N is divisible by 4 */
x[i]   = y[i]; 
x[i+1] = y[i+1]; 
x[i+2] = y[i+2]; 
x[i+3] = y[i+3]; 

}

• Enable compiler optimizations
� Modern compilers perform most of the above optimizations
� Example: use level 3 optimization in gcc:

gcc –O3 foo.c
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Strategies to Speedup, con’d
• Improve performance with deep memory hierarchy

� Make the code cache-aware
� Reduce the number of I/O operations

• Inline procedures
� Remove the procedure call overhead (compilers can do this)

• Inline assembly
� Almost never do this unless you deal with hardware directly
� Or when the high-level language is in the way
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Memory Hierarchy
• Hardware trends

� CPU clock rate doubles every 18-24 
months (50% per year)

� DRAM and disk Access times improve at 
a rate about 10% per year

� Memory hierarchy is getting deeper (L1, 
L2 and L3 caches)

• Software performance has become 
more sensitive to cache misses
� Register: 1 cycle
� L1 cache hit: 2-4 cycles
� L2 cache hit: ~10 cycles
� L3 cache hit: ~50 cycles
� L3 miss: ~500 cycles
� Disk I/O: ~30M cycles
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Memory Hierarchy
• Typical numbers:

� Size
– L1 cache: 8K
– L2 cache: 256K

� Granularity of movement
– “Cache line size:” 128 bytes
– “Memory page size:” 4K or 8K

• Some properties:
� “Inclusion property”
� Upon a “miss,” a whole line (or page) is 

brought up from the lower level
� “Eviction” from higher level to make 

space
� Caches managed by hardware
� Memory managed by OS (software)
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Example: Matrix Multiply

int i, j, k;
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

• Matrix B stored in “row major order”

• How many cache misses?

• Execution time on tux (N=1000, -O3 with gcc): 18.5sec

= ×A BC
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Example: Matrix Multiply

int i, j, k;
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

• Matrix B stored in “row major order”

• How many cache misses?

• Execution time on tux (N=1000, -O3 with gcc): 18.5sec

= ×A BC

a cache line
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Transpose Matrix B First

int i, j, k;
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * BT[j][k];

• Matrix B stored in “column-major” order

• What about the cache miss situation now?

• Execution time on tux (N=1000, -O3 with gcc): 13sec

= ×A BTC
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Transpose Matrix B First

int i, j, k;
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * BT[j][k];

• Matrix B stored in “column-major” order

• What about the cache miss situation now?

• Execution time on tux (N=1000, -O3 with gcc): 13sec

= ×A BTC
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A Blocked Matrix Multiply

int i, j, ii, jj, k, block;
block = 10; 
for (ii=0; ii<N; ii+=block)

for (jj=0; jj<N; jj+=block)
for (i=ii; i<ii+block; i++)

for (j=jj; j<jj+block; j++)
for (k=0; k<N; k++)

C[i][j] += A[i][k] * BT[j][k];

• Execution time on tux (N=1000, -O3 with gcc): 4.4sec

= ×A BTC
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Inline Procedure
• To specify an inline procedure

static inline int plus5(int x)
{

return x + 5;
}

• Is this better than using macro?
#define plus5(x)  (x+5)
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Why Inline Assembly?
• For most system modules (>99%), programming in C 

delivers adequate performance

• It is more convenient to write system programs in C
� Robust programming techniques apply to C better
� Modular programming is easier
� Testing is easier

• When do you have to use assembly?
� You need to use certain instructions that the compiler don’t generate 

(MMX, SSE, SSE2, and IA32 special instructions)
� You need to access some hardware, which is not possible in a high-

level language

• A compromise is to write most programs in C and as little 
as possible in assembly: inline assembly
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Inline Assembly
• Basic format for gcc compiler

asm [volatile] ( "asm-instructions" );
__asm__ [volatile] ( "asm-instructions" );
� “asm-instructions” will be inlined into where this statement is in the C 

program
� The key word “volatile” is optional: telling the gcc compiler not to 

optimize away the instructions
� Need to use “\n\t” to separate instructions.  Otherwise, the strings 

will be concatenated without space in between.

• Example
� asm volatile( "cli" );
� __asm__( “pushl %eax\n\t”

“incl %eax” );

• But, to integrate assembly with C programs, we need a 
contract on register and memory operands
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Extended Inline Assembly
• Extended format

asm [volatile]
( “asm-instructions": out-regs: in-regs: used-
regs);

� Both “asm” and “volatile” can be enclosed by “__”
� “volatile” is telling gcc compiler not to optimize away
� “asm-instructions” are assembly instructions
� “out-regs” provide output registers (optional)
� “in-regs” provide input registers (optional)
� “used-regs” list registers used in the assembly program (optional)
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Summary
• Don’t optimize your code, unless it is really necessary

• Use a better algorithm is choice #1

• Then, tune the bottleneck first (Amdahl’s law)
� Identify the bottlenecks by using tools
� Make program cache aware
� Reduce I/O operations
� Inline procedures
� Inline assembly (to access hardware including special instructions)

• Additional reading besides the textbook
� Jon Bentley’s Writing Efficient Programs (Prentice-Hall, 1982), 

Programming Pearls and More Programming Pearls (Addision
Wesley, 1986 and 1988)

� John Hennessy and David Patterson’s Computer Organization and 
Design: The Hardware/Software Interface (Morgan Kaufman, 1997) 20

The Final Exam
• Time: Friday, 1/21, 8:30am – 10:30am

• Location: CS 104

• Cumulative

• Open book and open notes


