
1

Inter-process Communication

CS 217

2

Networks
• Mechanism by which two processes exchange information

and coordinate activities

Computer Computer

Computer

Computer

Computer

NetworkNetworkprocess

process

3

Inter-process Communication
• Pipes

� Processes must be on same machine
� One process spawns the other
� Used mostly for filters

• Sockets
� Processes can be on any machine
� Processes can be created independently
� Used for clients/servers, distributed systems, etc.

4

Pipes
• Provides an interprocess communication channel

• A filter is a process that reads from stdin and writes to
stdout

Process A Process B
output input

Filterstdin stdout

Prog1 Filter Filter Prog2

5

Pipes (cont)
• Many Unix tools are written as filters

� grep, sort, sed, cat, wc, awk ...

• Shells support pipes
ls | wc -l

who | grep mary | wc -l
cat < foo | grep bar | sort > save

• The combination of these features gives Unix incredible
power and flexibility:
� Standard I/O
� I/O redirection
� Pipes

6

7 8

9 10

Creating a Pipe

• Pipe is a communication channel abstraction
� Process A can write to one end using “write” system call
� Process B can read from the other end using “read” system call

• System call
int pipe(int fd[2]);

return 0 upon success –1 upon failure
fd[0] is open for reading

fd[1] is open for writing

• Two coordinated processes created by fork can pass
data to each other using a pipe.

Process A Process B
output input

11

Pipe Example
int pid, p[2];
...
if (pipe(p) == -1)

exit(1);
pid = fork();
if (pid == 0) {

close(p[1]);
... read using p[0] as fd until EOF ...

}
else {

close(p[0]);
... write using p[1] as fd ...
close(p[1]); /* sends EOF to reader */
wait(&status);

}
parent childwrite read

12

Dup

• Duplicate a file descriptor (system call)
int dup(int fd);

duplicates fd as the lowest unallocated descriptor

• Commonly used to implement redirection of
stdin/stdout

• Example: redirect stdin to “foo”
int fd;
fd = open(“foo”, O_RDONLY, 0);
close(0);
dup(fd);
close(fd);

13

Dup

• Duplicate a file descriptor (system call)
int dup(int fd);

duplicates fd as the lowest unallocated descriptor

• Commonly used to implement redirection of
stdin/stdout

• Example: redirect stdin to “foo”
int fd;
fd = open(“foo”, O_RDONLY, 0);
close(0);
dup(fd);
close(fd);

fd

14

Dup

• Duplicate a file descriptor (system call)
int dup(int fd);

duplicates fd as the lowest unallocated descriptor

• Commonly used to implement redirection of
stdin/stdout

• Example: redirect stdin to “foo”
int fd;
fd = open(“foo”, O_RDONLY, 0);
close(0);
dup(fd);
close(fd);

fd
0

15

Dup

• Duplicate a file descriptor (system call)
int dup(int fd);

duplicates fd as the lowest unallocated descriptor

• Commonly used to implement redirection of
stdin/stdout

• Example: redirect stdin to “foo”
int fd;
fd = open(“foo”, O_RDONLY, 0);
close(0);
dup(fd);
close(fd);

fd
0

16

Dup

• Duplicate a file descriptor (system call)
int dup(int fd);

duplicates fd as the lowest unallocated descriptor

• Commonly used to implement redirection of
stdin/stdout

• Example: redirect stdin to “foo”
int fd;
fd = open(“foo”, O_RDONLY, 0);
close(0);
dup(fd);
close(fd);

fd
0

17

Dup2
• For convenience…

dup2(int fd1, int fd2);
use fd2(new) to duplicate fd1 (old)
closes fd2 if it was in use

• Example: redirect stdin to “foo”
fd = open(“foo”, O_RDONLY, 0);
dup2(fd,0);
close(fd);

fd
0

18

Pipes and Standard I/O
int pid, p[2];
if (pipe(p) == -1)

exit(1);
pid = fork();
if (pid == 0) {

close(p[1]);
dup2(p[0],0);
close(p[0]);
... read from stdin ...

}
else {

close(p[0]);
dup2(p[1],1);
close(p[1]);
... write to stdout ...
wait(&status);

}

parent childwrite read
stdout stdin

fd=0fd=1

19

Pipes and Exec()
int pid, p[2];
if (pipe(p) == -1)

exit(1);
pid = fork();
if (pid == 0) {

close(p[1]);
dup2(p[0],0);
close(p[0]);
execl(...);

}
else {

close(p[0]);
dup2(p[1],1);
close(p[1]);
... write to stdout ...
wait(&status);

}

parent childwrite read
stdout stdin

fd=0fd=1

20

Unix shell (sh, csh, bash, ...)
• Loop

� Read command line from stdin
� Expand wildcards
� Interpret redirections < > |
� pipe (as necessary), fork, dup, exec, wait

• Start from code on previous slides, edit it until it’s a Unix
shell!

