
1

Processes

CS 217

2

Operating System
• Supports virtual machines

� Promises each process the illusion of 
having whole machine to itself

• Provides services:
� Protection
� Scheduling 
� Memory management
� File systems
� Synchronization
� etc.

Hardware

OS Kernel

User
Process

User
Process

3

What is a Process?
• A process is a running program with its own …

� Processor state
– EIP, EFLAGS, registers

� Address space (memory)
– Text, bss, data, 

heap, stack

Hardware

OS Kernel

User
Process

User
Process

4

Operating System

• Common implementation strategies
� Chop up resources into small pieces and

allocate small pieces at fine-grain level
� Introduce level of indirection and 

provide mapping from virtual resources to physical ones
� Use past history to predict future behavior

Hardware

OS Kernel

User
Process

User
Process



5

Life Cycle of a Process
• Running: instructions are being executed

• Waiting: waiting for some event (e.g., i/o finish) 

• Ready: ready to be assigned to a processor

Create Ready Running Termination

Waiting

6

Context Switch

Running

Running

Save context

Load context

Save context

Load context

...

...

RunningWaiting

Waiting

Waiting

Process A Process B

7

Overlap CPU with I/O operations
• Schedule CPU for process B 

while process A is waiting for I/O
� Better utilize CPU

CPU CPU CPUI/O I/O I/OA:
CPU CPU CPUI/O I/O I/OB:

8

Process Control Block
• For each process, the kernel keeps track of ...

� Process state (new, ready, waiting, halted)
� CPU registers (EIP, EFLAGS, EAX, EBX, …)
� CPU scheduling information (priority, queues, ...)
� Memory management information (page tables, ...)
� Accounting information (time limits, group ID, ...)
� I/O status information (open files, I/O requests, ...)



9

Fork
• Create a new process (system call)

� child process inherits state from parent process
� parent and child have separate copies of that state
� parent and child share access to any open files

pid = fork();

if (pid != 0) {
/* in parent */

...

} else {

/* in child */

...
}

Parent

Child

10

Wait
• Parent waits for a child (system call)

� blocks until a child terminates
� returns pid of the child process
� returns –1 if no children exists (already exited)
� status

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

• Parent waits for a specific child to terminate
#include <sys/types.h>

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status, int options);

11

Fork

• Inherited:
�user and group IDs
� signal handling settings 
� stdio
� file pointers
� current working directory
� root directory
� file mode creation mask 
� resource limits 
� controlling terminal
�all machine register 
states 

� control register(s)
� . . .

• Separate in child
� process ID 
� address space (memory)
� file descriptors
� parent process ID 
� pending signals 
� timer signal reset times
� . . .

12

Exec
• Overlay current process image with a specified image file 

(system call)
� affects process memory and registers
� has no affect on file table

• Example:
execlp(“ls”, “ls”, “-l”, NULL);
fprintf(stderr, “exec failed\n”);
exit(1);



13

Exec (cont)

• Many variations of exec
int execlp(const char *file,

const char *arg, ...)
int execl(const char *path,

const char *arg, ...)
int execv(const char *path,

char * const argv[])
int execle(const char *path,

const char *arg, ...,
char * const envp[])

• Also execve and execvp

14

Fork/Exec

• Commonly used together by the shell
... parse command line ...

pid = fork() 

if (pid == -1)

fprintf(stderr, “fork failed\n”);
else if (pid == 0) {

/* in child */

execvp(file, argv);

fprintf(stderr, 

“exec failed\n”);
} else {

/* in parent */

pid = wait(&status);

}

... return to top of loop ...

csh

fork

execvp

ls

wait

15

System
• Convenient way to invoke fork/exec/wait

� Forks new process
� Execs command 
� Waits until it is complete

int system(const char *cmd);

• Example:

int main()
{

system(“echo Hello world”);
}

16

Summary
• Operating systems manage resources

� Divide up resources (e.g., quantum time slides)
� Allocate them (e.g., process scheduling)

• A processes is a running program with its own …
� Processor state
� Address space (memory)

• Create and manage processes with ...
� fork
� exec

� wait

� system

}Used in shell


