4) 4)
30 What Is Operating System? A
gce DVD Player
Operating Systems, Operating System
System Calls, and Buffered I/O
CS 217
» Abstraction of hardware
* Virtualization
» Protection and security
Y)
: " (Computing and Communications
Academic Computers in 1983 and 2003), e Exponential Growth! (Courtesy J. Gray)
» Performance/Price doubles every 18 months
1883 2003 Ratio « 100x per decade
CPU clock 3Mhz 3Ghz 1:1000 .
* Progress in next 18 months
$/machine $80k $800 100:1 = ALL previous progress
DRAM 256k 256M 1:1000 o New storage = sum of all old storage (ever)
o New processing = sum of all old processing.
Disk 20MB 200GB 1:10,000) ,
» Aggregate bandwidth doubles in 8 months
Network BW 10Mbits/sec 1GBits/sec 1:100
Address bits 16-32 32-64 1:2
Users/machine 10s 1(or<1) >10:1
$/Performance $80k < $800/1000 100,000+:1
Sj [S—

Phase 0: User at Console

lib

e)

Phase 0: User at Console

* How things work
- One TOY machine for CS126, what do we do?
- No OS, just a sign-up sheet for reservations!
- Each user has complete control of machine

- Soon added device libraries. compilers. assemblers for
convenience

* Advantages
- Interactive!
- No one can hurt anyone else

* Disadvantages
- Reservations not accurate, leads to inefficiency

- Loading/unloading tapes and cards takes forever and leaves
the machine idle

| b=

Phase 1: Batch Processing

(Expensive Hardware, Cheap Humans)

Resident monitor

|s\‘m—b

\L

Phase 1: Batch Processing

(Expensive Hardware, Cheap Humans)

g F U
Bl

PN
[RFCRE G 4o e Compaled

® How things work
- Sort jobs and batch those with similar needs to reduce unnecessary setup
time
- A resident monitor provides “automatic job sequencing”: it interprets
“control cards” to automatically run a bunch of programs without human
intervention
® Advantage
- Good utilization of machine, (jargon: high throughput: jobs per second)
® Problems
= Loss of interactivity (unsolvable)
= One job can screw up other jobs, need protection (solvable)

| =

Phase 2: Interactive Time-Sharing

(Cheap Hardware, Expensive Humans)

»

| B)

Time-sharing OS

Hardware

f Phase 2: Interactive Time-Sharing

(Cheap Hardware, Expensive Humans)

[

* How things work
- Multiple cheap terminals for multiple users per single machine

- OS keeps multiple programs active at the same time and
switches among them rapidly to provide the illusion of one
machine per user

* Advantage: interactivity, sharing (collaboration)

* Problems
- Must provide reasonable response time (hard sometimes)

= Must provide human friendly interfaces: command shell,
hierarchical name structure for file systems, etc. (solvable)

- Higher degree of multiprogramming places heavier demand on

Y protection mechanism (solvable but hard) D

Phase 3: Personal Computing
(Very Cheap Hardware, Very Expensive Humans)

Sl

u)

.)
Phase 3: Personal Computing !
- (Very Cheap Hardware, Very Expensive Humans) %

* How things work
= One machine per person, now several machines per person
- Initially, OS goes back to “square 1 (like those of Phase 0)
- Later added back multiprogramming and memory protection
* Advantages
- Better response time
- Protection becomes a little easier
* Problems
- How do you share information? (sill not solved)

= networking
= user interfaces

2)

-

» Parallel and distributed systems
o Parallel machine

o Clusters

o Network is the computer

» Pervasive computers
o Wearable computers
o Computers everywhere

* OS are general and specialized

: ~
A Typical Operating System 5\

» Abstraction: Layered services to access hardware
o We learn how to use the services here
o COS318 will teach how to implement

« Virtualization: Each user with his “own” machine

* Protection & security: safe from yourself and others

User User User User
Pr ocess Process Process Process

OSKernel

Hardware
13) 14)
e ~ 4 N
Layers of Abstraction System Calls

Appl P
User PP I rog
process SdioLibrary| FILE* stream
l int fd
FileSystem | hierarchical file system
!
Kernel Storage variable-length segments
!
Driver disk blocks
I
D

» Kernel provided system services: “protected” procedure call

Appl Prog
—17< —_ fopen,fclose, printf,
fgetc, getchar,...
Stdio Librar
user] Y open, close, read,
kernel b write, seek
File System

{

* Unix has ~150 system calls; see
o man 2 intro
o /usrf/include/syscall.h

15) 16)

f Dual-Mode Operation

B Application
User Mode | _ Standard Library
Kernel Mode Operating System

* The machine has two modes of operation: user mode and
kernel mode (also called monitor mode, supervisor mode,
system mode, privileged mode)

* Divide all instructions into two categories: unprivileged
and privileged instructions

* Users can’t execute privileged instructions

* Users must ask the OS to do it on its behalf: system caglls.nt)
* The OS gains control upon a system call, switches to
kernel mode, performs service, switches back to user

L mode, and gives control back to user(iret) ")

| =/

-

System-call interface = ADTs

ADT
operations

* File input/output
o open, close, read, write, dup

* Process control
o fork, exit, wait, kill, exec, ...

* Interprocess communication
o pipe, socket ...

»)

-
open system call

NAME
open - open and possibly create a file or device

flags exanpl es:
O _RDONLY
SYNOPSIS O VR TE| O_CREATE
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

mode is the permissions
to use if file must be
created

int open(const char *pathname, int flags, mode_tmode);

DESCRIPTION

The open() system call is used to convert a pathname into a file
descriptor (a small, non-negative integer for use in subsequent 1/O
as with read, write, etc.). When the call is successful, the file
descriptor returned will be . ..

2)

-

close system call

NAME
close - close a file descriptor
SYNOPSIS

int close(int fd);

DESCRIPTION

close closes a file descriptor, so that it no longer refers to any file and
may be reused. Any locks held on the file it was associated with, and owned

by the process, are removed (regardless of the file descriptor that was used
to obtain the lock)

»)

-

read System Call

NAME

read - read from a file descriptor
SYNOPSIS

int read(int fd, void *buf, int count);
DESCRIPTION

read() attempts to read up to count bytes from file descriptor fd
into the buffer starting at buf.

If count is zero, read() returns zero and has no other results. If
count is greater than SSIZE_MAX, the result is unspecified.
RETURN VALUE

On success, the number of bytes read is returned (zero indicates
end of file), and the file position is advanced by this number. It is not
an error if this number is smaller than the number of bytes

4 -
write System Call %;
NAME
write — write to a file descriptor
SYNOPSIS
int write(int fd, void *buf, int count);
DESCRIPTION

write writes up to count bytes to the file referenced by the file descriptor fd
from the buffer starting at buf.

RETURN VALUE
On success, the number of bytes written is returned (zero indicates nothing

was written). Itis not an error if this number is smaller than the number of
bytes requested On error, -1 is returned, and errno is set appropriately.

2)

requested On error, -1 is returned, and errno is set
appropriately. 21) 22)
4) ()
Making Sure It All Gets Written Buffered I/O g;
int safe_write(int fd, char *buf, int nbytes) » Single-character 1/O is usually too slow
¢ int n: int getchar(void) {
char *p = buf; phar C;
char *q = buf + nbytes; if (read(0, &c, 1) == 1)
while (p < q) { return c; .
if ((n = write(fd, p, (q-p)*sizeof(char))) > 0) else return EOF;
p += n/sizeof(char); }
else
perror(“safe_write: ");
}
return nbytes;
}

%)

-

Buffered I/O (cont)

* Solution: read a chunk and dole out as needed

int getchar(void) {
static char buf[1024];
static char *p;
static int n =0;

if (n--) return *p++;
n = read(0, buf, sizeof(buf));

if (n <= 0) return EOF,;
p = buf;

-

Standard 1/O Library

#define getc(p) (--(p)->_cnt >=07?\
(int)(*(unsigned char *)(p)->_ptr++) : \
_filbuf(p))

typedef struct _iobuf {
int _cnt; /* num chars left in buffer */
char *_ptr; /* ptr to next char in buffer */
char *_base; /* beginning of buffer */
int _bufsize;/* size of buffer */
short _flag; /* open mode flags, etc. */
char _file; /* associated file descriptor */

#define getc(p) (--(p)->_cnt >=07?\
(int)(*(unsigned char *)(p)->_ptr++) : \
_filbuf(p))

#define getchar() getc(stdin)

* Invented in 1970s, when
o Computers had slow function-call instructions
o Compilers couldn't inline-expand very well

* It's not 1975 any more
o Moral: don’t invent new macros, use functions

7)

return getchar(); } FILE;
} extern FILE *stdin, *stdout, *stderr;
25) 26)
() 4)
Why Is “getc” A Macro? g; fopen &

FI LE *fopen(char *name, char *rw) {
Use malloc to create a struct _iobuf
Determine appropriate “flags” from “rw” parameter
Call open to get the file descriptor

Fill in the _iobuf appropriately

2)

-

Stdio library

.

fopen, fclose

feof, ferror, fileno, fstat
o status inquiries

fflush

o make outside world see
changes to buffer

fgetc, fgets, fread
fputc fputs, fwrite
printf, fprintf
scanf, fscanf
fseek

and more ...

This (large) library interface is not
the operating-system interface;
much more room for flexibility.

This ADT is implemented in terms
of the lower-level “file-descriptor”
ADT.

-
Summary

~

$

»)

» OS is the software between hardware and applications
o Abstraction: provide services to access the hardware
o Virtualization: Provides each process with its own machine
o Protection & security: make the environment safe

e System calls
o ADT for the user applications
o Standard I/O example
o User-level libraries layered on top of system calls

»)

