An Overview of Computer Architecture

CS 217

-

A Typical Computer

CPU CPU

1/O bus
H_\ Iﬂi
\—‘ \/ Network

I [o

-
A Typical Computer System

CPU Memory
Application
CPU Operating System

-

OS Service Examples

» Examples that are not provided at user level
o System calls: file open, close, read and write
o Control the CPU so that users won't get stuck by running
— while (1) ;
o Protection:
— Keep user programs from crashing OS
— Keep user programs from crashing each other

» Examples that can be provided at user level
o Read time of the day

-
Processor Management

* Goals
o Overlap between 1/0 and
computation
o Time sharing
o Multiple CPU allocations

¢ |ssues
o Do not waste CPU resources
o Synchronization and mutual
exclusion
o Fairness and deadlock free

-

Processor Management

* Goals
o Overlap between I/O and
computation
o Time sharing
o Multiple CPU allocations

¢ |ssues
o Do not waste CPU resources
o Synchronization and mutual
exclusion
o Fairness and deadlock free

CPU | I/O | CPU

-
Processor Management

* Goals
o Overlap between 1/0 and
computation
o Time sharing
o Multiple CPU allocations

e |ssues
o Do not waste CPU resources
o Synchronization and mutual
exclusion
o Fairness and deadlock free

CPU | I/O | CPU
CPU || CPU
1/0

-

Memory Management

* Goals
o Support programs to run
o Allocation and management
o Transfers from and to secondary
storage

e |ssues
o Efficiency & convenience
o Fairness
o Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Tapes: >1000M x

4) 4)
Memory Management 1O Memory Management A\,
Storage Hierarchies Storage Hierarchy Latency (vy jim Gray)
Ii\isters] * Each lower level is g Andrandeda
%— - slower, 10 Tape /Optical 2,000 Years
- bigger, Robot
L cache - farther away, and ”
T - cheaper S 408 Disk 2 Years
s : * Who manages what ';
memory ' . . . Q
- registers: compiler k]
- cache: hardware 9]
£ - memory: OS 15Hhr
F disks - disk: OS 100 Memory
T e The performance of lower 10 ©On Board Cache This Campus 10 min
4 level is becoming 2 On Chip Cache ~mmmml NS ROOM
[magnetic tapes increasingly important 1 Registers My Head 1 min
* I 9) ® And the “universe” is expanding -- farther things are getting farther faster! 10)
4) 4
I/O Device Management What Is An Application?
* Goals » An application has its “own” CPU, memory, and 1/O
o Interactions between devices and o
applications * “Own” CPU is virtual CPU
o Ability to plug in new devices L
fty fo plug LR LEE * “Own” memory is virtual memory 0 — o
e [ssues o Text = code, constant data
o Efficiency _ o Data = initialized global and static variables Ll
o Fairness Library support o BSS = (Block Started by Symbol) BSS
o Protection and sharing uninitialized (zero) global & static variables
Driver Driver o Stack = local variables Heap
o Heap = dynamic memory l
1/0 /O : .
)) » “Own” I/O devices are virtual
device | "' | device
* /O and CPU may overlap 1
Stack
ll) Oxffffffff 2)

-
General Computer Architecture
MBus
CPU
Cont_rol 5 ALU Memory
Unit g
s
t
e
Cache r FPU
S
[|] I/O Bus
|
Disk Net Display

-
General Instruction Execution

» CPU’s control unit executes a program
PC < memory location of first instruction
while (PC !=last_instr_addr) {

i = fetch(MEM[PC++]);
execute(i);

}

* Multiple phases...
o Fetch: instruction fetch; increment PC
o Execute: arithmetic instructions, compute branch target address,
compute memory addresses
o Memory access: read/write memory
o Store: write results to registers

Fetch |Execute |Memory | Store Fetch |Execute |Memory | Store

¥

-
Concept of Instruction Pipelining

-
Instructions

* A simple pipeline

Fetch |Execute |Memory | Store

Fetch |Execute |Memory | Store

Fetch |Execute |Memory | Store

* What about branch instruction?

» Modern CPUs usually have deep pipelines
o Pentium Il has a 10-stage pipeline
o Pentium 4 has a 20-stage pipeline
o They all have sophisticated branch prediction mechanisms

)

 High-level language
X = a + b;

» Assembly language _
movl 12(%bp), %eax Symbolic .
addl 8(%bp), %eax Representation

* Machine code
000000110000110001000101
110010010000100001000101

Bit-encoded
Representation

)

4) 4
Machine Code Pipeline of Creating An Executable File
* 1A32 has variable-sized instructions
foo.c — gcc — foo.s — as —foo.0
« Example: \
push %ebp 0x8B
OV Yesp, Yebp OXE589 bar.c — gcc —bar.s— as [—fbar.o Id —>-
libc.a
* gcc can compile, assemble, and link together
» Compiler part of gcc compiles a program into assembly
» Assembler compiles assembly code into relocatable object
file
* Linker links object files into an executable
ly 18J
4) 4
Execution (Run An Application) s: IA32 Memory

e On Unix, “loader” does the job
o Read an executable file 0321
o Layout the code, data, heap and stack 31 24 23 16 15 87 0
o Dynamically link to shared libraries | | |
o Prepare for the OS kernel to run the application

L Byte 7 | Byte 6 | Byte 5 | Byte 4
Application
- Id -—> loader — |/ PPicat Byte 3 | Byte 2 | Byte 1 | Byte O

Shared
library 0 Byte order islittle endian

19) %)

4)
IA32 Architecture Registers A A
31 15 87 0 16-bit 32-bit 15 0
AH AL |AX EAX cs
BH BL |BX EBX DS
CH CL |CX ECX ss
DH DL |DX EDX ES
BP EBP FS
Sl ESI GS
DI EDI .
sp Esp Segment registers
Genera -purpose registers
| | |
EFLAGS register
| |
EIP (Instruction Pointer register)
%)

-

Upcoming Lectures ...

5]
s

L)

* Mode, registers and addressing
* Arithmetic and logic Instructions
 Control transfer instructions

» Assembly directives

» Assembler

2)

-

Revisit IA32 General Registers

» 8 32-bit general-purpose registers (e.g. EAX)
» Each lower-half can be addressed as a 16-bit register (e.g. AX)
» Each 16-bit register can be addressed as two 8-bit registers (e.g AH and HL)

31 1615 87 0

AH AL AX EAX: Accumulator for operands, results
BH BL BX EBX: Pointer to data in the DS segment.
CH CL CX ECX: Counter for string, loop operations.
DH | DL DX EDX: I/O pointer.

Sl ESI: Pointer to DS data, string source

DI EDI: Pointer to ES data, string destination
BP EBP: Pointer to data on the stack

SP

ESP: Stack pointer (in the SS segment)

2)

-

EIP Register

* Instruction Pointer or “Program Counter”

 Software change it by using
o Unconditional jump
o Conditional jump

Procedure call

Return

o

o

%)

-

Segment Registers

5

Rl

~

®

to a single linear-address space.

15 0

CS: code segment register\

SS: stack segment register

DS: data segment register

ES: data segment register

FS: data segment register

GS: data segment register)

* IA32 memory is divided into segments, pointed by segment registers

» Modern operating system and applications use the (unsegmented)
memory mode: all the segment registers are loaded with the same
segment selector so that all memory references a program makes are

2321

4Gbytes
address
space

»)

