
1

An Overview of Computer Architecture

CS 217

2

A Typical Computer

CPU

ChipsetMemory

I/O bus

CPU. . .

Network

ROM

3

A Typical Computer System

MemoryCPU

CPU

...

OS
Apps

Data
Network

Application

Operating System

ROM

BIOS

4

OS Service Examples
• Examples that are not provided at user level

� System calls: file open, close, read and write
� Control the CPU so that users won’t get stuck by running

– while (1) ;
� Protection:

– Keep user programs from crashing OS
– Keep user programs from crashing each other

• Examples that can be provided at user level
� Read time of the day

5

Processor Management

• Goals
� Overlap between I/O and

computation
� Time sharing
� Multiple CPU allocations

• Issues
� Do not waste CPU resources
� Synchronization and mutual

exclusion
� Fairness and deadlock free

6

Processor Management

• Goals
� Overlap between I/O and

computation
� Time sharing
� Multiple CPU allocations

• Issues
� Do not waste CPU resources
� Synchronization and mutual

exclusion
� Fairness and deadlock free

CPU I/O CPU

time

7

Processor Management

• Goals
� Overlap between I/O and

computation
� Time sharing
� Multiple CPU allocations

• Issues
� Do not waste CPU resources
� Synchronization and mutual

exclusion
� Fairness and deadlock free

CPU I/O CPU

CPU

I/O

CPU

time

8

Memory Management

• Goals
� Support programs to run
� Allocation and management
� Transfers from and to secondary

storage

• Issues
� Efficiency & convenience
� Fairness
� Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Tapes: >1000M x

9

Memory Management

10

Memory Management

11

I/O Device Management
• Goals

� Interactions between devices and
applications

� Ability to plug in new devices

• Issues
� Efficiency
� Fairness
� Protection and sharing

User 1 User n. . .

Library support

I/O
device

I/O
device. . .

Driver Driver

12

What Is An Application?
• An application has its “own” CPU, memory, and I/O

• “Own” CPU is virtual CPU

• “Own” memory is virtual memory
� Text = code, constant data
� Data = initialized global and static variables
� BSS = (Block Started by Symbol)

uninitialized (zero) global & static variables
� Stack = local variables
� Heap = dynamic memory

• “Own” I/O devices are virtual

• I/O and CPU may overlap

0

0xffffffff

Text

Data

BSS

Stack

Heap

13

General Computer Architecture

Control
Unit

Cache

R
e
g
i
s
t
e
r
s

ALU

FPU

CPU

Memory

Disk Net Display

MBus

I/O Bus

14

General Instruction Execution
• CPU’s control unit executes a program

PC � memory location of first instruction
while (PC != last_instr_addr) {

i = fetch(MEM[PC++]);
execute(i);

}

• Multiple phases…
� Fetch: instruction fetch; increment PC
� Execute: arithmetic instructions, compute branch target address,

compute memory addresses
� Memory access: read/write memory
� Store: write results to registers

Fetch Execute Memory Store Fetch Execute Memory Store

15

Concept of Instruction Pipelining
• A simple pipeline

• What about branch instruction?

• Modern CPUs usually have deep pipelines
� Pentium II has a 10-stage pipeline
� Pentium 4 has a 20-stage pipeline
� They all have sophisticated branch prediction mechanisms

. . .

Fetch Execute Memory Store

Fetch Execute Memory Store

Fetch Execute Memory Store

16

Instructions
• High-level language

x = a + b;

• Assembly language
movl 12(%ebp), %eax

addl 8(%ebp), %eax

• Machine code
000000110000110001000101
110010010000100001000101

Symbolic
Representation

Bit-encoded
Representation

17

Machine Code
• IA32 has variable-sized instructions

• Example:
push %ebp 0x8B
mov %esp,%ebp 0xE589

18

Pipeline of Creating An Executable File

• gcc can compile, assemble, and link together

• Compiler part of gcc compiles a program into assembly

• Assembler compiles assembly code into relocatable object
file

• Linker links object files into an executable

foo.c gcc asfoo.s foo.o

ldbar.c gcc asbar.s bar.o

libc.a …

a.out

19

Execution (Run An Application)
• On Unix, “loader” does the job

� Read an executable file
� Layout the code, data, heap and stack
� Dynamically link to shared libraries
� Prepare for the OS kernel to run the application

a.out loader*.o, *.a ld
Application

Shared
library

20

IA32 Memory

0

232-1

Byte order is little endian

31 08 716 15

.

.

.

24 23

Byte 4
Byte 0

Byte 5
Byte 1Byte 2

Byte 6
Byte 3
Byte 7

21

IA32 Architecture Registers

General-purpose registers

Segment registers

EFLAGS register

EIP (Instruction Pointer register)

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

31 0 015

CS
DS
SS
ES
FS
GS

AX
BX
CX
DX

16-bit 32-bit

DI
SI
BP

SP

ALAH
BL
CL
DL

BH
CH
DH

8 715

22

Upcoming Lectures ...
• Mode, registers and addressing

• Arithmetic and logic Instructions

• Control transfer instructions

• Assembly directives

• Assembler

23

Revisit IA32 General Registers
• 8 32-bit general-purpose registers (e.g. EAX)

• Each lower-half can be addressed as a 16-bit register (e.g. AX)

• Each 16-bit register can be addressed as two 8-bit registers (e.g AH and HL)

EAX: Accumulator for operands, results

EBX: Pointer to data in the DS segment.

ECX: Counter for string, loop operations.

EDX: I/O pointer.

ESI: Pointer to DS data, string source

EDI: Pointer to ES data, string destination

EBP: Pointer to data on the stack

ESP: Stack pointer (in the SS segment) SP

BP

DI

SI

DH DL

CH CL

BH BL

AH AL AX
BX

CX

DX

31 16 15 8 7 0

24

EIP Register
• Instruction Pointer or “Program Counter”

• Software change it by using
� Unconditional jump
� Conditional jump
� Procedure call
� Return

25

Segment Registers
• IA32 memory is divided into segments, pointed by segment registers

• Modern operating system and applications use the (unsegmented)
memory mode: all the segment registers are loaded with the same
segment selector so that all memory references a program makes are
to a single linear-address space.

CS: code segment register

SS: stack segment register

DS: data segment register

ES: data segment register

FS: data segment register

GS: data segment register

015

4Gbytes
address
space

0

232-1

