N e
Outline

* Administrative trivia
» Goals of the class

) * Introduction to C
Introduction to

Programming Systems

CS 217, Fall 2004

Randy Wang
Princeton University

~) 4
Precepts s: Goals

* No precepts this (first) week » Master the art of programming
. o Learn how to be “good” programmers
Location TBA o Introduction to software engineering

» Assignment 1 available at the end of today « Learn languages for systems programming

o C is the systems language of choice
o Assembly is required for low-level system programming

* Introduction to computer systems
o Machine architecture
o Operating systems
o Software tools

-
Outline

5 o]
tirs

* First three weeks
o C programming language

* Next two weeks
o Software engineering

* Next two weeks
o Machine architecture

* Next two weeks
o Software tools

* Next three weeks

o Unix operating system services

-

Coursework

51'3

Sirg

» Six programming assignments (60%)
o Un-comment filter

String library

o Hash table ADT

o 1A32 assembly language programming

o 1A32 assembler

o Shell

» Exams (30%)
o Midterm
o Final

]

* Class participation (10%)

-
Assignments

* One “free” extension
o Max of three days

 1st assignment available at the end of today

o Need to tell us when you want to use it
o No other extensions (except for illness etc.)

* Read the “policy” page on the web
o Pay special attention to collaboration policy

-

Materials

» Required textbooks
o C Programming: A Modern Approach, King, 1996.
o The Practice of Programming, Kernighan and Pike, 1999.
o Programming from the Ground Up (online), Bartlett 2004.

 Recommended textbooks
o Programming with GNU Software. Loukides & Oram

 Other textbooks (on reserve)
o IA32 Intel Architecture Software Developer's Manual (online)
o The C Programming Language, Kernighan & Ritchie
o C: A Reference Manual. Harbison & Steele
o C Interfaces and Implementations. Hanson
o The UNIX Programming Environment. Kernighan & Pike

» Web pages
o http://www.cs.princeton.edu/courses/archive/fall04/cos217/

4) 4
Facilities AL Logistics
» Unix machines Lectures
o CIT's arizona (phoenix) cluster (Sparc) o Introduce concepts _
o OIT’s hat s cluster (Linux) o Work through programming examples
* Your own lapto
ptop . * Precepts
o ssh accesstoari zona (or phoeni x) and hats !
. o Review concepts
o run GNU tools on Wlndows o Demonstrate tools (gdb, makefiles, emacs, ...)
o run GNU tools on Linux o Work through programming examples
2)
4) 4
QOutline Software is Hard

o Administrative trivia
» Goals of the class

* Introduction to C

W)

“What were the lessons | learned from so many yefirgensive work
on the practical problem of setting type by compit®©ne of the most
important lessons, perhaps, is the fact that SOFR®AS HARD.
From now on | shall have significantly greater esxgdor every
successful software tool that | encounter. Duthregpast decade | was
surprised to learn that the writing of programsTeiX and Metafont
proved to be much more difficult than all the ottréngs | had done
(like proving theorems or writing books). The diea of good software
demands a significantly higher standard of accutiaag those other
things do, and it requires a longer attention ghan other intellectual
tasks.”

Donald Knuth, 1989

2)

(.) 4
The Discipline of Software Engineering The Discipline of Software Engineering g
The beginning The beginning The hope
Doesn’t Doesn’t Works
Work Work
13) 14)
() 4
The Discipline of Software Engineering Software in COS126
The beginning The hope The reality Specﬁ:ation 1OF;eLrisnoer; o Gl

1 Type of Machine

Design 0 Modifications
* 1 Week
Programming
Q Q Debugging

Doesn’t Works Still doesn’t Tes*ting
Work Work

15) 16)

-

Software in the Real World

Specification

¥

Design

¥

Programming

¥

Debugging

¥

Testing

VAVAVAV

Lots of People
108 Lines of Code
Lots of Machines

1 Decade or more

Lots of Modifications

-

Good Software in the Real World

» Understandable
o Well-designed
o Consistent
o Documented

* Robust
o Works for any input
o Tested

* Reusable
o Components

* Efficient
o Only matters for 1%

Write code in modules
with well-defined interfaces

Write code in modules
and test them separately

Write code in modules
that can be used elsewhere

Write code in modules
and optimize the slow ones

)

-

Good Software in the Real World

» Understandable
o Well-designed
o Consistent
o Documented

* Robust
o Works for any input
o Tested

* Reusable
o Components

* Efficient
o Only matters for 1%

Write code in modules
with well-defined interfaces

Write code in modules
and test them separately

Write code in modules
that can be used elsewhere

Write code in modules
and optimize the slow ones

)

