
1

Introduction to
Programming Systems

CS 217, Fall 2004

Randy Wang
Princeton University

2

Outline
• Administrative trivia

• Goals of the class

• Introduction to C

3

Precepts
• No precepts this (first) week

• Location TBA

• Assignment 1 available at the end of today

4

Goals
• Master the art of programming

� Learn how to be “good” programmers
� Introduction to software engineering

• Learn languages for systems programming
� C is the systems language of choice
� Assembly is required for low-level system programming

• Introduction to computer systems
� Machine architecture
� Operating systems
� Software tools

5

Outline
• First three weeks

� C programming language

• Next two weeks
� Software engineering

• Next two weeks
� Machine architecture

• Next two weeks
� Software tools

• Next three weeks
� Unix operating system services

6

Coursework
• Six programming assignments (60%)

� Un-comment filter
� String library
� Hash table ADT
� IA32 assembly language programming
� IA32 assembler
� Shell

• Exams (30%)
� Midterm
� Final

• Class participation (10%)

7

Assignments
• 1st assignment available at the end of today

• One “free” extension
� Max of three days
� Need to tell us when you want to use it
� No other extensions (except for illness etc.)

• Read the “policy” page on the web
� Pay special attention to collaboration policy

8

Materials
• Required textbooks

� C Programming: A Modern Approach, King, 1996.
� The Practice of Programming, Kernighan and Pike, 1999.
� Programming from the Ground Up (online), Bartlett 2004.

• Recommended textbooks
� Programming with GNU Software. Loukides & Oram

• Other textbooks (on reserve)
� IA32 Intel Architecture Software Developer's Manual (online)
� The C Programming Language, Kernighan & Ritchie
� C: A Reference Manual. Harbison & Steele
� C Interfaces and Implementations. Hanson
� The UNIX Programming Environment. Kernighan & Pike

• Web pages
� http://www.cs.princeton.edu/courses/archive/fall04/cos217/

9

Facilities
• Unix machines

� CIT’s arizona (phoenix) cluster (Sparc)
� OIT’s hats cluster (Linux)

• Your own laptop
� ssh access to arizona (or phoenix) and hats

� run GNU tools on Windows
� run GNU tools on Linux

10

Logistics
• Lectures

� Introduce concepts
� Work through programming examples

• Precepts
� Review concepts
� Demonstrate tools (gdb, makefiles, emacs, …)
� Work through programming examples

11

Outline
• Administrative trivia

• Goals of the class

• Introduction to C

12

Software is Hard

“What were the lessons I learned from so many years of intensive work
on the practical problem of setting type by computer? One of the most
important lessons, perhaps, is the fact that SOFTWARE IS HARD.
From now on I shall have significantly greater respect for every
successful software tool that I encounter. During the past decade I was
surprised to learn that the writing of programs for TeX and Metafont
proved to be much more difficult than all the other things I had done
(like proving theorems or writing books). The creation of good software
demands a significantly higher standard of accuracy than those other
things do, and it requires a longer attention span than other intellectual
tasks.”

Donald Knuth, 1989

13

The Discipline of Software Engineering

Doesn’t
Work

The beginning

14

The Discipline of Software Engineering

WorksDoesn’t
Work

The beginning The hope

15

The Discipline of Software Engineering

WorksDoesn’t
Work

Still doesn’t
Work

The beginning The hope The reality

16

Software in COS126

Specification

Design

Programming

Debugging

Testing

1 Person
102 Lines of Code
1 Type of Machine
0 Modifications
1 Week

1 Person
102 Lines of Code
1 Type of Machine
0 Modifications
1 Week

17

Software in the Real World

Specification

Design

Programming

Debugging

Testing

Lots of People
106 Lines of Code
Lots of Machines
Lots of Modifications
1 Decade or more

Lots of People
106 Lines of Code
Lots of Machines
Lots of Modifications
1 Decade or more

18

Good Software in the Real World
• Understandable

� Well-designed
� Consistent
� Documented

• Robust
� Works for any input
� Tested

• Reusable
� Components

• Efficient
� Only matters for 1%

Write code in modules
with well-defined interfaces

Write code in modules
with well-defined interfaces

Write code in modules
and test them separately
Write code in modules

and test them separately

Write code in modules
that can be used elsewhere

Write code in modules
that can be used elsewhere

Write code in modules
and optimize the slow ones

Write code in modules
and optimize the slow ones

19

Good Software in the Real World
• Understandable

� Well-designed
� Consistent
� Documented

• Robust
� Works for any input
� Tested

• Reusable
� Components

• Efficient
� Only matters for 1%

Write code in modules
with well-defined interfaces

Write code in modules
with well-defined interfaces

Write code in modules
and test them separately
Write code in modules

and test them separately

Write code in modules
that can be used elsewhere

Write code in modules
that can be used elsewhere

Write code in modules
and optimize the slow ones

Write code in modules
and optimize the slow ones

