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ABSTRACT
Motivation: The development of experimental methods for
genome scale analysis of molecular interaction networks
has made possible new approaches to inferring protein
function. This paper describes a method of assigning
functions based on a probabilistic analysis of graph
neighborhoods in a protein-protein interaction network.
The method exploits the fact that graph neighbors are
more likely to share functions than nodes which are not
neighbors. A binomial model of local neighbor function
labeling probability is combined with a Markov random field
propagation algorithm to assign function probabilities for
proteins in the network.
Results: We applied the method to a protein-protein inter-
action dataset for the yeast Saccharomyces cerevisiae us-
ing the Gene Ontology (GO) terms as function labels. The
method reconstructed known GO term assignments with
high precision, and produced putative GO assignments to
320 proteins that currently lack GO annotation, which rep-
resents about 10% of the unlabeled proteins in S. cere-
visiae.
Availability: Source code available upon request. Results
available at http://genomics10.bu.edu/netmark.
Contact: sletovsky@aol.com
Keywords: protein–protein interaction, protein function
prediction, gene ontology, Markov Random fields

INTRODUCTION
Since the first complete genome was sequenced in 1995,
more than eighty microbial organisms and close to a dozen
eukaryotic genomes have been sequenced. A critical prob-
lem in making sense of these genomes is the assignment
of functional roles to newly discovered proteins. The
primary tools for first pass function assignment, such as
BLAST (Altschul et al., 1990), are based on sequence
similarity: they assign a function to a novel protein by
propagating functional information from a similar protein
of known function. This approach fails for the roughly
20-40% of proteins in newly sequenced genomes–many
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of them known only from de novo gene prediction–that
do not have statistically significant sequence similarity to
functionally annotated proteins. In addition, the transfer
of functional assignment between proteins with low
sequence identity (below 40%) is prone to significant
error.

In recent years, high-throughput functional genomics
techniques such as expression profiling and protein inter-
action mapping have generated new datasets that provide
additional opportunities for inference of function. Newer
computational methods for inferring protein function
include analysis of gene fusion events (Enright et al.,
1999; Marcotte et al., 1999; Yanai et al., 2001); phylo-
genetically conserved linkage patterns (Overbeek, 1999;
Yanai et al., 2002; Zheng et al., 2002) (sometimes called
operon analysis); phylogenetic profiling, which looks at
sharing of protein sets across organisms (Gaasterland
and Ragan, 1998; Pellegrini et al., 1999), and analysis of
measurements of gene expression to identify genes that
have similar expression patterns, which provides evidence
of co-regulation and hence possible shared function
(Ulanovsky et al., 2002; Zhou et al., 2002). Such methods
have been greatly aided by the standardization of protein
function descriptions in controlled vocabularies such as
the GO hierarchies (Ashburner et al., 2000), and by the
production of carefully curated collections of protein
annotations using those controlled vocabularies (Dwight
et al., 2002).

The method described here makes protein function
predictions by analyzing networks of protein-protein
interactions (PPI). We used a PPI dataset compiled and
kindly provided to us by the GRID (Breitkreutz et al.,
2002) project. This dataset contains interactions from a
number of published papers (Schwikowski et al., 2000;
Ito et al., 2001a; Tong et al., 2001; Gavin et al., 2002;
Ho et al., 2002), as well as from the MIPS (Mewes et al.,
2002) and BIND (Bader et al., 2001) databases. Evidence
for the interactions was generated using a variety of
methods, including the yeast two hybrid method (59% of
interactions), affinity precipitation (34%), and synthetic
lethality (5%). The yeast 2-hybrid method has been
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popular recently because it can be scaled up, but it can
produce large numbers of both false positive and false
negative interactions; any method which predicts function
from these data must be robust in the presence of such
errors. The problem of inferring function from PPI has
previously been addressed by (Schwikowski et al., 2000),
in which a function was assigned to a protein based on the
majority of functional labels of its interacting partners.

The current work attempts to provide a more robust
probabilistic solution using a Markov Random Field
(MRF) formalism. Markov Random Fields have been
widely used in image analysis (Geman and Geman, 1984)
for image restoration and segmentation. Our problem is
reminiscent of segmentation, in that we wish to segment
the protein-interaction network into subgraphs that share
similar labels.

METHODS
We represent the evidence from PPI data using a graphical
formalism called a functional linkage graph (Marcotte et
al., 1999; Yanai et al., 2001), in which an edge (link)
between two nodes (proteins) represents evidence that
they might share the same function. The translation of
PPI data into a functional linkage graph is straightforward:
pairwise interactions become edges in the graph. If there
are multiple pieces of evidence bearing on the same
pairwise interaction they are combined into a single link.
With each pairing of a protein i and a GO term t , we
associate a Boolean random variable Li,t which is 1 if
i is labeled with t , and 0 if it is not. This allows us to
accommodate multiple labels for the same protein, which
frequently arise, both as a result of the hierarchical nature
of some controlled vocabularies, in which a label implies
additional ‘ancestral’ labels, and also because proteins
often carry out multiple functions.

The problem we then want to solve is to derive the
marginal probability of a given protein taking a particular
functional label given all the putative functional assign-
ments to the other proteins in the graph. The Markov
Random Field formulation provides a sound solution
to this problem, subject to a conditional independence
(Markov) assumption that states that probability dis-
tribution for the labeling of any node is conditionally
independent of all other nodes given its neighbors. In
a pairwise MRF, the label probability of a node is the
product of node-specific (e.g. sensory) evidence about
the node’s state with pairwise joint probabilities with its
neighbors (Yedidia et al., 2001). In this application we
have no node-specific evidence regarding the labeling of
unlabeled nodes, so a node’s label probability is entirely a
function of its neighbors’ states.

NEIGHBORHOOD FUNCTION
The MRF framework requires the specification of neigh-
borhood functions that describe the dependence of the la-
bel probability of a node on the labels of its neighbors.
Different types of neighborhood conditional probability
functions can be used to model different types of local de-
pendency structure. Our algorithm relies on the statistical
property of local density enrichment: i.e. proteins with a
particular label are more likely to have neighbors carry-
ing that same label than proteins lacking the label. This
property is not true for all terms, and randomizing the as-
signment of labels to proteins destroys it.

Figure 1 illustrates the variation in density enrichment
across terms used in our example dataset. We will denote
the pair of y-values associated with each term in this plot
by p1 (dark circles), corresponding to the probability that
the target of an edge has a given label given that the source
has this label, and p0 (light triangles), corresponding to
the probability that target protein has the label given that
the source has some other label. The plot shows that for
many terms there is a significantly enhanced probability
of similar labels in the neighborhood of a labeled protein
beyond what term frequency would predict. Our algorithm
exploits this difference between p0 and p1 to make
predictions.

We are interested in computing the probability that
protein i has (or should have) label t , for all combinations
of proteins and terms. We define our neighborhood
function p(Li,t ) to be a function of Ni , the number
of graph neighbors of i , and ki,t , the number of those
neighbors which are labeled with term t . We will denote
this probability p(Li,t = 1|Ni , ki,t ).† Applying Bayes’
rule, and making an independence assumption‡ we obtain:

p(L|N , k) = p(k|L , N ) · p(L)

p(k|N )
(1)

where:

• p(k|L , N )is the probability of having k t-labeled
neighbors out of N neighbors. If labels were randomly
assigned to proteins we would expect p(k|L , N ) to
follow a binomial§ distribution. That is,

p(k|N ) = B(N , k, ft )

† Henceforth we will drop the subscripts except where needed for clarity, and
for conciseness we will use L , L and p in place of L = 1, L = 0, and (1− p)

respectively.
‡ p(L|N ) = p(L) · p(N ). This assumption states that the degree (# of
neighbors) distribution of nodes labeled with t is not significantly different
from the degree distribution overall. Although the former distribution may be
poorly resolved for infrequent terms, the assumption is supported by visual
inspection of the degree distribution of many terms.
§ We could also use a hypergeometric distribution; the choice depends on
whether we model the assignment as with or without replacement. Here we
assume replacement and use binomial distributions; the difference between
the two is small when the number of proteins is large.
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Fig. 1. For each term t we estimate two probabilities based on the set of graph edges {< i, j >} where the labeling status of both i and j
with respect to t is known. p1 is the probability that the target node j is labeled with t given that source node i is also labeled with t ; p0
is the probability that j is labeled with t given that i is not. Both are shown as a function of term frequency on a log/log scale for a set of
689 terms with sufficient counts to estimate p0 and p1. (a) Actual data; (b) after shuffling rows (proteins) in the Protein By Term labeling
matrix. (Shuffling rows preserves correlations between ISA-related terms). Values of p0 are similar to the term frequency in both plots,
suggesting that edges between labeled and unlabeled nodes occur at frequencies close to chance expectation. Values of p1 are strikingly
different, however; these are significantly higher in the actual data, while in the shuffled data they resemble p0 values. This shows that the
labeling structure of the actual graph is far from random. It also provides global evidence that there is significant information content in the
PPI data which is correlated with known functions; i.e. the PPI data cannot be entirely noise.

where

B(N , k, p) =
(

N
k

)
pk pN−k

and ft is the frequency of occurrence of term t in the
graph. If po �= p1 the label probability of a protein’s
neighbors will vary depending on its own label, and
thus we expect neighbors of t and non-t proteins to
have different conditional distributions:

p(k|L, N ) = B(N , k, p0)

and
p(k|L , N ) = B(N , k, p1)

The latter term is used in the numerator of Equa-
tion (1).¶

• p(L) = f , the frequency of term t in the graph.

• p(k|N ) is the frequency-weighted average of the
above two binomial terms:

p(k|N ) = f · p(k|L , N ) + f · p(k|L, N )

¶ Note that we apply a conservative correction to our estimated values of p0
and p1 by adjusting them upward, and downward, respectively, to the edge
of their 95% confidence intervals.

Putting all of these together gives the neighborhood
function:

p(L|N , k) = f · B(N , k, p1)

f · B(N , k, p1) + f ·B(N , k, p0)

which can be rewritten as

p(L|N , k) = λ

1 + λ

where

λ = f · B(N , k, p1)

f ·B(N , k, p0)

is the likelihood ratio. This form makes it clear that the(
N
k

)
term in the binomial formula cancels out, giving

λ = f pk
1 p1

N−k

f pk
0 p0

N−k

PROPAGATION OF PROBABILITIES
Since the label probability of a protein depends on its
neighbors, which depend in turn on their neighbors, we
would like a rigorous method of increasing our estimate
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of the label probability of a protein if our estimate of
its unlabeled neighbors’ label probability increases. The
Markov random field inference problem that corresponds
to this is the compution of the marginal label probabilities
of the unlabeled (hidden) nodes given some labeled (fully
observable) nodes. While this problem is NP-hard in
general even for grid topologies, a number of practical
procedures exist that take advantage of the independence
assumptions, including the junction tree algorithm, Gibbs
sampling and belief propagation (Pearl, 1991; Yedidia
et al., 2001). Belief propagation is not guaranteed to
converge on graphs with cycles, or to give even approx-
imately correct results if does converge, although in
practice it frequently does converge to approximately
correct marginal probabilities. In this paper we use a
simplified heuristic variant of belief propagation which is
designed to ensure that adjacent nodes cannot mutually
reinforce their estimated probabilities in a runaway
fashion.

Our propagation algorithm is based on iterative appli-
cation of equation 1, with k replaced by E(k), the ex-
pected number of labeled nodes given their current es-
timated labeling probabilities, which is just the sum of
those probabilities. Unlabeled nodes i are initialized to
p(Li,t ) = ft ; probabilities of labeled nodes are clamped
to the appropriate Boolean values throughout. In the first
iteration, the estimated probabilities of unlabeled nodes
are adjusted in parallel using Equation (1) to reflect their
immediate neighborhood; in this step all unlabeled neigh-
bors are still seen as having the label probability ft . On the
second iteration unlabeled nodes now see adjusted proba-
bilities of their unlabeled neighbors, but those probabili-
ties are based on initial values of their unlabeled neigh-
bors. Only on the third iteration would influence propa-
gate from unlabeled node i to its unlabeled neighbor j and
back to i again, raising the possibility of invalid runaway
self-reinforcement. To avoid this, we stop after the sec-
ond iteration; apply a threshold (we use .8), and reclassify
any unlabeled node whose labeling probability exceeds the
threshold as now labeled. We then repeat the entire pro-
cess, stopping when no further labeling occurs. This algo-
rithm is applied to each term separately.

DATA SOURCES
The following datasets were used in our analysis:

Protein–Protein Interactions: The GRID dataset con-
tained 20 985 distinct interactions catalogued between
13 607 distinct pairs of proteins. 4708 proteins par-
ticipated in interactions. 4588 of these are in a single
connected component, the second largest component
has 4 proteins. 1442 unlabeled, connected proteins were
potential labeling targets.

Yeast GO Labelings: 26 551 labelings of 6904 ORFs
(including tRNAs and other nonprotein-coding ORFs)
were taken from 12/1/02 version of SGD Yeast GO
assignments. After merging on ORF name, the overlap
between this ORF set and the GRID data consisted of
4692 proteins. 3267 of these had nontrivial labels (i.e.
excluding ‘unknown cellular compartment’, ‘unknown
molecular function’, ‘unknown biological process’) in at
least one of the 3 GO hierarchies; however 2573 proteins
were unlabeled in at least one of the three GO hierarchies
and hence were candidates for labeling by our method.
After expansion of protein labeling to include all ISA
ancestors of each label in the GO hierarchy, 1951 GO
terms were used as labels. The number of terms useful
for labeling was further reduced by application of several
filters. A term was excluded if it labeled exactly the same
set of terms as a more specific term. A term was excluded
if there were no links between proteins labeled with the
term and other labeled proteins, so that the term-specific
parameters p0 and p1 could not be estimated. A χ2

test was used to verify that p0 and p1 were sufficiently
different, by testing for non-independence of the 2 × 2
contingency table of source label versus target label, using
a Bonferroni-corrected p-value of 0.001/T , where T is
the number of terms tested. There had to be edges between
term-labeled and unlabeled‖ proteins for propagation to
operate. Finally, terms that occurred more than 300 times
as known labels were eliminated; these high-frequency
terms tended to be broad terms high in the GO hierarchy
and of little predictive value, such as metabolism or cell
growth and maintenance. These filters left 669 terms
which were used in the analysis.

RESULTS
We implemented the above algorithm in MatLab and ran
it on the above datasets, which took about 6 hours on a
1 GHz CPU. In order to generate predictions, the final
inferred label probabilities must be thresholded at some
cutoff. We determined a precision-optimizing cutoff for
each term as part of our validation process, described
below. The algorithm then produced 702 predictions for
unlabeled proteins; 455 (65%) during the initialization
phase and 247 during propagation. 404 of the predictions
were ISA-minimal, i.e. not superterms of more specific
terms predicted for the same protein. The full set of
predictions is available on the web.

In order to assess the likely error rate in these predictions
we first investigated the ability of the algorithm to
reconstruct known labels. This is easier to do for the
initialization step than for the propagation step, so we
address these separately.

‖ A protein was considered unlabeled with respect to a term if it did not
contain any labels in the same GO hierarchy, other than ISA ancestors of the
term.
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In the initialization step we computed labeling prob-
abilities for all proteins with respect to all terms. At a
prediction threshold of p(L) > 0.8 overall precision
was 85%, recall was 34%, and false positive rate was
0.15%. We also measured term-specific precisions as a
function of a sliding prediction threshold. For every term
we determined the maximum precision, and the threshold
at which the precision first exceeded 80%. Terms which
never attained 80% precision were culled from further
consideration, leaving 228 terms with greater than 80%
precision out of the 669 analyzed. For these the threshold
value at which 80% precision was first attained was used
as the prediction threshold.

Assessing precision of propagation is more difficult; we
cannot reconstruct known labels unless we pretend that
known proteins are unlabeled, in which case we change
the information available to the algorithm, and hence the
results. We therefore applied a jackknife procedure in
which, for each term which generated predictions, we
censored the labels of only 6 nodes of known label: 3
with the term, and 3 with a different term, each chosen at
random. The number of perturbed nodes was kept small
to minimize the disturbance to the results; the process
was repeated 3 times for each term. From these data
we estimate that the method had 98.6% precision and
21% recall using a threshold of p>.8; the false positive
rate in that range is 0.3%. The actual error rate will
be different because in practice the number of positive
and negative nodes presented to the algorithm are not
equal; the number of nodes which should not have a
given label typically greatly exceed the number which
should. After correcting for expected label frequency we
estimated the prediction error rate at 71%, or 287 of the
404 ISA-minimal predictions are expected to be correct.
This process corrects for multiple comparisons much more
efficiently than Bonferroni.

Finally we assessed the plausibility of the predictions
by direct examination. Looking only at predictions for
proteins having a description line in SGD, we assigned
each prediction a plausibility rating, as shown in Table 1.
A rating of 2 is a Presumed True Positive; by which
we mean that the assigned term was directly relevant to
the description, often using some of the same keywords.
This does not mean that the prediction is correct; for
example if the protein description is ubiquitin-like protein,
and the algorithm predicted the cellular location nuclear
ubiquitin-ligase complex, that predicted location could
be wrong, but it is highly relevant. A rating of −1,
or Presumed False Positive, was assigned to predictions
where no relationship could be established between the
description and the assigned term, such as between the
PDC6 with description pyruvate decarboxylase isozyme
and the term ubiquitin ligase complex; as far as the authors
admittedly shallow understanding of biology extends,

these would seem to have nothing to do with each other.
A rating of 0 (not shown) was applied if there was
insufficient information to make a decision. Finally, and
most interestingly, a rating of 1, for Plausible Prediction,
was assigned to predictions if a search of PubMed
retrieved one or more papers suggesting a relationship
between keywords in the description and those in the
term.

Examples of this latter category include assigning
NHP1, an HMG1-box containing protein, to the GO
molecular function category chromatin binding and
the cellular component category chromatin remodel-
ing complex. HGM1 proteins have been hypothesized
(Wisniewski et al., 1999) to have a role in chromatin
structure. Another example is the SRO77 protein, which
is described as a yeast homolog of the Drosophila tumor
suppressor lethal giant larvae (see entry for l(2)gl in
Flybase, The Flybase Consortium 2003) was assigned the
molecular function Motor. (Asaba et al., 2003) reported
that some mammalian tumor suppressors interact with a
kinesin-related motor; moreover the Drosophila homolog
is described as interacting with TNFβ and myosin. MTH1
was predicted to be part of a transcription factor complex
and to be a transcriptional regulator; its description is
‘negative regulator of HXT gene expression’. UTP20,
a U3 snoRNP protein, was predicted to be a structural
constituent of the ribosome. A recent paper (Culver,
2002) finds that U3 SnoRNPs are attached to the 5′ ends
of pre-rRNAs. UFO1, described as an F-box protein,
was assigned to the cellular component ubiquitin ligase
complex; SGD had already assigned it the molecular
function ubiquitin-protein ligase. (Note that the latter
assignment did not in any way contribute to the prediction,
since the two terms are in different hierarchies.) BLM3
is described as being involved in protecting the cell
against bleomycin damage; our algorithm assigned it the
function proteasome endopeptidase. Ustrell et al. describe
a link between disruption of a proteasome activator and
bleomycin hypersensitivity. Asc1, described as a Gβ like
protein, was assigned the function N-acetyltransferase.
(Chetsawang et al., 1999) reported that opioid receptors,
a class of G-protein coupled receptors that include G-beta
subunits, have a stimulatory effect on N-acetyltransferase.
CYM1, described as a metalloprotease, was assigned the
process pyruvate metabolism and the cellular component
pyruvate dehydrogenase complex; (Opalka et al., 2002)
describe inhibition of pyruvate metabolism by matrix
metalloproteinase inhibitors. These and other examples,
along with references supporting the plausibility of the
connection, are shown in Table 1.

DISCUSSION
The performance of the algorithm was surprisingly good
at reconstructing known labels; however, more experience
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Table 1. Sample Predictions. A rating of 2 is a presumed true positive, 1 is plausible prediction, −1 is a presumed false positive. Highlighted predictions were
generated in the propagation phase. Type is f for functional role, p for biological process, and c for cellular component

Rating ORF Gene Description Term Type

2 YBL004W UTP20 U3 snoRNP protein RNA binding f

2 YCL010C SGF29 Probable 29kKDa Subunit of SAGA histone acetyltransferase complex transcription regulator f
2 YDR139C RUB1 ubiquitin-like protein nuclear ubiquitin ligase complex c
2 YGL145W TIP20 transport protein that interacts with Sec20p; required for protein

transport from the endoplasmic reticulum to the golgi apparatus
intracellular transporter f

2 YGR232W NAS6 26S proteasome interacting protein proteasome endopeptidase f
2 YJL069C UTP18 U3 snoRNP protein, U3 snoRNA associated protein RNA binding f
2 YKR068C BET3 transport protein particle (TRAPP) component intracellular transporter f
2 YNL110C NOP15 ribosome biogenesis RNA binding f
2 YLR306W UBC12 ubiquitin-conjugating enzyme nuclear ubiquitin ligase complex c
2 YPL151C PRP46 pre-mRNA splicing factor RNA binding f
2 YPR066W UBA3 ubiquitin-like protein activating enzyme nuclear ubiquitin ligase complex c
2 YPR101W SNT309 protein complex component associated with the splicing factor Prp19p RNA binding f
1 YBL004W UTP20 U3 snoRNP protein structural constituent of ribosome

(Culver 2002)
f

1 YBL106C SRO77 yeast homolog of the Drosophila tumor suppressor, lethal giant larvae Motor (Asaba et al., 2003) f
1 YDL002C NHP10 HMG1-box containing protein chromatin remodeling complex

(Wisniewski et al., 1999)
c

1 YDR091C RLI1 ATP-binding cassette (ABC) superfamily nontransporter group
(putative)

translation initiation factor f

1 YDR277C MTH1 Msn3p homolog (61% identical) transcription factor complex c
1 YDR277C MTH1 Msn3p homolog (61% identical) transcriptional activator f
1 YDR430C CYM1 Metalloprotease pyruvate dehydrogenase complex

(Opalka et al., 2002)
c

1 YDR430C CYM1 Metalloprotease pyruvate metabolism
(Opalka et al., 2002)

p

1 YER173W RAD24 cell cycle exonuclease (putative) DNA clamp loader f
1 YFL007W BLM3 involved in protecting the cell against bleomycin damage proteasome endopeptidase

(Ustrell et al., 2002)
f

1 YJL044C GYP6 GTPase activating protein (GAP) for Ypt6 TRAPP c
1 YML088W UFO1 F-box protein nuclear ubiquitin ligase complex c
1 YMR116C ASC1 G-beta like protein N-acetyltransferase

(Chetsawang et al., 1999)
f

1 YOR243C PUS7 pseudouridylate U2 snRNA at position 35 structural constituent of ribosome f
1 YDL002C NHP10 HMG1-box containing protein chromatin binding f

−1 YBL066C SEF1 transcription factor (putative) ribonuclease P f
−1 YBR272C HSM3 MutS family (putative) proteasome endopeptidase f
−1 YDR400W URH1 uridine nucleosidase (uridine ribohydrolase); EC 3.2.2.3 signalosome complex c
−1 YGR087C PDC6 pyruvate decarboxylase isozyme ubiquitin ligase complex c
−1 YJL057C IKS1 serine/threonine kinase (putative) nuclear pore c
−1 YJR082C EAF6 Subunit of the NuA4 complex intracellular protein transport p
−1 YNL135C FPR1 peptidyl-prolyl cis-trans isomerase (PPIase) negative regulation of transcription from

Pol II promoter, mitotic
p

−1 YOL044W PEX15 44 kDa phosphorylated integral peroxisomal membrane protein Nuclease f
−1 YOR279C RFM1 DNA-binding protein dolichyl-diphospho-oligosaccharide-protein

glycosyltransferase
f

−1 YOR279C RFM1 DNA-binding protein N-linked glycosylation p
−1 YBR188C NTC20 splicing factor transcriptional activator f
−1 YDL049C KNH1 KRE9 homolog structural constituent of ribosome f
−1 YKR068C BET3 transport protein particle (TRAPP) component cation transporter f
−1 YLL036C PRP19 RNA splicing factor cation transporter f
−1 YLL036C PRP19 RNA splicing factor transcriptional activator f
−1 YLR037C DAN2 putative cell wall protein RNA binding f
−1 YLR117C CLF1 pre-mRNA splicing factor cation transporter f
−1 YLR117C CLF1 pre-mRNA splicing factor transcriptional activator f
−1 YML077W BET5 TRAPP 18kDa component cation transporter f
−1 YMR213W CEF1 protein complex component associated with the splicing factor Prp19p cation transporter f
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will be needed to assess its success rate for novel
predictions.

The design of any label propagation algorithm must
address a number of issues. For example, nodes (proteins)
may have multiple labels; does one want to assume that
the presence of one label is evidence for the absence
of others? Our approach treats every term as a separate
binary Markov Random Field, which allows multiple
labels to be inferred for the same protein. We do, however,
assume that if a protein has a label, we can treat it
as a negative for all other labels in the same hierarchy
except sub- and superterms, the assumption being that its
function was well enough characterized that absence of
other labels can be interpreted as evidence against them.
We are currently experimenting with a generalization of
the system described here which will allow a labeling
probability p(Li,t ) to influence the probability p(L j,u) of
another term u across an edge 〈i, j〉. This will allow terms
to be preferentially adjacent to other terms representing
upstream or downstream pathways; we have in fact
identified such correlations in the data.

A related issue is whether an algorithm can handle the
sort of hierarchical controlled vocabularies which have
been popularized by the GO consortium. We chose to work
with the ISA-transitive closure of the yeast GO labeling,
that is, if a protein was labeled with term u, we also
labeled it with all terms v where v is an ancestor of u in
the GO ISA-hierarchy. Consequently very broad, general
terms had very high frequencies, and if a term did not have
enough density in the graph to support label propagation,
it may be that one of its broader terms did.

Since terms have different frequencies, the likelihood of
having labeled terms varies with the term frequency. Algo-
rithms that use simple heuristics such as majority voting
by neighbors (Schwikowski et al., 2000) or thresholding
the fraction of neighbors with a given label are vulnerable
to being either too conservative or too liberal in their pre-
dictions as the term frequency varies. On the other hand
we make the assumption that a term’s frequency among
labeled proteins will be predictive of its frequency among
unlabeled proteins. This may not be the case, e.g. if the
term describes a well-studied pathway most of its mem-
bers may already be labeled, and conversely for a poorly
studied one. Where the assumption of equal frequencies
is wrong our predictions may run astray. Other biases in
the data, such as nonrandom sampling of interactions or
ascertainment biases such as are described in (Bader and
Hogue, 2002), may also lead to errors.

Another issue is the fact that not all terms are equally
predictive. Our algorithm allows each term’s predictive-
ness to be determined separately. We hope that by explic-
itly taking frequency and predictiveness into account we
will achieve greater robustness in the face of ‘edge noise’
in the PPI data.

Our approach raises some interesting general ques-
tions about the relationship between function labels and
network representations of the biology. Should there be
some sort of structural constraint on a functional label
in a graph, and if so what? Perhaps in an ideal wiring
diagram, terms would label connected subgraphs∗∗. This
is unlikely to be the case for many GO terms, including
many that failed our precision filter, such as chaperone,
signal transducer, and protein folding. In the present
study we are taking functional labels defined by historical
and often poorly articulated criteria and assessing their
coherence with respect to an independent PPI dataset. In
the future, as the biological networks are resolved with
greater precision, it may make sense to define functions
explicitly as connected subgraphs of the network.

This paper presents a particular choice of neighborhood
function based on the binomial distribution, but the ques-
tion of which functions are optimal for different types of
biological evidence is an important topic for further in-
vestigation. We believe the MRF framework will be gen-
eral enough to support a variety of different neighborhood
functions, and that different neighborhood functions may
be appropriate for different types of evidence. In the future
we plan to explore the application of the MRF framework
to different types of evidence beyond PPI, such as gene ex-
pression, sequence similarity, biochemical flux networks,
and protein-DNA interactions; to incorporate degrees of
belief in the evidence, such as edge probabilities reflect-
ing quality of the PPI data; and to compare different prop-
agation algorithms such as BP and Gibbs sampling to our
current approach.
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