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Microarray technology is rapidly becoming a standard labora-
tory technique. The main challenges related to the successful
implementation of the technology are analysis-related. In this
article we provide a practically oriented review focusing on
methods for analysis of large-scale gene expression data in the
research laboratory. We describe the various common cluster-
ing methods and outline our approach to using them. We dis-

 

cuss methods for scoring genes for their relevance

 

,

 

 focusing on
the statistical meaning of microarray results, especially with re-
gard to the problem of multiple testing. We also deal with the
problem of adding biologic meaning to the results of microar-
ray experiments and describe advanced tools that represent
different but valid directions in providing automated solutions
to this problem. The tools and approaches described and dis-
cussed here should provide the reader with a preliminary un-
derstanding of the analysis of the results of microarray experi-
ments. The practical focus of this review should remove the
mystery behind the analysis of microarray experiments, thus
leading to more productive and efficient use of the technology.

 

Microarray technology is rapidly becoming a standard tech-
nique used in research laboratories all across the world. In
essence, all the variants of the technology allow simulta-
neous profiling of the expression levels of tens of thousands
of genes, potentially whole genomes in a single experiment
(1–3). This unique power provides scientists with an oppor-
tunity to look at the transcriptional profile of biologic sys-
tems, processes, and diseases in an unbiased fashion. The
relative ease (despite the prohibitive cost) of performing
microarray experiments in molecular laboratory settings,
combined with the potential power of the technology, have
captured the imagination of scientists in academic and in-
dustry research institutes. This combination of ease of use
with unforeseen power also appealed to administrators in
the same institutes and in funding agencies, thus leading to
rapid spread of the use of the technology. Many research
groups in the academy and industry have implemented mi-
croarrays in multiple experimental settings with varying
degrees of success. Microarrays have been successfully ap-
plied to almost every aspect of biomedical research (4–9).
However, many more experiments remain uncompleted,
or even worse, unavailable to the scientific community. In-

terestingly, instead of excitement at the results of experi-
ments that utilize microarrays, scientists often express some
confusion, a tendency to focus on what is already known,
and a sense of weariness. These feelings arise from the ten-
sion between the relative ease of producing the results and
the objective difficulty of dealing with the results. Pro-
vided that one has the funding and setting, it should not
take one trained laboratory assistant more than a week to
run 8–10 samples (from total RNA extraction to microar-
ray hybridization). A month’s worth of results from such a
laboratory assistant will leave the investigator with the
task of dealing with half a million or more data points. The
objective difficulty resulting from the large quantities of
information generated by the experiments is further com-
plicated by the lack of simple and accepted approaches to
analyzing large-scale gene expression data (or even visual-
izing the data). Additionally, the diversity of experimental
designs and schemes adds to the confusion. Microarrays
are used to classify diseases, to identify the effects of a
stimulus 

 

in vivo

 

 or 

 

in vitro

 

, to single out genes that may
play a role in a specific disease or a specific biologic pro-
cess, and to distinguish transcriptional programs that un-
derlie such a process. The size of experimental groups and
the design of the experiments also vary widely, from time-
course experiments to cross-sectional studies, from single
observations with no repeats to analysis of hundreds of sam-
ples. Naturally, these diverse experimental schemes pose di-
verse computational requirements—the analysis of an exper-
iment designed discover a new class of a disease is different
from an experiment designed to test the immediate targets of
a known transcriptional activator. The wealth and complex-
ity of information that characterizes results of microarray

 

experiments has led to the suggestion that there may
not be a single “best” analytic approach and that indeed
the application of several analytical and computational ap-
proaches to a dataset may aid in the exposure of different
and complementary aspects of the data (10, 11).

As this is a rapidly evolving field, an attempt to provide
a comprehensive review of available computational tools
and approaches may prove outdated even before publica-
tion. Thus, we aim to provide the reader with a practical
approach to analysis of microarray results with examples
of publicly available computational tools. We focus on the
most commonly used analytic tools such as clustering
methods, on methods that deal with the statistical aspects
of the analysis of the results of microarray experiments,
and on methods that we have been involved in developing.
We also discuss some advanced methods that go “beyond”
clustering that are particularly useful in the analysis of
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complex experimental settings and as hypothesis-generat-
ing tools. We do not, however, deal with questions that
may be more relevant to clinical research, such as class dis-
covery and class prediction. These have been reviewed by
us elsewhere (12, 13). The approaches outlined here do
not deal with normalization issues, and assume that the data
obtained from large-scale gene expression studies and
used for the analysis is technically and biologically sound.
The analytical tools described and discussed here, as well
as the outlined approach, should provide the reader with a
good understanding of what is possible in computational
analysis of microarray data.

 

The Gene Funnel

 

Generally, one can describe the process of analyzing gene
expression data as a funnel-shaped process. You start out
with many genes, and by applying filters this number is
gradually reduced. In our team, the first step in the analy-
sis involves looking at the experiments and detecting outli-
ers and technically inferior experiments. We have noticed
that because of the wealth of information it is often very
hard to identify a “bad” experiment if it managed to es-
cape this preliminary screen. Once we are convinced that
all arrays lack defects and are relatively comparable, we
define a set of genes that we term “legal genes.” These are
genes that pass a certain threshold of expression in at least
one of the experiments. Because we run our experiments
on Affymetrix microarrays (Affymetrix, Santa Clara, CA),
we use the calls provided by the Affymetrix software anal-
ysis suite for this initial filtration. The parameters that we
use are the signal (the gene expression level) and the de-
tection call (present or absent call) (14). We usually elimi-
nate genes that do not have a present call in a fraction of
the experiments (5% or 1 if less then 20 microarrays). We
also set an expression level threshold that a gene needs to
pass in a fraction of the experiments (5%) to be included
in the dataset. To determine this threshold we hybridize
the same sample on two microarrays and compare the ex-
pression levels (Figure 1A). As a general rule, the consis-
tency between values obtained from running the same sam-
ple on two microarrays is intensity-dependent—that is, the
lower the intensity is, the lower the agreement between the
two microarrays. Often, a discernible threshold can be ob-
served (Figure 1A). Over this threshold the consistency is
indeed impressive and lies within the 2-fold range (Figure
1A), a phenomenon not observed when two different sam-
ples are compared (Figure 1B). This filtration process usu-
ally reduces the number of the genes in the dataset by a
third to a half (depending on the sample number, the type
of tissues being investigated, etc.). The next step is to define a
set of “active genes.” These are genes in which “something”
happened to their expression level. There are many com-
putational and statistical ways to define an active gene. We
take a simple and straightforward approach. We start by
converting the data to be in terms of expression ratios. This is
the natural representation in two dye-competitive hybrid-
ization systems but not in Affymetrix microarrays, where
the readings are absolute gene expression levels. What we
often do is what we term “virtual two dye.” Basically, we
create a set of ratios by dividing the values of every gene by a

number. This number may be the geometric mean of the
controls if we are dealing with distinct groups, the geomet-
ric mean of all the experiments, or of any other group of
experiments. This transformation allows us to query the
genes for their activity. We usually use relatively weak fil-
ters and ask for genes that changed at least 1.5-fold in ev-
ery direction in at least 5% of the experiments (or 1 if there
are fewer than 20 experiments). Genes that did not vary are
excluded from the “active genes” dataset, but may serve
later for controls in verification experiments. This process
usually greatly reduces the number of genes in the dataset.
It also allows for more stringent and specific queries, such
as genes that changed in a certain direction in a certain
subset of the experiments. The “active genes” dataset will
be the dataset that we will use for all other analyses.

 

Clustering Methods

 

The most commonly used analysis tools are clustering
methods (10). Clustering methods attempt to identify genes

Figure 1. A scatter plot of gene expression levels of the same
sample (a pool of seven plates of primary fibroblasts) run on two
GeneChip U95A Arrays (Affymetrix) (A) and of two different
samples (a pool of seven plates of lung fibroblasts and a pool of
five normal human bronchial epithelial cells) (B). The green ob-
lique lines correspond to 2-fold change. Pools were generated
from equal amounts of labeled cRNA that was previously hybrid-
ized into individual arrays. The experimental design was previ-
ously described by us (23).
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that behave similarly across a range of conditions or sam-
ples. The motivation to find such genes is driven by the as-
sumption that genes that demonstrate similar patterns of
expression share common characteristics, such as common
regulatory elements, common functions, or (in the case of
mixed tissue studies) common cellular origin. This as-
sumption is supported by the successful application of
clustering algorithms to the analysis of basic mechanisms
of cellular function in yeast and mammalian systems (6, 9,
15, 16). The main advantage in clustering tools is that us-
ing them mitigates the inherent difficulty in becoming fa-
miliar with the results. By grouping the genes into clusters
that behave similarly, these methods allow the investigator
to browse the data in a less intimidating and chaotic atmo-
sphere. Additionally, many of the methods are relatively
easy to visualize, thus improving the accessibility of the bi-
ologically meaningful information that is in the data. Sev-
eral clustering methods have been applied to gene expres-
sion data, hierarchical clustering (17) being the most
popular, but others include 

 

k

 

–means (18),

 

 

 

deterministic
annealing (19), self-organizing maps (20), combinatorial
methods and graph theoretical approaches (21, 22), and
super-paramagnetic clustering (16). The results of cluster-
ing algorithms are highly dependent on the input, i.e., on
the data that is used for the analysis. Methods for gene fil-
tering are commonly applied. It is important to remember
and note that various schemes for selecting genes that are
legal (with expression levels that pass a certain level) and
active (that change compared with a certain threshold) may
affect the results of the analysis, as will inclusion of multi-
ple and diverse experiments. In general, we apply more
than one clustering method to a dataset. We usually com-
pare the results of several methods and of several gene fil-
tering schemes before we decide what is the true signal in
this dataset. Many times the decision will lie on the repro-
ducibility of the cluster using various methods. This pro-
cess, although tedious, allows us to gain confidence that
the patterns we observe represent true biologic phenom-
ena that are independent of the analysis method and, as
previously stated, to become familiar with the data and
with the true signal that characterizes it.

 

Hierarchical Clustering

 

This is probably the most popular clustering approach to
large-scale gene expression data. The principles behind this
approach are reasonably easy to understand and very intui-
tive to visualize. Tools for hierarchical clustering (Cluster)
and visualization (Treeview) designed by Michael Eisen
(17) were freely available to the research community from
the very early stages of the introduction of microarray tech-
nology, making this clustering into a standard in the field.
Basically, this is an agglomerative process in which single-
member clusters are fused to bigger and bigger clusters. In
somewhat more detail, the procedure starts by computing a
pairwise distance matrix between all the genes, the distance
matrix is explored for the nearest genes, and they are de-
fined as a cluster. After a new cluster is formed by agglom-
eration of two clusters, the distance matrix is updated to re-
flect its distance from all other clusters. Then, the procedure
searches for the nearest pair of clusters to agglomerate, and
so on. This procedure leads to a hierarchical dendogram in

 

which multiple clusters are fused in nodes according to their
similarity, finally resulting in a single hierarchical tree.
There are several hierarchical clustering algorithms that dif-
fer in the way the distances are calculated. As mentioned
earlier, Cluster and Treeview can be obtained from Michael
Eisen’s lab at http://rana.lbl.gov/EisenSoftware.htm.

 

k

 

-Means Clustering

 

This is an iterative procedure that searches for clusters that
are defined in terms of their “center” points or means.
Once a set of cluster centers is defined, each gene is as-
signed to the cluster it is closest to. The clustering algorithm
then adjusts the center of each cluster of genes to minimize
the sum of distances of genes in each cluster to the center.
This results in a new choice of cluster centers, and so we can
reassign genes to clusters and repeat the process. These it-
erations are applied until convergence. This method has
more of a “global” character than hierarchical approaches.
It does not generate a hierarchical tree, but rather a prede-
termined number of clusters. 

 

k-

 

Means clustering is espe-
cially useful in cases in which one knows how many distinct
gene expression patterns to expect. The site previously
mentioned also provides tools for 

 

k

 

-means calculations.

 

Self-Organizing Maps

 

Self-organizing maps (SOMs) were introduced to the analysis
of microarray data by Tamayo and coworkers (20). As in the

 

k

 

-means procedure, one assigns the data into a predetermined
set of clusters. However, unlike 

 

k-

 

means, what follows is an it-
erative process in which gene expression vectors in each clus-
ter are “trained” to find the best distinctions between the dif-
ferent clusters. In other words, a partial structure is imposed
on the data and then this structure is iteratively modified ac-
cording to the data. SOM is superior when dealing with
“messy” data that contains outliers and irrelevant parameters.
We frequently apply SOM analysis to new datasets, as a
means to browse the trends in the data and to detect outliers.
Although many software packages contain SOM feature, we
use GeneCluster that can be obtained from Whitehead Insti-
tute/MIT Center for Genome Research website at http://
www-genome.wi.mit.edu/cancer/software/software.html.

 

Graph-Theoretic Clustering

 

Graph-theoretic clustering (CLICK) is an innovative clus-
tering method that utilizes graph-theoretic and statistical
techniques to identify tight groups of highly similar ele-
ments (kernels), which are likely to belong to the same
true cluster (22). Several heuristic procedures are then
used to expand the kernels into the full clustering. CLICK
and a visualization tool (Expander) are available at http://
www.math.tau.ac.il/~roded/click.html.

We do not have a real preference for using a specific clus-
tering method, although each has its own computational mer-
its. Most often, we apply more than one clustering method
on a dataset and we feel more confident if clusters are re-
produced using different methods.

 

Finding Relevant Genes

 

Relevant genes are defined as genes in which the expres-
sion level characterizes a specific experimental condition.
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Usually, these are genes in which the expression levels dif-
fer significantly between different experimental condi-
tions. The simplest way is to compare the expression level
of a gene in the different conditions and look at the rela-
tive expression – “fold change” of the gene: the ratio of its
expression level in one set of samples to its expression in
another set. This can even be done between two samples.
Naturally, the question immediately arises: what is the
threshold of relative expression at which a gene is consid-
ered changed? Many published studies use a threshold of
2-fold change that is based on the earliest microarray works
(1). However, the ratio itself is not a good predictor of the
relevance of a gene. In an ongoing study of lung tumors in
our lab, the fold ratio of 2 and more in a single tumor com-
pared with its matching control did not predict the fold ra-
tio of this same gene calculated from a comparison of 20

lung tumors to 7 normal tissues (Figure 2A). Impressively,
there were genes with fold ratios of more than 8 in the sin-
gle sample comparison that had changed in the opposite
direction when averages were calculated. This observation
was also true when we compared fold ratios of a single pair
of samples (tumor/normal) to fold ratios of a pool of tu-
mor RNAs and a pool of normal RNAs (Figure 2B), and
in primary cell culture experiments (Figure 2C). Further-
more, the genes that had the highest fold ratios in the sin-
gle-sample comparisons were not necessarily those that had
significant 

 

P

 

 values in the multiple replicate analysis (Fig-
ures 1A, 1B, and 1C, 

 

blue dots

 

). When we compared fold
ratios calculated from the pools comparison with those ob-
tained from the average comparison, we did observe that
genes substantially changed in pooled samples comparison
seemed to better overlap with genes with significant 

 

P

 

 val-

Figure 2. (A) Comparison of fold ratios obtained from comparing fold ratios obtained from the average of multiple samples (20 lung tu-
mors compared with 7 normal lung tissues) with fold ratios obtained from a single comparison (one tumor compared with its matching
normal). (B) Comparison of fold ratios obtained from a single comparison with fold ratios obtained from pooled (20 pooled tumors hy-
bridized on one microarray compared with 7 pooled normal samples). (C) Comparison of fold ratios from average multiple cell culture
samples (five plates of IL-13–stimulated primary lung fibroblasts compared with seven plates of untreated primary lung fibroblasts)
with fold ratios obtained from a single comparison (one plate of IL-13–treated primary lung fibroblasts compared with one plate of un-
treated lung fibroblast). (D) Comparison of fold ratios of average of multiple samples with fold ratios of pooled samples. Pools were
generated as described in Figure 1. Data in A, B, and D was generated as previously described (33), and data in C was previously de-
scribed (23). Blue dots represent genes that significantly distinguished between experimental groups (P � 0.05, using TNoM score), gray
dots represent genes with P � 0.05.
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ues (Figure 2D) than in the other comparisons. This analy-
sis suggests (as one would intuitively presume) that basing
an observation on fold ratio may easily lead to spurious re-
sults, especially when a small amount of samples is ana-
lyzed. A slightly modified version of looking at fold changes
that deals with the diversity of the data is D’s (n-1) score
(23). In this simple approach, we set up a fold threshold
for most of the samples, for example demanding that the
fold ratio of n-1 of the experiments will be more than Z-fold
over the mean of the controls. This score could be made
stricter by setting the Z threshold higher, or by demanding
that the value Z will be calculated against the maximum
(for increased) or minimum (for decreased) values of the
control group. The major problem with relying on fold
changes for finding relevant genes is that they do not pro-
vide any means to measure the statistical relevance of the
results.

 

Scoring Methods

 

Statistical considerations are essential when trying to find
genes whose expression characterizes a specific experi-
mental condition. The available methods can be divided
into parametric and nonparametric methods.

 

Parametric Methods

 

These approaches model expression profiles within a para-
metric representation, and ask how different the parame-
ters of the experimental groups are. A simple example is
the classic 

 

t

 

 test (19). Other examples of parametric ap-
proaches are the separation score (24) and the Bayesian 

 

t

 

test (25). The significance analysis of microarrays (SAM)
method developed at Stanford University Statistics and
Biochemistry Labs (26) is a method for identifying genes
with statistically significant changes in gene expression. It
deals with the specific issues of multiple testing (

 

see

 

 S

 

TA-

TISTICAL

 

 S

 

IGNIFICANCE

 

) and is easily installed as an Excel
add-in. SAM is freely available from http://www-stat.stan-
ford.edu/~tibs/SAM/ and we frequently use it.

 

Nonparametric Methods

 

No 

 

a priori

 

 assumptions are made about the distribution of
expression profiles in the data. Instead, we attempt to di-
rectly examine the degree to which the two groups of ex-
pression measurements are distinguished. The methods
that we use were introduced by Ben-Dor and coworkers
(13) and applied successfully to the study of breast cancer
(27), melanoma (18), and recently to idiopathic pulmonary
fibrosis (28).

 

Threshold Number of Misclassifications

 

The threshold number of misclassifications (TNOM) mea-
sures how successful we are in separating the two groups of
samples by a simple threshold over the expression values.
That is, we search for the threshold value of the gene’s ex-
pression that will distinguish the experimental conditions. A
gene is scored by the number of misclassifications made by
the best threshold that we can find for it. If the expression
value of the gene allows us perfectly separate the groups,
the gene has a TNOM score 

 

�

 

 0. On the other hand, if the
two groups are interspersed, the gene has a score that may
be close to the size of the smallest group of samples.

 

INFO score is a refined version of TNOM that mea-
sures the misclassifications made by a simple threshold in
terms of the information lost (or entropy) of the labels of
samples in each side of the threshold.

There are several other scores that we often use includ-
ing the Gaussian score and D’s score (n-1) (23, 28). Score-
Gene—a package that calculates the scores for a given
dataset—will soon be available on our website at http://
fgusheba.cs.huji.ac.il/software.htm.

The main weakness of parametric approaches is the as-
sumptions that they make about the data. For example,
outliers can significantly skew the 

 

t

 

 test score by changing
the variance estimated in the sample. Similarly, scale trans-
formation (e.g., working in logarithmic scale) can have dras-
tic impact on the scores. Nonparametric approaches are more
robust to this type of phenomenon. This comes at a price, as
nonparametric approaches are less sensitive to the actual ex-
pression values.

 

Statistical Significance and Multiple Testing

 

A unique challenge posed by the results of microarray ex-
periments to the statistical analysis is the asymmetry be-
tween the number parameters (genes) measured and the
number of samples. No matter what statistical method that
we apply to the data, it will always be possible that a cer-
tain percentage of the “significant” 

 

P

 

 values will be spuri-
ous. To handle this problem it is imperative to determine
the degree of significance of the computed 

 

P

 

 values.
One approach is to find a value 

 

q

 

, such that the proba-
bility that any of the events (i.e., the smallest one) has a 

 

P

 

value less than 

 

q

 

 is small. This standard way of selecting 

 

q

 

is using the Bonferroni threshold (29), defined as the al-
lowed error probability divided by the number of parame-
ters measured (genes in our case). For example, to ensure
that the probability of a false recognition is 

 

�

 

 0.05 (i.e.,
95% significance level), we need to set the Bonferroni
threshold 

 

q

 

 as 0.05 divided by the number of the genes in
the analysis. This will lead to a 

 

P

 

 value threshold of 

 

�

 

 10

 

�

 

6

 

.
The stringency of the Bonferroni threshold ensures that
each and every validated scoring event is indeed a signifi-
cant event. Our aim, however, is slightly different. We
want to retrieve a set of events, such that most of them are
not spurious. A statistical method that addresses this kind
of requirement is the False Discovery Rate (FDR) method
(30). In this method, all 

 

P

 

 values are ranked and tested
against different thresholds. The genes are ranked by their

 

P

 

 values. The best 

 

P

 

 value is tested against the Bonferroni
threshold; however, the next 

 

P

 

 value is tested against a
more relaxed threshold, and so on. This replaces a strict
validation test of single events with a more tolerable ver-
sion validating a group of events. Tools such as the FDR
threshold allow us relax the Bonferroni threshold and to
locate promising genes for further examination with mini-
mal spurious events.

 

Overabundance Analysis

 

Another approach is to ask “how surprising is the data
set?” The approach that we take to this problem is to ex-
amine the number of genes at different 

 

P

 

 values (i.e., sig-
nificance levels) and compare them with the expected num-
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ber under the null-hypothesis (the assumption that the
separation of the samples is random). We can visualize this
difference using overabundance graphs (Figure 3). The
difference between the expected and observed number of
genes in each significant 

 

P

 

 value is an estimate of the over-
abundance of information in the analyzed dataset (Figure
3). We find this analysis extremely useful and very easy to
perform using the ScoreGene package (http://fgusheba.cs.
huji.ac.il/software.htm).

 

Loading the Results with Biologic Meaning

 

One of the most painful stages in the analysis of the results
of microarray experiments is the postcomputational stage.
The long-awaited and dreaded computational analysis has
finally been completed, and now the investigator has to ex-
amine the lists of genes he or she so eagerly anticipated
and to generate new hypotheses. In the easiest cases, more
than half of the genes in these lists will be familiar to the
investigator; however, it will still be difficult to put them in
a meaningful biologic framework without focusing mainly
on what was previously known. To fully realize the poten-
tial of microarray experiments as hypothesis-generating
tools, it is essential to have tools that will facilitate the pro-
cess of looking for biologic meaning in the data. We would
like to mention three examples for directions to automati-
cally load the results with biologic meaning.

 

Probabilistic Relational Models

 

Probabilistic relational models (PRM) allow the inclusion
of multiple types of information in the computational pro-
cess itself (31). For example, experiments can be anno-
tated by their gene expression patterns, experimental or
clinical data, the cell type or strain used in the experiment,
the cellular phenotype triggered by each condition, etc.
The genes can be annotated by the gene expression data,
sequence elements present in the gene promoters, func-
tional information, gene ontology definitions, protein mo-
tifs, and more. The analysis then creates context-specific
groupings (clusters) of genes and experiments that are en-
riched with biologic information, thus facilitating the hy-

 

pothesis-generating process. In our view PRMs represent
the first tool that allows statistically sound, unbiased inte-
gration of biologic information and microarray results.

 

GenMAPP

 

GenMAPP represents a completely different approach,
which is to analyze gene expression data in the context of
known biologic pathways (32). It allows the uploading of
gene expression data unto known pathways and gene fam-
ilies using complex selection criteria. Furthermore, it al-
lows investigators to author their own pathways using a
simple and intuitive tool. We often run our data through
GenMAPP to browse through processes with which we
are less familiar, to see whether there is a specific signal
worth following up. GenMAPP is available at http://www.
genmapp.org/.

 

Pubgene

 

Available at http://www.pubgene.uio.no/cgi-bin/PubGene.cgi,
this tool allows the user to upload results of microarray ex-
periments and to search for interesting literature clusters.
The literature clusters are then ranked according to the data
analysis parameters and the user-defined number of the
highest scoring clusters are displayed as a result. It allows
the investigator to rapidly get a feeling about the relation-
ship of the results of his microarray experiments to pub-
lished literature. Naturally, this does not replace the actual
work of looking for and reading the literature, but it can
quickly and easily highlight a specific literature cluster that
might have been otherwise overlooked.

 

Conclusions and Practical Suggestions

 

In this article, we provided practical approaches to analy-
sis of microarray experiments. We presented our approach
to data filtering, commonly used clustering methods, tools
for finding informative genes, and some of the newer tools
that go “beyond” clustering. As opposed to the situation
two years ago, today there is a wide range of analysis tools
for examining microarray experiments. There is no single
“best” method for analysis, but there are multiple tools
that can be applied to the data and allow querying it from
different angles. Clustering methods may help in looking
at gene expression patterns, scoring methods to identify
genes that are statistically associated with the process
studied, and the advanced tools to facilitate the generation
of new hypotheses.

We would like to conclude with several practical sug-
gestions that are based on our experience:

 

• When looking at the results of microarray experiments,
do not get intimidated by the wealth of information. Re-
member the gene funnel. Define a set of “legal genes”
and “active genes” and look at them. Query the data.
This will give you a preliminary sense of the data.

• Do not get hooked on fold ratios.
• It is important to collaborate with computational scien-

tists. However, do not leave the analysis completely to
them. Most of the tools mentioned are relatively easy to
use. Being comfortable with using the tools will allow you
to become familiar with the results and to determine
what you really need from your collaborators.

Figure 3. Overabundance graph of the significant genes that dis-
tinguish lung fibroblasts from human airway epithelial cells. Red,
observed genes; green, expected number under the null-hypothe-
sis (random labels). The x-axis denotes P value and the y-axis the
number of genes. The expected number of genes is the P value
multiplied by the number of genes in the data set. Experiments
were previously described by us (23).



 

Translational Review 131

 

• Remember that the most productive groups in microarray
research function as multidisciplinary teams. Make sure
that your computational collaborators understand your
experimental system. Involve them early on in the design
of the experiments. Do not allow the analysis to become a
service.

• Repeat your experiments. If you cannot afford to run re-
peats for every experimental point, do pools; they repre-
sent the data better than a single arbitrary sample. If you
are using RNA pooled from several repeats of an experi-
ment for your microarray experiment, make sure that you
also keep aliquots of RNA from the individual experi-
ments. This way you will still be able to verify the results
using other methods on individual samples.

• Statistical considerations and analysis are important. In
contrast to two years ago, there are currently many tools
for statistical analysis of the results of microarray experi-
ments. There is no justification to neglect the statistical
analysis of the data.

• Use more than one analytic approach, scoring method, or
clustering application on your dataset. This will help you
to gain confidence in your observations.

• Do not rush to purchase commercial software solutions;
there are many publicly available resources that provide
visualization and analysis tools. Actually, many of the tools
described here do not exist in any commercial package.

• Share your tools. If you developed an analytic approach
or tool, share it. The main reason that hierarchical clus-
tering is so popular is because it was freely available very
early on. Furthermore, as many groups develop ap-
proaches that deal with specific aspects of data analysis,
sharing of tools and source code would lead to improved
tools.

• Share your data. One good thing about the results of mi-
croarray experiments is that there is enough for every-
body. The full impact of the results can only be realized if
they are freely available to the scientific community (nat-
urally after publication). It is important to also share re-
sults of experiments that will not get published or nega-
tive results. The creation of repositories for results of
large-scale gene expression experiments will of course fa-
cilitate this process.
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