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Abstract

Kernel methods provide a principled framework in which to repre-
sent many types of data, including vectors, strings, trees and graphs. As
such, these methods are useful for drawing inferences about biological
phenomena. We describe a method for combining multiple kernel repre-
sentations in an optimal fashion, by formulating the problem as a convex
optimization problem that can be solved using semidefinite programming
techniques. The method is applied to the problem of predicting yeast
protein functional classifications using a support vector machine (SVM)
trained on five types of data. For this problem, the new method per-
forms better than a previously-described Markov random field method,
and better than the SVM trained on any single type of data.

1 Introduction

Much research in computational biology involves drawing statistically sound
inferences from collections of data. For example, the function of an unan-
notated protein sequence can be predicted based on an observed similarity
between that protein sequence and the sequence of a protein of known func-
tion. Related methodologies involve inferring related functions of two proteins
if they occur in fused form in some other organism, if they co-occur in multiple
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species, if their corresponding mRNAs share similar expression patterns, or if
the proteins interact with one another.

It seems natural that, while all such data sets contain important pieces
of information about each gene or protein, the comparison and fusion of these
data should produce a much more sophisticated picture of the relations among
proteins, and a more detailed representation of each protein. This fused rep-
resentation can then be exploited by machine learning algorithms. Combining
information from different sources contributes to forming a complete picture
of the relations between the different components of a genome.

This paper presents a computational and statistical framework for inte-
grating heterogeneous descriptions of the same set of genes, proteins or other
entities. The approach relies on the use of kernel-based statistical learning
methods that have already proven to be very useful tools in bioinformatics.1

These methods represent the data by means of a kernel function, which de-
fines similarities between pairs of genes, proteins, etc. Such similarities can be
quite complex relations, implicitly capturing aspects of the underlying biologi-
cal machinery. One reason for the success of kernel methods is that the kernel
function takes relationships that are implicit in the data and makes them ex-
plicit, so that it is easier to detect patterns. Each kernel function thus extracts
a specific type of information from a given data set, thereby providing a partial
description or view of the data. Our goal is to find a kernel that best repre-
sents all of the information available for a given statistical learning task. Given
many partial descriptions of the data, we solve the mathematical problem of
combining them using a convex optimization method known as semidefinite
programming (SDP).2 This SDP-based approach3 yields a general methodol-
ogy for combining many partial descriptions of data that is statistically sound,
as well as computationally efficient and robust.

In order to demonstrate the feasibility of these methods, we address the
problem of predicting the functions of yeast proteins. Following the experi-
mental paradigm of Deng et al.,4 we use a collection of five publicly available
data sets to learn to recognize 13 broad functional categories of yeast pro-
teins. We demonstrate that incorporating knowledge derived from amino acid
sequences, protein complex data, gene expression data and known protein-
protein interactions significantly improves classification performance relative
to our method trained on any single type of data, and relative to a previously
described method based on a Markov random field model.4



2 Related Work

Considerable work has been devoted to the problem of automatically inte-
grating genomic datasets, leveraging the interactions and correlations between
them to obtain more refined and higher-level information. Previous research
in this field can be divided into three classes of methods.

The first class treats each data type independently. Inferences are made
separately from each data type, and an inference is deemed correct if the
various data agree. This type of analysis has been used to validate, for example,
gene expression and protein-protein interaction data,5,6,7 to validate protein-
protein interactions predicted using five different methods,8 and to infer protein
function.9 A slightly more complex approach combines multiple data sets using
intersections and unions of the overlapping sets of predictions.10

The second formalism to represent heterogeneous data is to extract bi-
nary relations between genes from each data source, and represent them as
graphs. As an example, sequence similarity, protein-protein interaction, gene
co-expression or closeness in a metabolic pathway can be used to define binary
relations between genes. Several groups have attempted to compare the result-
ing gene graphs using graph algorithms,11,12 in particular to extract clusters of
genes that share similarities with respect to different sorts of data.

The third class of techniques uses statistical methods to combine hetero-
geneous data. For example, Holmes and Bruno use a joint likelihood model
to combine gene expression and upstream sequence data for finding significant
gene clusters.13 Similarly, Deng et al. use a maximum likelihood method to
predict protein-protein interactions and protein function from three types of
data.14 Alternatively, protein localization can be predicted by converting each
data source into a conditional probabilistic model and integrating via Bayesian
calculus.15 The general formalism of graphical models, which includes Bayesian
networks and Markov random fields as special cases, provides a systematic
methodology for building such integrated probabilistic models. As an instance
of this methodology, Deng et al. developed a Markov random field model to
predict yeast protein function.4 They found that the use of different sources
of information indeed improved prediction accuracy when compared to using
only one type of data.

This paper describes a fourth type of data fusion technique, also statistical,
but of a more nonparametric and discriminative flavor. The method, described
in detail below, consists of representing each type of data independently as a
matrix of kernel similarity values. These kernel matrices are then combined
to make overall predictions. An early example of this approach, based on
fixed sums of kernel matrices, showed that combinations of kernels can yield



improved gene classification performance in yeast, relative to learning from a
single kernel matrix.16 The current work takes this methodology further—we
use a weighted linear combination of kernels, and demonstrate how to estimate
the kernel weights from the data. This yields not only predictions that reflect
contributions from multiple data sources, but also yields an indication of the
relative importance of these sources.

The graphical model formalism, as exemplified by the Markov random
field model of Deng et al., has several advantages in the biological setting. In
particular, prior knowledge can be readily incorporated into such models, with
standard Bayesian inference algorithms available to combine such knowledge
with data. Moreover, the models are flexible, accommodating a variety of
data types and providing a modular approach to combining multiple data
sources. Classical discriminative statistical approaches, on the other hand, can
provide superior performance in simple situations, by focusing explicitly on the
boundary between classes, but tend to be significantly less flexible and less able
to incorporate prior knowledge. As we discuss in this paper, however, recent
developments in kernel methods have yielded a general class of discriminative
methods that readily accommodate non-standard data types (such as strings,
trees and graphs), allow prior knowledge to be brought to bear, and provide
general machinery for combining multiple data sources.

3 Methods and Approach

Kernel Methods Kernel methods work by embedding data items (genes,
proteins, etc.) into a vector space F , called a feature space, and searching
for linear relations in such a space. This embedding is defined implicitly, by
specifying an inner product for the feature space via a positive semidefinite
kernel function: K(x1,x2) = 〈Φ(x1), Φ(x2)〉, where Φ(x1) and Φ(x2) are the
embeddings of data items x1 and x2. Note that if all we require in order to
find those linear relations are inner products, then we do not need to have
an explicit representation of the mapping Φ, nor do we even need to know
the nature of the feature space. It suffices to be able to evaluate the kernel
function, which is often much easier than computing the coordinates of the
points explicitly. Evaluating the kernel on all pairs of data points yields a
symmetric, positive semidefinite matrix K known as the kernel matrix, which
can be regarded as a matrix of generalized similarity measures among the data
points.

The kernel-based binary classification algorithm that we use in this paper,
the 1-norm soft margin support vector machine,17,18 forms a linear discriminant
boundary in feature space F , f(x) = wTΦ(x) + b, where w ∈ F and b ∈ R.



Given a labelled sample Sn = {(x1, y1), . . . , (xn, yn)}, w and b are optimized
to maximize the distance (“margin”) between the positive and negative class,
allowing misclassifications (therefore “soft margin”):

min
w,b,ξ

wTw + C
n
∑

i=1

ξi (1)

subject to yi(w
TΦ(xi) + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

where C is a regularization parameter, trading off error against margin. By
considering the corresponding dual problem of (1), one can prove 18 that the
weight vector can be expressed asw =

∑n
i=1 αiΦ(xi), where the support values

αi are solutions of the following dual quadratic program (QP):

max
α

2αT e− αTdiag(y)Kdiag(y)α : C ≥ α ≥ 0, αTy = 0,

An unlabelled data item xnew can subsequently be classified by computing the
linear function

f(xnew) = wTΦ(xnew) + b =
n
∑

i=1

αiK(xi,xnew) + b.

If f(xnew) is positive, then we classify xnew as belonging to class +1; otherwise,
we classify xnew as belonging to class −1.

Kernel Methods for Data Fusion Given multiple related data sets (e.g.,
gene expression, protein sequence, and protein-protein interaction data), each
kernel function produces, for the yeast genome, a square matrix in which each
entry encodes a particular notion of similarity of one yeast protein to another.
Implicitly, each matrix also defines an embedding of the proteins in a feature
space. Thus, the kernel representation casts heterogeneous data—variable-
length amino acid strings, real-valued gene expression data, a graph of protein-
protein interactions—into the common format of kernel matrices.

The kernel formalism also allows these various matrices to be combined.
Basic algebraic operations such as addition, multiplication and exponentiation
preserve the key property of positive semidefiniteness, and thus allow a simple
but powerful algebra of kernels.19 For example, given two kernels K1 and K2,
inducing the embeddings Φ1(x) and Φ2(x), respectively, it is possible to define
the kernel K = K1 +K2, inducing the embedding Φ(x) = [Φ1(x),Φ2(x)]. Of
even greater interest, we can consider parameterized combinations of kernels.



In this paper, given a set of kernels K = {K1,K2, . . . ,Km}, we will form the
linear combination

K =

m
∑

i=1

µiKi. (2)

As we have discussed, fitting an SVM to a single data source involves
solving a QP based on the kernel matrix and the labels. We have shown
that it is possible to extend this optimization problem not only to find optimal
linear discriminant boundaries but also to find optimal values of the coefficients
µi in (2) for problems involving multiple kernels.

3 In the case of the 1-norm
soft margin SVM, we want to minimize the same cost function (1), now with
respect to both the discriminant boundary and the µi. Again considering the
Lagrangian dual problem, it turns out 3 that the problem of finding optimal
µi and αi reduces to a convex optimization problem known as a semidefinite
program (SDP):

min
µi,t,λ,ν,δ

t (3)

subject to trace

(

m
∑

i=1

µiKi

)

= c,

m
∑

i=1

µiKi º 0,

(

diag(y)(
∑m

i=1 µiKi)diag(y) e+ ν − δ + λy
(e+ ν − δ + λy)T t− 2CδT e

)

º 0,

ν, δ ≥ 0,

where c is a constant. SDP can be viewed as a generalization of linear program-
ming, where scalar linear inequality constraints are replaced by more general
linear matrix inequalities (LMIs): F (x) º 0, meaning that the matrix F has
to be in the cone of positive semidefinite matrices, as a function of the decision
variables x. Note that the first LMI constraint in (3), K =

∑m
i=1 µiKi º 0,

emerges very naturally because the optimal kernel matrix must indeed come
from the cone of positive semidefinite matrices. Linear programs and semidef-
inite programs are both instances of convex optimization problems, and both
can be solved via efficient interior-point algorithms.2

In this paper, the weights µi are constrained to be non-negative and the
Ki are positive semidefinite and normalized ([Ki]jj = 1) by construction; thus
K º 0 is automatically satisfied. In that case, one can prove3 that the SDP (3)
can be cast as a quadratically constrained quadratic program (QCQP), which



Table 1: Functional categories. The table lists the 13 CYGD functional classifications
used in these experiments. The class listed as “others” is a combination of four smaller
classes: (1) cellular communication/signal transduction mechanism, (2) protein activity reg-
ulation, (3) protein with binding function or cofactor requirement (structural or catalytic)
and (4) transposable elements, viral and plasmid proteins.

Category Size Category Size
1 metabolism 1048 8 cell rescue, defense & virulence 264
2 energy 242 9 interaction w/ cell. envt. 193
3 cell cycle & DNA processing 600 10 cell fate 411
4 transcription 753 11 control of cell. organization 192
5 protein synthesis 335 12 transport facilitation 306
6 protein fate 578 13 others 81
7 cellular transp. & transp. mech. 479

improves the efficiency of the computation:

max
α,t

2αT e− ct (4)

subject to t ≥
1

n
αTdiag(y)Kidiag(y)α, i = 1, . . . ,m

αTy = 0,

C ≥ α ≥ 0.

Thus, by solving a QCQP, we are able to find an adaptive combination
of kernel matrices—and thus an adaptive combination of heterogeneous in-
formation sources—that solves our classification problem. The output of our
procedure is a set of weights µi and a discriminant function based on these
weights. We obtain a classification decision that merges information encoded
in the various kernel matrices, and we obtain weights µi that reflect the relative
importance of these information sources.

4 Experimental Design

In order to test our kernel-based approach, we follow the experimental paradigm
of Deng et al.4 The task is predicting functional classifications associated with
yeast proteins, and we use as a gold standard the functional catalogue provided
by the MIPS Comprehensive Yeast Genome Database (CYGD—mips.gsf.de/

proj/yeast). The top-level categories in the functional hierarchy produce 13
classes (see Table 1). These 13 classes contain 3588 proteins; the remaining
yeast proteins have uncertain function and are therefore not used in evaluating
the classifier. Because a given protein can belong to several functional classes,
we cast the prediction problem as 13 binary classification tasks, one for each
functional class.



The primary input to the classification algorithm is a collection of ker-
nel matrices representing different types of data. In order to compare the
SDP/SVM approach to the MRF method of Deng et al., we perform two vari-
ants of the experiment: one in which the five kernels are restricted to contain
precisely the same binary information as used by the MRF method, and a
second experiment in which two of the kernels use richer representations and
a sixth kernel is added.

For the first kernel, the domain structure of each protein is summarized
using the mapping provided by SwissProt v7.5 (us.expasy.org/sprot) from
protein sequences to Pfam domains (pfam.wustl.edu). Each protein is char-
acterized by a 4950-bit vector, in which each bit represents the presence or
absence of one Pfam domain. The kernel function KPfam is simply the inner
product applied to these vectors. This bit vector representation was used by
the MRF method. In the second experiment, the domain representation is en-
riched by adding additional domains (Pfam 9.0 contains 5724 domains) and by
replacing the binary scoring with log E-values derived by comparing the HMMs
with a given protein using the HMMER software toolkit (hmmer.wustl.edu).

Three kernels are derived from CYGD information regarding three differ-
ent types of protein interactions: protein-protein interactions, genetic inter-
actions, and co-participation in a protein complex, as determined by tandem
affinity purification (TAP). All three data sets can be represented as graphs,
with proteins as nodes and interactions as edges. Kondor and Lafferty 20 pro-
pose a general method for establishing similarities among the nodes of a graph,
based on a random walk on the graph. This method efficiently accounts for
all possible paths connecting two nodes, and for the lengths of those paths.
Nodes that are connected by shorter paths or by many paths are considered
more similar. The resulting diffusion kernel generates three interaction kernel
matrices, KGen, KPhys and KTAP . A diffusion constant τ controls the rate of
diffusion through the network. 20 For KGen and KPhys τ = 5, and for KTAP

τ = 1.

The fifth kernel is generated using 77 cell cycle gene expression measure-
ments per gene.21 Two genes with similar expression profiles are likely to have
similar functions; accordingly, Deng et al. convert the expression matrix to a
square binary matrix in which a 1 indicates that the corresponding pair of
expression profiles exhibits a Pearson correlation greater than 0.8. We use this
matrix to form a diffusion kernel KExp. In the second experiment, a Gaussian
kernel is defined directly on the expression profiles: for expression profiles x

and z, the kernel is K(x, z) = exp(−||x− z||2/2σ) with width σ = 0.5.

In the second experiment, we construct one additional kernel matrix by
applying the Smith-Waterman pairwise sequence comparison algorithm 22 to
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Figure 1: Classification performance for the 13 functional classes. The height of each
bar is proportional to the ROC score. The standard deviation across the 15 experiments is
usually 0.01 or smaller (see supplement), so most of the depicted differences are significant.
Black bars correspond to the MRF method of Deng et al.; gray bars correspond to the
SDP/SVM method using five kernels computed on binary data, and white bars correspond
to the SDP/SVM using the enriched Pfam kernel and replacing the expression kernel with
the SW kernel.

the yeast protein sequences. Each protein is represented as a vector of Smith-
Waterman log E-values, computed with respect to all 6355 yeast genes. The
kernel matrixKSW is computed using an inner product applied to pairs of these
vectors. This matrix is complementary to the Pfam domain matrix, capturing
sequence similarities among yeast genes, rather than similarities with respect
to the Pfam database.

Each algorithm’s performance is measured by performing 5-fold cross-
validation three times. For a given split, we evaluate each classifier by re-
porting the receiver operating characteristic (ROC) score on the test set. The
ROC score is the area under a curve that plots true positive rate as a function
of false positive rate for differing classification thresholds.23 For each classi-
fication, we measure 15 ROC scores (three 5-fold splits), which allows us to
estimate the variance of the score.

5 Results

The experimental results are summarized in Figure 1. The figure shows that,
for each of the 13 classifications, the ROC score of the SDP/SVM method
is better than that of the MRF method. Overall, the mean ROC improves



Table 2: Kernel weights and ROC scores for the transport facilitation class. The
table shows, for both experiments, the mean weight associated with each kernel, as well as
the ROC score resulting from learning the classification using only that kernel. The final
row lists the mean ROC score using all kernels.

Kernel Binary data Enriched kernels
Weight ROC Weight ROC

KP fam 2.21 .9331 1.58 .9461
KGen 0.18 .6093 0.21 .6093
KP hys 0.94 .6655 1.01 .6655
KT AP 0.74 .6499 0.49 .6499
KExp 0.93 .5457 — .7126
KSW — — 1.72 .9180
all — .9674 — .9733

from 0.715 to 0.854. The improvement is consistent and statistically significant
across all 13 classes. An additional improvement, though not as large, is gained
by replacing the expression and Pfam kernels with their enriched versions (see
supplement). The most improvement is offered by using the enriched Pfam
kernel and replacing the expression kernel with the Smith-Waterman kernel.
The resulting mean ROC is 0.870. Again, the improvement occurs in every
class, although some class-specific differences are not statistically significant.

Table 2 provides detailed results for a single functional classification, the
transport facilitation class. The weight assigned to each kernel indicates the
importance that the SDP/SVM procedure assigns to that kernel. The Pfam
and Smith-Waterman kernels yield the largest weights, as well as the largest
individual ROC scores. Results for the other twelve classifications are similar
(see supplement)

6 Discussion

We have described a general method for combining heterogeneous genome-
wide data sets in the setting of kernel-based statistical learning algorithms,
and we have demonstrated an application of this method to the problem of
predicting the function of yeast proteins. The resulting SDP/SVM algorithm
yields significant improvement relative to an SVM trained from any single data
type and relative to a previously proposed graphical model approach for fusing
heterogeneous genomic data.

Kernel-based statistical learning methods have a number of general virtues
as tools for biological data analysis. First, the kernel framework accommodates
non-vector data types such as strings, trees and graphs. Second, kernels provide
significant opportunities for the incorporation of specific biological knowledge,
as we have seen with the Pfam kernel, and unlabelled data, as in the diffusion



and Smith-Waterman kernels. Third, the growing suite of kernel-based data
analysis algorithms requires only that data be reduced to a kernel matrix; this
creates opportunities for standardization. Finally, as we have shown here, the
reduction of heterogeneous data types to the common format of kernel matri-
ces allows the development of general tools for combining multiple data types.
Kernel matrices are required only to respect the constraint of positive semidef-
initeness, and thus the powerful technique of semidefinite programming can
be exploited to derive general procedures for combining data of heterogeneous
format and origin.

Acknowledgements WSN is supported by a Sloan Foundation Research Fellowship and

by National Science Foundation grants DBI-0078523 and ISI-0093302. MIJ and GL acknowledge

support from ONR MURI N00014-00-1-0637 and NSF grant IIS-9988642.

1. B. Schölkopf, K. Tsuda and J.-P. Vert. Support vector machine applications

in computational biology. MIT Press, Cambridge, MA, 2004.
2. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,

38(1):49–95, 1996.
3. G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan.

Learning the kernel matrix with semi-definite programming. In Proc 19th Int

Conf Machine Learning, pp. 323–330, 2002.
4. M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for func-

tional prediction of proteins. Proc 7th Int Conf Comp Mol Biol, pp. 95–103,
2003.

5. H. Ge, Z. Liu, G. Church, and M. Vidal. Correlation between transcriptome
and interactome mapping data from Saccharomyces cerevisiae. Nature Genet-
ics, 29:482–486, 2001.

6. A. Grigoriev. A relationship between gene expression and protein interac-
tions on the proteome scale: analysis of the bacteriophage T7 and the yeast
Saccharomyces cerevisiae. Nucl Acids Res, 29:3513–3519, 2001.

7. R. Mrowka, W. Lieberneister, and D. Holste. Does mapping reveal correlation
between gene expression and protein-protein interaction? Nature Genetics,
33:15–16, 2003.

8. C. von Mering, R. Krause, B. Snel et al. Comparative assessment of large-scale
data sets of protein-protein interactions. Nature, 417:399–403, 2002.

9. E. M. Marcotte, M. Pellegrini, M. J. Thompson, T. O. Yeates, and D. Eisen-
berg. A combined algorithm for genome-wide prediction of protein function.
Nature, 402(6757):83–86, 1999.

10. R. Jansen, N. Lan, J. Qian, and M. Gerstein. Integration of genomic datasets
to predict protein complexes in yeast. Journal of Structural and Functional

Genomics, 2:71–81, 2002.
11. A. Nakaya, S. Goto, and M. Kanehisa. Extraction of correlated gene clusters

by multiple graph comparison. In Genome Informatics 2001, pp. 44–53, 2001.



12. A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant
biclusters in gene expression data. Bioinformatics, 18:S136–S144, 2002.

13. I. Holmes and W. J. Bruno. Finding regulatory elements using joint likelihoods
for sequence and expression profile data. In Proc Int Sys Mol Biol, pp. 202–
210, 2000.

14. M. Deng, F. Sun, and T. Chen. Assessment of the reliability of protein-protein
interactions and protein function prediction. In Proc Pac Symp Biocomputing,
pp. 140–151, 2003.

15. A. Drawid and M. Gerstein. A Bayesian system integrating expression data
with sequence patterns for localizing proteins: comprehensive application to
the yeast genome. J. Mol. Biol., 301:1059–1075, 2000.

16. P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy. Gene functional classifi-
cation from heterogeneous data. In Proc 5th Int Conf Comp Mol Biol, pp.
242–248, 2001.

17. B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Computational Learing Theory, pp. 144–152, 1992.

18. B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

19. C. Berg, C. J. Christensen, and P. Ressel. Harmonic Analysis on Semigroups:

Theory of Positive Definite and Related Functions. Springer, New York, NY,
1984.

20. R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete
input spaces. In Proc Int Conf Machine Learning, pp. 315–322, 2002.

21. P. T. Spellman, G. Sherlock, M. Q. Zhang et al. Comprehensive identifi-
cation of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by
microarray hybridization. Mol Biol Cell, 9:3273–3297, 1998.

22. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. J Mol Biol, 147(1):195–197, 1981.

23. J. A. Hanley and B. J. McNeil. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology, 143:29–36, 1982.


