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Registration

* What is registration?
— Finding a one-to-one mapping between two or more
coordinate systems such that corresponding featiires
models in the different systems are mapped to etwdr
— Using the mapping to align a model(s)
 Pair-wise model alignment
¢ Transformation to a canonical pose/coordinatecsyet=—
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Registration

* What is the resulting alignment/pose used for?
— Object recognition in scenes
— Stitching together parts of a model captured fdifferent views
— Alignment for pose-dependent shape descriptors
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3D Model

Funkhouser, COS 597D Class Notes

Lecture Overview

» Sub-problems within registration (from
Audette00)

» Placing models in a canonical pose or
coordinate system

» Methods for pair-wise model registration
—ICP
— Generalized Hough Transform
— Geometric Hashing




Lecture Overview

» Sub-problems within registration (from
Audette00)

» Placing models in a canonical pose or
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* Methods for pair-wise model registration
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— Generalized Hough Transform
— Geometric Hashing

General Registration

 Partition the process into three underlying
issues:

— Transformation(s)

— Surface Information/Representation and
Similarity Criterion
— Matching and optimization
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Registration Part 1

e Choice of Transformation

— Rigid: mutual distances of points within a mode& a
conserved during transformation
Xg = RABXA +iag
* Ris arotation matrix antis a translation vector
— Non-rigid
» Account for surface deformations in the transfaiora
« Affine transformation, e.g.

* Global polynomial function (low order polynomia map one
surface to another)

 Chris will talk about these on Thursday
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Registration Part 2

» Surface Representation and Similarity Criterion

— Local surface information

 Points or specific features, e.g. curvature exéresaddle
points, ridges, etc.

— Global surface information
* Spin maps, e.g.
» Choice of surface representation should allow for
a discriminating similarity criterion

g2
i

Audette 2000



Registration Part 3

Matching and Optimization: How should
we use the (local or global) shape/surface
information to align or register models?

— Use discrete feature matching to compute a

transformation, e.g. Generalized Hough
Transform or Geometric Hashing

— lterative minimization of a distance function,
e.g. lterative Closest Points (ICP)

Audette 2000

Overview

Sub-problems within registration
Placing models in a canonical pose or
coordinate system

Methods for pair-wise model registration
— ICP

— Generalized Hough Transform

— Geometric Hashing
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Normalization

» Use PCA to place models into a canonical
coordinate frame

Covariance Matrix Principal Axis
Computation Alignment
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Steps for finding principal axes

» Translate point set {pto origin by center
of mass:

_19
C= n;pi

dq, =p; —C

* Result is new point set {q
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Steps for finding principal axes

e Calculate second-order covariance matrix:
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Steps for finding principal axes

 Decompose symmetric covariance matrix:

A A A A, 0 0
M = USU! U=|B, B, B,|S=|0 A O
C, C, C, 0 0 A

e Matrix U contains 3 principal axes
(eigenvectors) as rows: A, B, C

» Matrix S contains eigenvalues
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Problems with PCA

* Doesn’t always work
— Only second order information

M. Kazhdan

Problems with PCA

 Directions of principal axes are ambiguous
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Reflective Symmetry Descriptors

» Align to axes of symmetry rather than
principal components
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Reflective Symmetry Descriptors

 Aligns objects more like humans
» Performs better than PCA in aligning
objects within a class

% of Models
100%) 100%

0% Rotation 0% Rotation
0 a5°Error 0 45°Error

Reflective Symmetry Principal Component
Descriptor Analysis

M. Kazhdan




Overview

Sub-problems within registration

Placing models in a canonical pose or
coordinate system

Methods for pair-wise model registration
— ICP

— Generalized Hough Transform

— Geometric Hashing

Iterative Closest Points (ICP)

» Besl & McKay, 1992
 Start with rough guess for alignment
* Iteratively refine transform
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ICP

» Assume closest points correspond to each
other, compute the best transform...

E ?%/\\f

=

8
-]

S. Rusinkiewicz

is

g
N

ICP

» ... and iterate to find alignment
» Converges to some local minimum
» Correct if starting position “close enough*

SN = -
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 Start with manual initial alignment

Aligning Scans

S. Rusinkiewicz [Pulli]

* Improve alignment using ICP algorithm

Aligning Scans

S. Rusinkiewicz [Pulli]
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ICP Variants

» Variants on the following stages of ICP
have been proposed:

Selecting source points (from one or both meshes)
Matching to points in the other mesh

Weighting the correspondences

Rejecting certain (outlier) point pairs

Assigning an error metric to the current transform
Minimizing the error metric w.r.t. transformation

LP‘P‘PW!\’!‘“"
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Comparison of ICP Variants

http://graphics.stanford.edu/~smr/ICP/comparison/



Comparison of ICP Variants

Convergence rate for "wave" scene Convergence rate for “incised plane” scene
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Figure 3: Comparison of convergence rates for uniform, random, and
normal-space sampling for the “incised plane” meshes. Note that, on the
lower curve, the ground truth error increases briefly in the early iterations.
This illustrates the difference between the ground truth error and the algo-
rithm’s estimate of its own error.

Figure 2: Comparison of convergence rates for uniform, random, and
normal-space sampling for the “wave” meshes.

Convergence rate for “fractal” scene Convergence rate for "incised plane” scene
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Figure 9: Comparison of convergence rates for the
rected sam-

meshes, for a variety of matching algorithms. Normal-spac
pling was used for these measurements.

Figure 7: Comparison of convergence rates for the “fractal” meshes, for
a variety of matching algorithms.

Rusinkiewicz and Levo¥gfficient Variants of the ICP Algorithm

One ICP Caveat

“It can safely be predicted that the

proposed registration algorithm will

have difficulty correctly registering
‘sea urchins’ and ‘planets’.”




Pair-wise Registration or Matching:
Three Approaches (out of many)

« Generalized Hough transform
» “Curve” Geometric Hashing
» “Basis” Geometric Hashing

All are “model-based” approaches which use
a priori knowledge about the models to
populate a lookup table which is used to
speed up the matching/registration process.

@‘A“ﬁ S. Rusinkiewicz, on Hecker and Bolfen Geometric Hashing and the Generalized Hough §fitam
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Generalized Hough Transform
(First for 2D Images)

» Every boundary point (of the object) in imagg
votes
» Votes are cast for each object / transformati
consistent with the presence of that point

» At the end, objects with most votes win
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GHT: Preprocessing

» Simplified 2D case with translation only

» For each point x,,, find
angle of tangent 6(x,)
and vector r to
reference point x,

* Form table indexed by
0(x,,), storing r and
object ID

» For rotation or 3D objects, table has many
_H dimensions, each point x has many entries

S. Rusinkiewicz, image from Hecker and Bolle

GHT: Identification

* For each point:
— Compute angle of tangent
— Look up in table

— For each object found:
» Compute origin of object consistent with this goin
* Vote for the object at that location

« At end:
— Find clusters of votes for the same object
— Position of cluster gives location of object

4
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Curve Geometric Hashing

« Compute “footprints” of each subcurve —
invariant under rotation, translation

— For example, in 2D, arc-length vs. turning-
angle

— Boundary curves must be (heuristically)
segmented into subcurves first

* Preprocessing:
— Create a table indexed by footprint

— Each entry contains object ID and location of
footprint along curve

S. Rusinkiewicz

CGH: Identification

 Find footprints in image

» For each model:
— Each footprint votes for a relative shift
— Peaks in the histogram are identified

— Second pass to confirm the presence of the
object and find the location by least-squares
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Basis Geometric Hashing

» Objects are represented as sets of local “fedtures
which allow for matching or recognition with
partial occlusion (features can be points, line
segments, etc.)

» Features are indexed with a function that is
invariant to the transformation(s) being considere
* Preprocessing:

— For each tuplé of features, compute locatio#, ) of all
other features in basis defined by

— Create a quantized hash table indexedéby) (
— Each entry containsand object ID

S. Rusinkiewicz

BGH: Identification

Find features in target image
Choose an arbitrary badis

For each feature:

— Compute £,7') in basidy’

— Look up in table and vote for (Objeb},
For each (Objech) with many votes:
— Compute transformation that mdpto b’

— Confirm presence of object, using all available
features

S. Rusinkiewicz



Basis Geometric Hashing

Model Append (M1,(4,13)
to end of hash
bin list
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Figure 1. Determining the hash table entries when points 4 and 1 are used to define a basis. The models are allowed to
undergo rotation, translation, and scaling. On the left of the figure, model M, comprises five points.

Wolfson and Rigoutsoseometric Hashing, an Overvie®997

Basis Geometric
Hashing

Model
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Figure 2. The locations of the hash table entries for model M. Each
entry is labeled with the information "model M, and the basis pair
(i, /) used to generate the entry. The models are allowed to

undergo rotation, translation, and scaling.

Wolfson and Rigoutsos;eometric Hashing, an Overvie®997



Basis Geometric Hashing

Image
Model o Cast 1 vote
1o v for each entry
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Figure 3. Determining the hash table bins that are to be notified when two arbitrary image points are selected as a basis.
Similarity transformation is allowed.

Wolfson and Rigoutsog$seometric Hashing, an Overviet997

Basis Geometric
Hashing

Imags

® Hash table entries
contain M,, (4,1)), a
consistent match

® Hash table entries

contain Mk1 (X.y)), Figure 2. The locations of the hash table entries for model M. Each
k # 1, (X,y) z (4,1) entry is labeled with the information "model M, and the basis pair
(or nothing) (4, /) used to generate the entry. The models are allowed to

undergo rotation, translation, and scaling.
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BGH Complexity

With:

M models in the database (hash table),
n features per model

Sfeatures in a scene

C features needed to form a basis tuple
Preprocessing step@&(Mnt+1)

Matching/recognition i©(HS-*1) whereH is the
complexity of processing a hash-table bin

Grimson and Huttenlocher, 1990

GHT and Geometric Hashing Comparison

o Similarities:

— Image features “vote” for objects

— Recognition time independent of size of database
 Differences:

— Generalized Hough transform and curve geometric

hashing need a clustering step because all feadoees
used in the lookup process

— Basis geometric hashing requires selecting

“good” features which are the only ones used in the

lookup process (more “good” features can be used fo
further iterations)

S. Rusinkiewicz



Algorithm Sensitivities

« Geometric Hashing

— A relatively sparse hash table is critical for doo
performance

— Method is not robust for cluttered scenes (fuiha
table) or noisy data (uncertainty in hash values)

» Generalized Hough Transform
— Does not scale well to multi-object complex scenes

— Also suffers from matching uncertainty with noisy
data

Grimson and Huttenlocher, 1990
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