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• What is registration?
– Finding a one-to-one mapping between two or more 

coordinate systems such that corresponding features of 
models in the different systems are mapped to each other

– Using the mapping to align a model(s)
• Pair-wise model alignment
• Transformation to a canonical pose/coordinate system

Registration

Audette 2000 M. Kazhdan
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Registration
• What is the resulting alignment/pose used for?

– Object recognition in scenes
– Stitching together parts of a model captured from different views
– Alignment for pose-dependent shape descriptors

Funkhouser, COS 597D Class NotesChang and Krumm, 1999

OR

Lecture Overview

• Sub-problems within registration (from 
Audette00)

• Placing models in a canonical pose or 
coordinate system

• Methods for pair-wise model registration
– ICP
– Generalized Hough Transform
– Geometric Hashing
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Lecture Overview

• Sub-problems within registration (from 
Audette00)

• Placing models in a canonical pose or 
coordinate system

• Methods for pair-wise model registration
– ICP
– Generalized Hough Transform
– Geometric Hashing

General Registration

• Partition the process into three underlying 
issues:
– Transformation(s)

– Surface Information/Representation and 
Similarity Criterion

– Matching and optimization

Audette 2000
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Registration Part 1
• Choice of Transformation

– Rigid: mutual distances of points within a model are 
conserved during transformation

• R is a rotation matrix and t is a translation vector

– Non-rigid
• Account for surface deformations in the transformation

• Affine transformation, e.g.

• Global polynomial function (low order polynomial to map one 
surface to another)

• Chris will talk about these on Thursday

ABAABB txRx +=

Audette 2000

Registration Part 2

• Surface Representation and Similarity Criterion
– Local surface information

• Points or specific features, e.g. curvature extrema, saddle 
points, ridges, etc.

– Global surface information
• Spin maps, e.g.

• Choice of surface representation should allow for 
a discriminating similarity criterion

Audette 2000
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Registration Part 3

• Matching and Optimization: How should 
we use the (local or global) shape/surface 
information to align or register models?
– Use discrete feature matching to compute a 

transformation, e.g. Generalized Hough 
Transform or Geometric Hashing

– Iterative minimization of a distance function, 
e.g. Iterative Closest Points (ICP)

Audette 2000

Overview

• Sub-problems within registration

• Placing models in a canonical pose or 
coordinate system

• Methods for pair-wise model registration
– ICP

– Generalized Hough Transform

– Geometric Hashing
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Normalization
• Use PCA to place models into a canonical 

coordinate frame
Covariance Matrix

Computation
Principal Axis

Alignment

M. Kazhdan

Steps for finding principal axes

• Translate point set {pi} to origin by center 
of mass:

• Result is new point set {qi}
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Steps for finding principal axes

• Calculate second-order covariance matrix:
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Steps for finding principal axes

• Decompose symmetric covariance matrix:

• Matrix U contains 3 principal axes 
(eigenvectors) as rows: A, B, C

• Matrix S contains eigenvalues
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Problems with PCA

• Doesn’t always work
– Only second order information

M. Kazhdan

Problems with PCA

• Directions of principal axes are ambiguous

S. Rusinkiewicz
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Reflective Symmetry Descriptors

• Align to axes of symmetry rather than 
principal components

M. Kazhdan

Reflective Symmetry Descriptors

• Aligns objects more like humans

• Performs better than PCA in aligning 
objects within a class

Reflective Symmetry
Descriptor

Principal Component
Analysis

M. Kazhdan
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Overview

• Sub-problems within registration

• Placing models in a canonical pose or 
coordinate system

• Methods for pair-wise model registration
– ICP

– Generalized Hough Transform

– Geometric Hashing

Iterative Closest Points (ICP)

• Besl & McKay, 1992

• Start with rough guess for alignment

• Iteratively refine transform

S. Rusinkiewicz
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ICP

• Assume closest points correspond to each 
other, compute the best transform…

S. Rusinkiewicz

ICP

• … and iterate to find alignment

• Converges to some local minimum

• Correct if starting position “close enough“

S. Rusinkiewicz
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Aligning Scans

• Start with manual initial alignment

[[PulliPulli]]S. Rusinkiewicz

Aligning Scans

• Improve alignment using ICP algorithm

[[PulliPulli]]S. Rusinkiewicz
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ICP Variants
• Variants on the following stages of ICP

have been proposed:

1. Selecting source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation

S. Rusinkiewicz

Comparison of ICP Variants
A lgo rithm  S ele ct io n o f  P o ints  Ma tc hing P o ints  Weighting  a nd Re je c ting P a irs  Erro r Me tric Minimizing  Erro r Glo ba l Re gis tratio n 

[Faugeras  86] Feature identificatio n Co rres po nding feature finding   Po int-to-point     

[Hans on 81],

[Arun 87],

[Ho rn 87],

[Horn 88]
[Walker 91],

[Eggert 97] 

[Chen 91] Uniform s ubs ampling, s mo oth regio ns  No rmal s hoo ting   Po int-to-plane Iterative minimizatio n New -> all previo us  

[Stein 92]             

[Besl 92] All Clo ses t point Co ns tant Po int-to-point 
Iterative minimizatio n, accelerated by 
extrapo lation   

[Szeliski 94]   Clo ses t point   Po int-to-point Iterative minimizatio n   

[Turk 94] Uniform s ubs ampling Clo ses t point 
Dis tance thresho ld; reject edge points; 
weight is normal do t camera vector Po int-to-point 

Iterative minimizatio n, accelerated by 
extrapo lation Align all to  cylindrical anchor s can 

[Go din 94] All in both meshes Clo ses t point with compatible color 
Dis tance thresho ld; weighted by 
co mpatibility and dis tance Po int-to-point Iterative minimizatio n   

[Blais 95] Uniform s ubs ampling Pro jectio n Dis tance thresho ld Po int-to-point 
Search in transfo rm space us ing 
simulated annealing Search fo r all trans forms s imultaneo us ly 

[Stoddart 96] As s umed given As s umed given   Po int-to-point Gradient des cent Find all trans forms s imultaneous ly 

[Masuda 96] Rando m s ampling Clo ses t point, accelerated with k-d  tree Dis tance thresho ld Po int-to-point 

Iterative minimizatio n; find transform that 
minimizes  median o f s quared dis tances  
after s everal random s ubs amplings  New to  integration o f all previous  

[Bergevin 96] Uniform s ubs ampling, s mo oth regio ns  No rmal s hoo ting 
Reject if dot pro duct o f no rmals  is 
negative Po int-to-plane Iterative minimizatio n Iterated all-to -all ICP  

[Simon 96] All 
Clo ses t point, accelerated with k-d  tree 
and po int cache Dis tance thresho ld Po int-to-point 

Iterative minimizatio n, accelerated by 
separate extrapo lation of rotatio n and 
translatio n   

[Dorai 96],[Dorai98] All 
No rmal s hoo ting, accelerated by 
pro jection plus s earch 

Rejection bas ed on pair-to -pair 
co mpatibility Po int-to-plane Iterative minimizatio n   

[Dorai 97] All No rmal s hoo ting 
Weighted bas ed on effect of s canner 
no ise o n normal Po int-to-plane Iterative minimizatio n   

[Benjemaa 97] All 
Clo ses t point, accelerated us ing z buffer 
search   Po int-to-point Iterative minimizatio n Iterated all-to -all ICP  

[Johnson 97a]             

[Johnson 97b] All 
Clo ses t point in shape+co lor space, 
accelerated with k-d  tree   Po int-to-point, s hape+colo r Iterative minimizatio n   

[Neugebauer 97] Uniform s ubs ampling Pro jectio n 
Reject po ints  with distance greater than 3 
sigma Po int-to-plane 

Iterative minimizatio n via Levenberg-
Marquardt Align all s cans s imultaneo us ly 

[Weik 97] Select po ints  with high intens ity gradient 
Pro jectio n fo llo wed by search fo r s ample 
with s imilar image intensity and gradient 

Reject pro jected po ints  that are 
occluded in the s ource mesh Po int-to-point Iterative minimizatio n   

[Pulli 97] All 
Like [Weik 97], but project co mplete 
images  and do image alignment   Po int-to-point Iterative minimizatio n 

Scan-to-s can ICP, then glo bal 
optimization of transfo rms  us ing pre-
co mputed po int pairs 

[Chen 98],[Chen 99]   Clo ses t point   
Number o f co rrespo nding po ints  within 
threshold 

Exhaus tive s earch, s tarting with 3 co ntrol 
po ints  on P , and cons idering all 
po s sible xforms  that map thes e to 
plausible corres ponding po ints o n Q   

[P ulli 99],[Levo y00] Rando m s ampling in bo th meshes Clo ses t point with compatible no rmals  

Dis tance thresho ld; reject edge points; 
reject s ome percentage o f pairs  with 
larges t dis tances  Po int-to-plane Iterative minimizatio n 

Like [P ulli 97], but proces s  scans  in order 
of how many others  they o verlap 

[Williams 00]       Po int-to-point Iterative minimizatio n 
Simultaneous  alignment with erro r 
mo deling 

Clo sed-fo rm so lutio n for bes t trans form 
given o ne set of co rres po ndences   As s umed given As s umed given Co ns tant or user-s pecified Po int-to-point 

http://graphics.stanford.edu/~smr/ICP/comparison/



14

Comparison of ICP Variants

Rusinkiewicz and Levoy, Efficient Variants of the ICP Algorithm

One ICP Caveat

Besl and McKay, A Method for Registering 3-D Shapes, 1992

“It can safely be predicted that the 
proposed registration algorithm will 
have difficulty correctly registering 

‘sea urchins’ and ‘planets’.”
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Pair-wise Registration or Matching:
Three Approaches (out of many)

• Generalized Hough transform

• “Curve” Geometric Hashing

• “Basis” Geometric Hashing

S. Rusinkiewicz, on Hecker and Bolle, On Geometric Hashing and the Generalized Hough Transform

All are “model-based” approaches which use 
a priori knowledge about the models to 
populate a lookup table which is used to 
speed up the matching/registration process.

Generalized Hough Transform 
(First for 2D Images)

• Every boundary point (of the object) in image 
votes

• Votes are cast for each object / transformation 
consistent with the presence of that point

• At the end, objects with most votes win

S. Rusinkiewicz
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• Simplified 2D case with translation only

GHT: Preprocessing

• For each point xm, find 
angle of tangent θ(xm) 
and vector r to 
reference point x0

• Form table indexed by 
θ(xm), storing r and 
object ID

• For rotation or 3D objects, table has many 
dimensions, each point x has many entries

S. Rusinkiewicz, image from Hecker and Bolle

GHT: Identification

• For each point:
– Compute angle of tangent

– Look up in table

– For each object found:
• Compute origin of object consistent with this point

• Vote for the object at that location

• At end:
– Find clusters of votes for the same object

– Position of cluster gives location of object
S. Rusinkiewicz
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Curve Geometric Hashing
• Compute “footprints” of each subcurve –

invariant under rotation, translation
– For example, in 2D, arc-length vs. turning-

angle
– Boundary curves must be (heuristically) 

segmented into subcurves first

• Preprocessing:
– Create a table indexed by footprint
– Each entry contains object ID and location of 

footprint along curve

S. Rusinkiewicz

CGH: Identification

• Find footprints in image

• For each model:
– Each footprint votes for a relative shift

– Peaks in the histogram are identified

– Second pass to confirm the presence of the 
object and find the location by least-squares

S. Rusinkiewicz
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Basis Geometric Hashing

• Objects are represented as sets of local “features” 
which allow for matching or recognition with 
partial occlusion (features can be points, line 
segments, etc.)

• Features are indexed with a function that is 
invariant to the transformation(s) being considered

• Preprocessing:
– For each tupleb of features, compute location (ξ,η) of all 

other features in basis defined by b
– Create a quantized hash table indexed by (ξ,η)
– Each entry contains b and object ID

S. Rusinkiewicz

BGH: Identification

• Find features in target image
• Choose an arbitrary basis b’
• For each feature:

– Compute (ξ’ ,η’ ) in basis b’
– Look up in table and vote for (Object, b)

• For each (Object, b) with many votes:
– Compute transformation that maps b to b’
– Confirm presence of object, using all available 

features

S. Rusinkiewicz
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Basis Geometric Hashing

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 1997

Basis Geometric 
Hashing

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 1997
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Basis Geometric Hashing

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 1997

3

25

14

Basis Geometric 
Hashing

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 1997

3

25

• Hash table entries 
contain (M1, (4,1)), a 
consistent match

• Hash table entries 
contain (Mk, (x,y)), 
k ≠ 1, (x,y) ≠ (4,1)      
(or nothing)
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BGH Complexity

Grimson and Huttenlocher, 1990

With:

M models in the database (hash table),

n features per model

S features in a scene

C features needed to form a basis tuple

Preprocessing step is O(MnC+1)

Matching/recognition is O(HSC+1) where H is the 
complexity of processing a hash-table bin

GHT and Geometric Hashing Comparison

• Similarities:
– Image features “vote” for objects

– Recognition time independent of size of database

• Differences:
– Generalized Hough transform and curve geometric 

hashing need a clustering step because all features are 
used in the lookup process

– Basis geometric hashing requires selecting
“good” features which are the only ones used in the 
lookup process (more “good” features can be used for 
further iterations)

S. Rusinkiewicz
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Algorithm Sensitivities

Grimson and Huttenlocher, 1990

• Geometric Hashing
– A relatively sparse hash table is critical for good 

performance

– Method is not robust for cluttered scenes (full hash 
table) or noisy data (uncertainty in hash values)

• Generalized Hough Transform
– Does not scale well to multi-object complex scenes

– Also suffers from matching uncertainty with noisy 
data
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