

Blum 67

- n "A Transformation For Extracting New Descriptors of Shape"
- n Locus of points equidistant from contour
- n Medial Axis
- n Symmetric Axis
- n Skeleton
- n Shock Graph

Applications

- n Shape matching
- n Animation
- n Dimension reduction
- n Solid modeling
- n Smoothing or sharpening of shape
- n Motion planning
- n Mesh generation

Outline of talk

- n Definitions, properties, and examples
- n Application examples
- n How to compute
- n Hierarchic Voronoi Skeletons
- n No conclusions

Different definitions

- n Locus of points equidistant from contour
- n Grass-fire, prairie-fire, wave-front collision
- n Locus of centers of maximal circles
- n Local maxima in distance transform
- n Result of topology preserving thinning
- n Ridges in envelope of cones (apexes on contour)

Pictorial definitions

- n Grass-fire, prairie-fire, wave-front collision
- n Locus of centers of maximal circles

van Tonder

Medial Axis Transform

- n Medial Axis augmented by radius function
- n Transformation is invertible

Classes of points in skeleton

- n Equidistant from 1 joint pint set (end points) 💥
- n Equidistant from 2 disjoint sets (normal points)
- n Equidistant from 3 or more disjoint sets (branch points)

Shock graph

- n Analyze skeleton evolution in time, flow of shocks
- n Split skeleton into monotonic segments
- n More refined than MA

Outline of talk

- n Definitions, properties, and examples
- n Application examples
- n How to compute
- n Hierarchic Voronoi Skeletons
- n No conclusions

Nehab 03

- n "Staff-line detection of music scores"
- n Compute medial axis of score
- n Extract and simplify polygonal graph
- n Compute histogram of segment directions
- n Project segments in the most popular direction
- n Detect peaks in resulting histogram

Nehab 03

Sebastian 01

- n "Recognition of Shapes by Editting Shock Graphs"
- n Compute Shock Graphs for each shape
- n Shapes whose shock graphs have same topology are clustered into equivalent classes
- n Editing operations are transitions between classes
- n Associate a cost to each edit operation
- n Find minimum edit cost path between shapes

Sebastian 01

Outline of talk

- n Definitions, properties, and examples
- n Application examples
- n How to compute
- n Hierarchic Voronoi Skeletons
- n No conclusions

Hilditch 69

- n "Linear Skeletons from Square Cupboards"
- n Work inwards from the boundary
- n Remove all points except for skeleton points
- n Preserve topology by a number of tests
 - Is in edge, is not singled out, is not tip, doesn't disconnect
- n Repeat until no point can be removed

Hilditch skeletonization

Distance Transform

- n Distance in shape with respect to it's complement
- n Copy of shape, each point is labeled with distance
- n Each point represents disk centered at the point
- n Disk size is given by point label
- n Disk shape is given by distance metric
- n Can be computed in two passes over image

Chamfer Distance

- n Chamfer distances are easier to use than Euclidean
 - \mathbf{w} (\mathbf{W}_{odd} , \mathbf{W}_{even})
 - © Chessboard (1, 1)
 - □ Cityblock (1, oo)
- n But unstable with rotation
- n (3,4)-DT is good compromise

4	3	2
5		1
6	7	8

Distance Transform Examples

di Baja 94

- n "Well-Shaped, Stable and Reversible Skeletons from the (3,4)-Distance Transform
- n Compute (3,4) DT
- n Identify local maxima and saddle points
- n Grow connecting paths in direction of maximal gradient
- n Hole fill, final thin

Finding maximal disks

- n Disk is maximal if not contained by any other
- n Center of MD is a local maximum of DT
- n Label comparison between neighbors is enough to determine "containment"
- n Disk is maximal if it is not the smaller neighbor of any of its neighbors

Leymarie 92

- n "Simulating the Grassfire Transform using an Active Contour Model"
- n Compute the Distance Transform
- n Define a potential function equal to -DT
- n Place a snake over the iso-contour -1
- n Iterate based on gradient and internal constraints
- n Skeleton points correspond to Snake meeting points

Leymarie 92

Bookstein 79

n "The Line Skeleton"

Outline of talk

- n Definitions, properties, and examples
- n Application examples
- n How to compute
- n Hierarchic Voronoi Skeletons
- n No conclusions

Voronoi Skeleton

Regularizing skeletons

- n Skeletons are highly sensitive to noise in boundary
- n Regularization can be performed in shape (smoothing) or in MAT (prunning)
- n Pruning affects the inverse MAT and smoothing affects the MAT

Shape smoothing

- n Discrete case, apply hole-filling before
 - Weird loops in MA are hard to get rid of later
- n Curvature flow
- n Blur image
- n Usually, pruning skeleton is better idea
 - Shaked 96, "Pruning Medial Axis"
 - Smoothing might change skeleton topology

Skeleton prunning

- n Small perturbations in the axis or the associated function may result in an axis-like description that does not correspond to a planar shape
- n Simple transformations known to be allowed are
 - Uniform reduction of radius function values
 - Prunning of branches, preserving connectivity

Ogniewicz 95

- n "Hierarchic Voronoi Skeletons"
- n Compute VD of shape's boundary points
- n Associate topology preserving importance metric with each edge of VD
- n Hierarchic clustering of skeleton edges creates a skeleton pyramid

Anchor distance

- n "Geodesic" distance between generators of a given edge
- n Assign to each edge their corresponding anchor distance
- n For any edge, there is a monotonic path until max
- n Thresholding mantains connectivity

Ogniewicz 95

Discrete Voronoi Skeleton

Hierarchic Voronoi Skeleton

- n Clean with anchor distance threshold
- n Start with first level edges
 - Parameter controls how much to include
- n Follow skeleton in order of least steep descent
 - Parameter controls how much change starts a new level

Outline of talk

- n Definitions, properties, and examples
- n Application examples
- n How to compute
- n Hierarchic Voronoi Skeletons
- n No conclusions

No Conclusions

- n Blum 67
- n Hilditch 69
- n Bookstein 79
- n Leymarie 92
- n di Baja 94
- n Ogniewicz 95
- n Sebastian 01