1

Local Shape Descriptors

Joshua Podolak

Mhat extra benefit do we get from having a 'local' descriptor?

- What extra benefit do we get from having a 'local' descriptor?
- Surface correspondence.
- _n Feature detection.
- _n Segmentation.
- ⁿ 'Multi-object' scenes.

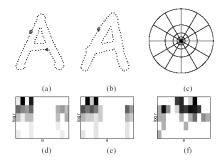
ⁿ General approach:

Use same methods used for global descriptors, but centered around each feature (or segment) of the the object separately.

- **n** 2D Shape Contexts.
- _n 3D Shape Contexts.
- _n Spin Images.
- Point Fingerprints.
- Local Feature Histograms.
- Local Spherical Harmonics.

- n Choose some random point as center of mass.
- n Choose to work with only 'near' points?
- How do we decide scale/rotation of the patch?
- How do we find a match among the (much larger) set of 'shapes'?

Shape-Contexts:



_n Log-Polar histogram.

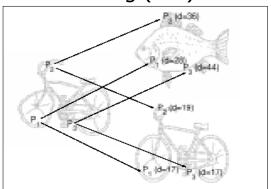
2D Solution.

- n Invariant to rotation.
- ⁿ Scaled by mean distance.
- In order to match shapes, points are matched one-to-one (dummy nodes).
- Can we use this for object retrieval? Why Not?

•

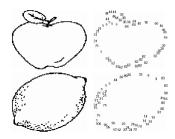
Speed-Up. (Mori et al.)

Check only a small number of points for robust matching (r=5).

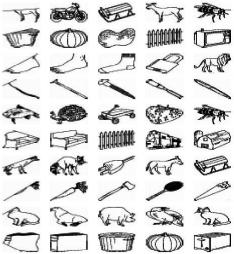


Speed-Up. (Mori et al.)

vector Quantization (Shapemes).



n ANN -- O(D*polylog(N))



- _n 2D Shape Contexts.
- **n** 3D Shape Contexts.
- _n Spin Images.
- Point Fingerprints.
- Local Feature Histograms.
- Local Spherical Harmonics.

3D Solution (Shape-Contexts).

- _n Use "center of mass"
- _n Use PCA-HAP for direction.

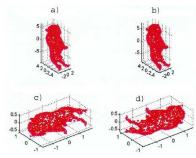


Figure : Normalization stages - a) Original object, b) Object after re-centering, c) Object after rotation and scaling, d) Object after flipping

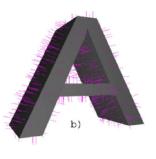
3D Solution (Shape-Contexts).

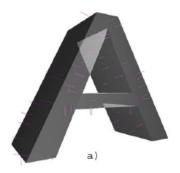
Problem: What if two points don't match?

- n "Dummy nodes"
- Soft assignment

Speed-up possibilities:

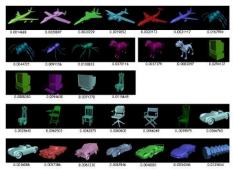
n Representative shape contexts.





Speed-up possibilities:

- _n Shapemes.
- n ANN -- (Indyk & Motwani).
- n Reduction of Dimensionality (PCA).

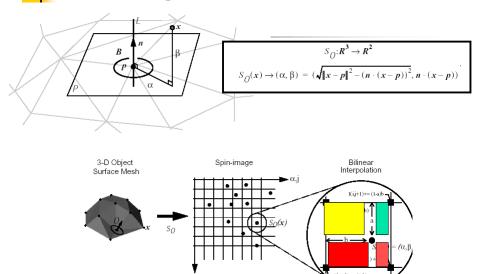


- _n 2D Shape Contexts.
- _n 3D Shape Contexts.
- _n Spin Images.
- Point Fingerprints.
- Local Feature Histograms.
- Local Spherical Harmonics.

Spin Images

Based on Andrew Johnson's 1997 Thesis

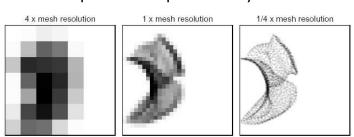
Calculating Bin Distribution



Input Parameters

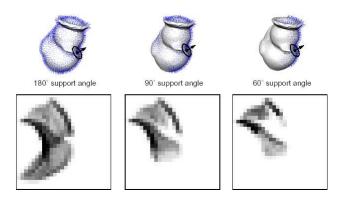
_n Bin Size:

 $_{\rm n}$ More bins give better resolution, but increase comparison computations by a factor of N^2



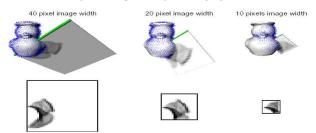
Input Parameters

Support Angle:



Input Parameters

- Support Distance:
 - Smaller distance finds only local features
 - Larger distance give global features
 - $_{\scriptscriptstyle \rm I\!\!I}$ Limited by computation time required for computing large spin images
 - _n Global spin images require O(n²) time to create



Computing the Similarities

- $_{\rm n}$ N = number of overlapping bins in Spin Images P and Q
- n R = Linear Correlation Coefficient

$$R(P,Q) = \frac{N\sum p_iq_i - \sum p_i\sum q_i}{\sqrt{(N\sum p_i^2 - (\sum p_i)^2)(N\sum q_i^2 - (\sum q_i)^2)}}$$

More precise similarity based on both R (similarity) and N (amount of overlap):

$$C(P,Q) = \left(\operatorname{atanh}(R(P,Q))\right)^2 - \lambda \left(\frac{1}{N-3}\right)$$

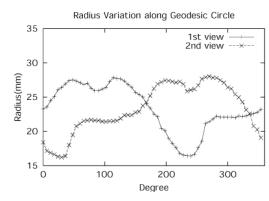
Speed-Up.

- _n Eigen-spin-images.
- Assume that the nearest neighbor is within ϵ (set to the average of the closest s-tuples) and run exhaustive search.

- _n 2D Shape Contexts.
- _n 3D Shape Contexts.
- _n Spin Images.
- **n Point Fingerprints.**
- Local Feature Histograms.
- Local Spherical Harmonics.

Point Fingerprints.

Based on C. Chua & R. Jarvis "Point Signatures IJCV '97".



- _n 2D Shape Contexts.
- _n 3D Shape Contexts.
- _n Spin Images.
- Point Fingerprints.
- **n** Local Feature Histograms.
- Local Spherical Harmonics.

AI (Alignment Independent) Solutions.

- Local Feature Histograms.
 - Pixel place, Surface normals, Curvature.
- Histogram Matching. This works with partially occluded objects.

- _n 2D Shape Contexts.
- _n 3D Shape Contexts.
- _n Spin Images.
- Point Fingerprints.
- Local Feature Histograms.
- **n** Local Spherical Harmonics.

AI(Alignment Independent) Solutions.

n "Local" Spherical harmonics.

Run 'SH' around "feature" point. Gives higher priority to area around feature.

_n Speed Up?

Applications: (Discussion)

- _n Segmentation.
- _n Registration.
- ⁿ Creating novel models.
- _n What else?

The End....