Machine Learning Algorithms for Classification

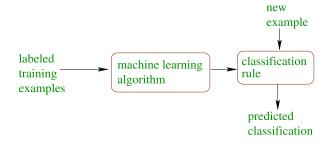
Rob Schapire

Why Use Machine Learning?

- advantages:
 - often much more <u>accurate</u> than human-crafted rules (since data driven)
 - humans often incapable of expressing what they know (e.g., rules of English, or how to recognize letters), but can easily classify examples
 - don't need a human expert or programmer
 - <u>flexible</u> can apply to any learning task
 - <u>cheap</u> can use in applications requiring <u>many</u> classifiers (e.g., one per customer, one per product, one per web page, ...)
- disadvantages
 - need a lot of labeled data
 - error prone usually impossible to get perfect accuracy

Machine Learning

- studies how to <u>automatically learn</u> to make accurate <u>predictions</u> based on past observations
- classification problems:
 - classify examples into given set of categories



Machine Learning Algorithms

- this talk:
 - decision trees
 - boosting
 - support-vector machines
- others not covered:
 - neural networks
 - nearest neighbor algorithms
 - Naive Bayes
 - bagging

.

Examples of Classification Problems

- text categorization
 - e.g.: spam filtering
 - e.g.: categorize news articles by topic
- fraud detection
- optical character recognition
- natural-language processing
 - e.g.: part-of-speech tagging
 - e.g.: spoken language understanding
- market segmentation
 - e.g.: predict if customer will respond to promotion
 - e.g.: predict if customer will switch to competitor
- medical diagnosis

.

Decision Trees

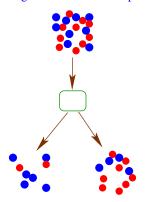
Example: Good versus Evil

• problem: identify people as good or bad from their appearance

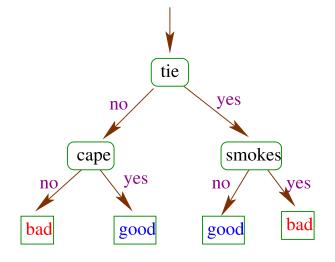
	sex	mask	cape	tie	ears	smokes	class
		training data					
batman	male	yes	yes	no	yes	no	Good
robin	male	yes	yes	no	no	no	Good
alfred	male	no	no	yes	no	no	Good
penguin	male	no	no	yes	no	yes	Bad
catwoman	female	yes	no	no	yes	no	Bad
joker	male	no	no	no	no	no	Bad
			test c	lata			
batgirl	female	yes	yes	no	yes	no	??
riddler	male	yes	no	no	no	no	??

Choosing the Splitting Rule

• choose rule that leads to greatest increase in "purity":



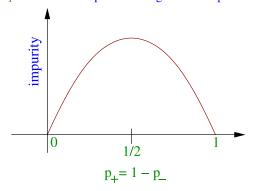
Example (cont.)



Choosing the Splitting Rule (cont.)

- (im)purity measures:
 - entropy: $-p_{+} \ln p_{+} p_{-} \ln p_{-}$
 - Gini index: p_+p_-

where p_{+} / p_{-} = fraction of positive / negative examples



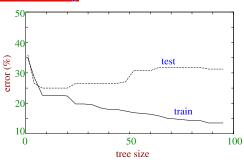
How to Build Decision Trees

- choose rule to split on
- divide data using splitting rule into disjoint subsets
- repeat recursively for each subset
- stop when leaves are (almost) "pure"

Kinds of Error Rates

- <u>training error</u> = fraction of training examples misclassified
- test error = fraction of test examples misclassified
- <u>generalization error</u> = probability of misclassifying new random example

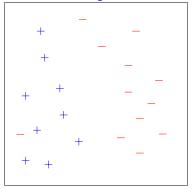
Tree Size versus Accuracy



- trees must be big enough to fit training data (so that "true" patterns are fully captured)
- BUT: trees that are too big may <u>overfit</u> (capture noise or spurious patterns in the data)
- significant problem: can't tell best tree size from training error

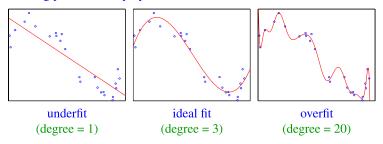
Example

Training data:

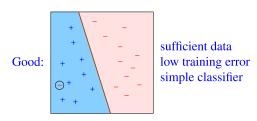


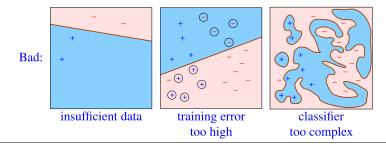
Overfitting Example

• fitting points with a polynomial



Good and Bad Classifiers





Building an Accurate Classifier

- for good test peformance, need:
 - enough training examples
 - good performance on training set
 - classifier that is not too "complex" ("Occam's razor")
 - measure "complexity" by:
 - · number bits needed to write down
 - · number of parameters
 - · VC-dimension

Theory

• can prove:

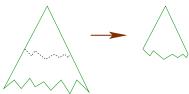
$$(\text{generalization error}) \leq (\text{training error}) + \tilde{O}\left(\sqrt{\frac{d}{m}}\right)$$

with high probability

- d = VC-dimension
- m = number training examples

Controlling Tree Size

• typical approach: build very large tree that fully fits training data, then prune back



- pruning strategies:
 - grow on just part of training data, then find pruning with minimum error on held out part
 - find pruning that minimizes

 $(training error) + constant \cdot (tree size)$

Example: Spam Filtering

- problem: filter out spam (junk email)
- gather large collection of examples of spam and non-spam:

 From: yoav@att.com Rob, can you review a paper... non-spam
 From: xa412@hotmail.com Earn money without working!!!! ... spam
- main observation:
 - easy to find "rules of thumb" that are "often" correct
 - If 'buy now' occurs in message, then predict 'spam'
 - hard to find single rule that is very highly accurate

Decision Trees

- best known:
 - C4.5 (Quinlan)
 - CART (Breiman, Friedman, Olshen & Stone)
- very fast to train and evaluate
- relatively easy to interpret
- but: accuracy often not state-of-the-art

The Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of emails
- obtain rule of thumb
- apply to 2nd subset of emails
- obtain 2nd rule of thumb
- ullet repeat T times

Boosting

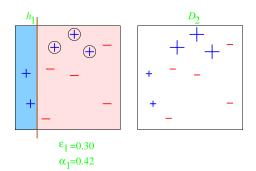
Details

- how to choose examples on each round?
 - concentrate on "hardest" examples (those most often misclassified by previous rules of thumb)
- how to combine rules of thumb into single prediction rule?
 - take (weighted) majority vote of rules of thumb

Boosting

- <u>boosting</u> = general method of converting rough rules of thumb into highly accurate prediction rule
- technically:
 - assume given "weak" learning algorithm that can consistently find classifiers ("rules of thumb") at least slightly better than random, say, accuracy $\geq 55\%$
 - given sufficient data, a boosting algorithm can <u>provably</u> construct single classifier with very high accuracy, say, 99%

Round 1



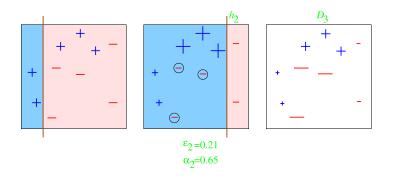
AdaBoost

- given training examples (x_i, y_i) where $y_i \in \{-1, +1\}$
- initialize D_1 = uniform distribution on training examples
- for t = 1, ..., T:
 - ullet train weak classifier ("rule of thumb") h_t on D_t
 - choose $\alpha_t > 0$
 - compute new distribution D_{t+1} :
 - \bullet for each example i:

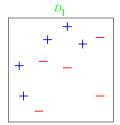
multiply
$$D_t(x_i)$$
 by
$$\begin{cases} e^{-\alpha_t} \ (<1) \ \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} \ (>1) \ \text{if } y_i \neq h_t(x_i) \end{cases}$$

- renormalize
- output final classifier $H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_t h_t(x)\right)$

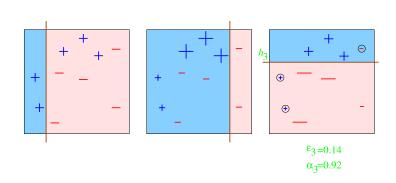
Round 2



Toy Example

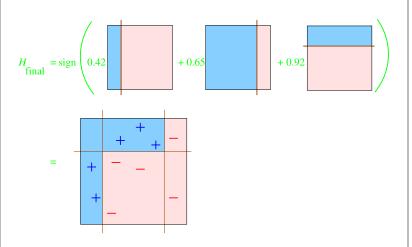


Round 3

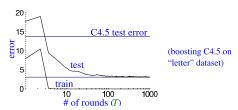


weak classifiers = vertical or horizontal half-planes

Final Classifier



Actual Typical Run



- test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

	# rounds				
	5	100	1000		
train error	0.0	0.0	0.0		
test error	8.4	3.3	3.1		

Theory: Training Error

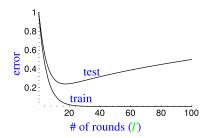
- <u>weak learning assumption</u>: each weak classifier at least slightly better than random
 - i.e., (error of h_t on D_t) $\leq 1/2 \gamma$ for some $\gamma > 0$
- given this assumption, can prove:

training error
$$(H_{\mathrm{final}}) \leq e^{-2\gamma^2 T}$$

The Margins Explanation

- kev idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- \bullet recall: H_{final} is weighted majority vote of weak classifiers
- measure confidence by <u>margin</u> = strength of the vote
- empirical evidence and mathematical proof that:
 - large margins ⇒ better generalization error (regardless of number of rounds)
 - boosting tends to increase margins of training examples (given weak learning assumption)

How Will Test Error Behave? (A First Guess)



- expect:
 - training error to continue to drop (or reach zero)
 - test error to <u>increase</u> when H_{final} becomes "too complex" (overfitting)

Boosting

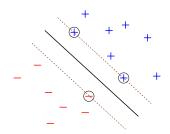
- fast (but not quite as fast as other methods)
- simple and easy to program
- flexible: can combine with any learning algorithm, e.g.
 - C4.5
 - very simple rules of thumb
- provable guarantees
- state-of-the-art accuracy
- tends not to overfit (but occasionally does)
- many applications

Support-Vector Machines

Finding the Maximum Margin Hyperplane

- examples \mathbf{x}_i, y_i where $y_i \in \{-1, +1\}$
- find hyperplane $\mathbf{w} \cdot \mathbf{x} = 0$ with $\|\mathbf{w}\| = 1$
- margin = $y(\mathbf{w} \cdot \mathbf{x})$
- maximize: γ subject to: $y_i(\mathbf{w} \cdot \mathbf{x}_i) \ge \gamma$ and $\|\mathbf{w}\| = 1$
- set $\mathbf{w} \leftarrow \mathbf{w}/\gamma \Rightarrow \gamma = 1/\|\mathbf{w}\|$
- minimize $\frac{1}{2} \| \mathbf{w} \|^2$ subject to: $y_i(\mathbf{w} \cdot \mathbf{x}_i) \ge 1$

Geometry of SVM's



- given linearly separable data
- margin = distance to separating hyperplane
- choose hyperplane that maximizes minimum margin
- intuitively:
 - want to separate +'s from -'s as much as possible
 - margin = measure of confidence

Convex Dual

- form Lagrangian, set $\partial/\partial \mathbf{w} = 0$
- get quadratic program:
- maximize $\sum\limits_{i} \alpha_i \frac{1}{2} \sum\limits_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$ subject to: $\alpha_i \geq 0$
- $\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$
- α_i = Lagrange multiplier $> 0 \Leftrightarrow$ support vector
- key points:
 - optimal w is linear combination of support vectors
 - dependence on x_i 's only through inner products
 - maximization problem is convex with no local maxima

Theoretical Justification

- let $\gamma =$ minimum margin R = radius of enclosing sphere
- then

$$\mathbf{VC\text{-}dim} \leq \left(\frac{R}{\gamma}\right)^2$$

- so larger margins ⇒ lower "complexity"
- independent of number of dimensions
- in contrast, unconstrained hyperplanes in \mathbb{R}^n have

$$VC$$
-dim = (# parameters) = $n + 1$

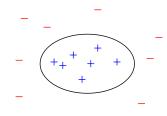
What If Not Linearly Separable?

• <u>answer #1</u>: penalize each point by distance from margin 1, i.e., minimize:

$$\frac{1}{2} \|\mathbf{w}\|^2 + \mathbf{constant} \cdot \sum_{i} \max\{0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i)\}$$

• <u>answer #2</u>: map into higher dimensional space in which data becomes linearly separable

Example



- not linearly separable
- map $\mathbf{x} = (x_1, x_2) \mapsto \Phi(\mathbf{x}) = (1, x_1, x_2, x_1x_2, x_1^2, x_2^2)$
- hyperplane in mapped space has form

$$a + bx_1 + cx_2 + dx_1x_2 + ex_1^2 + fx_2^2 = 0$$

- = conic in original space
- linearly separable in mapped space

Kernels

• kernel = function K for computing

$$K(\mathbf{x}, \mathbf{z}) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z})$$

- permits efficient computation of SVM's in very high dimensions
- *K* can be any symmetric, positive semi-definite function (Mercer's theorem)
- some kernels:
 - polynomials
 - Gaussian $\exp\left(-\|\mathbf{x}-\mathbf{z}\|^2/2\sigma\right)$
 - defined over structures (trees, strings, sequences, etc.)
- evaluation:

$$\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum \alpha_i y_i \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x})$$

• time depends on # support vectors

Higher Dimensions Don't (Necessarily) Hurt

- may project to very high dimensional space
- <u>statistically</u>, may not hurt since VC-dimension independent of number of dimensions $((R/\gamma)^2)$
- computationally, only need to be able to compute inner products $\Phi(\mathbf{x})\cdot\Phi(\mathbf{z})$
 - sometimes can do very efficiently using kernels

SVM's versus boosting

- both are large-margin classifiers (although with slightly different definitions of margin)
- both work in very high dimensional spaces (in boosting, dimensions correspond to weak classifiers)
- but different tricks are used:
 - SVM's use kernel trick
 - boosting relies on weak learner to select one dimension (i.e., weak classifier) to add to combined classifier

Example (cont.)

• modify Φ slightly:

$$\Phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2)$$

• then

$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = 1 + 2x_1z_1 + 2x_2z_2 + 2x_1x_2z_1z_2 + x_1^2z_1^2 + x_2^2 + z_2^2$$

= $(1 + x_1z_1 + x_2z_2)^2$
= $(1 + \mathbf{x} \cdot \mathbf{z})^2$

- in general, for polynomial of degree d, use $(1 + \mathbf{x} \cdot \mathbf{z})^d$
- \bullet very efficient, even though finding hyperplane in $O(n^d)$ dimensions

SVM's

- fast algorithms now available, but not so simple to program (but good packages available)
- state-of-the-art accuracy
- power and flexibility from kernels
- theoretical justification
- many applications

Luc Devroye, Lazio Gyorn and Gabor Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.
Richard O. Duda, Peter E. Hart and David G. Stork. Pattern Classification (2nd ed.). Wiley, 2000.
Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.
Michael J, Kearns and Umesh V, Vazirani, An Introduction to Computational Learning Theory, MIT Press, 1994, Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.
Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.
Decision trees:
Leo Breiman, Jerome H, Friedman, Richard A, Olshen and Charles J. Stone, Classification and Regression Trees. Wadsworth & Brooks, 1984.
J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
Boosting: Robert E. Schapire. The boosting approach to machine learning: An overview. In MSRI Workshop on Nonlinear Estimation
and Classification, 2002. Available from: www.research.att.com/~schapire/boost.html.
Many more papers, tutorials, etc. available at www.boosting.org. Support-vector machines:
Nello Cristianni and John Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-based learning
methods. Cambridge University Press, 2000. See www.support-vector.net. Many more papers, tutorials, etc. available at www.kernel-machines.org.

Further reading on machine learning in general: