Machine Learning Algorithms for Classification

Rob Schapire

Why Use Machine Learning?

e advantages:
often much more accurate than human-crafted rules
(since data driven)
humans often incapable of expressing what they know
(e.g., rules of English, or how to recognize letters),
but can easily classify examples
don’t need a human expert or programmer
flexible — can apply to any learning task
cheap — can use in applications requiring many classifiers

(e.g., one per customer, one per product, one per web page, ...

o disadvantages
need a lot of labeled data
error prone — usually impossible to get perfect accuracy

)

Machine Learning

e studies how to automatically learn to make accurate predictions based
on past observations

e classification problems:
classify examples into given set of categories

new
example

lab.el.ed machine learning classification
training . rule
algorithm
examples
predicted
classification

Machine Learning Algorithms

o this talk:
decision trees
boosting
support-vector machines

e others not covered:

neural networks
nearest neighbor algorithms
Naive Bayes

bagging

Examples of Classification Problems

e text categorization

e.g.: spam filtering

e.g.: categorize news articles by topic
o fraud detection
e optical character recognition
e natural-language processing

e.g.: part-of-speech tagging

e.g.: spoken language understanding
e market segmentation

e.g.: predict if customer will respond to promotion
e.g.: predict if customer will switch to competitor

e medical diagnosis

Decision Trees

Example: Good versus Evil

e problem: identify people as good or bad from their appearance

sex mask cape tie ears smokes| class
training data
batman male yes yes no yes no |Good
robin male yes yes no no no |Good
alfred male no no yes no no |Good
penguin | male no no yes no yes | Bad
catwoman |female yes no no yes no | Bad
joker male no no no no no Bad
test data

batgirl female yes yes no yes no 7
riddler male yes no no no no 7

Choosing the Splitting Rule

e choose rule that leads to greatest increase in “purity’:

...~

T
,/

Example (cont.)

Choosing the Splitting Rule (cont.)

e (im)purity measures:
entropy: —p4+Inpy —p_Inp_
Gini index: pyp—
where p, / p_ = fraction of positive / negative examples

A
/ :
=
=
o
=
cape smokes .
no
| -
0 ' 1
1/2
bad good good bad
p,=1-p_
How to Build Decision Trees Kinds of Error Rates

e choose rule to split on

e divide data using splitting rule into disjoint subsets

e repeat recursively for each subset

e stop when leaves are (almost) “pure”

e training error = fraction of training examples misclassified
e test error = fraction of test examples misclassified

e generalization error = probability of misclassifying new random
example

Tree Size versus Accuracy

0 Example
5
Training data:
+
+ J—
0 50 100 LT —
tree size —
e trees must be big enough to fit training data +
(so that “true” patterns are fully captured) + n —
e BUT: trees that are too big may overfit n
(capture noise or spurious patterns in the data) +
e significant problem: can’t tell best tree size from training error
Good and Bad Classifiers
Overfitting Example - =
¥ . | sufficient data
o fitting points with a polynomial Good: | + © " low training error
o+ i } - | simple classifier
+ 4 B
\ . 96 S
: . + + o
underfit ideal fit overfit Bad: | « e _——
(degree = 1) (degree = 3) (degree = 20) o ® =
i o o
SJC)
insufficient data training error classifier
too high too complex

Building an Accurate Classifier

e for good test peformance, need:

enough training examples
good performance on training set
classifier that is not too “complex” (“Occam’s razor”)
measure “complexity” by:
- number bits needed to write down
- number of parameters
- VC-dimension

Theory

® can prove:

- d
(generalization error) < (training error) + O [{]

with high probability
d = VC-dimension
m = number training examples

Controlling Tree Size

e typical approach: build very large tree that fully fits training data,
then prune back

e pruning strategies:
grow on just part of training data, then find pruning with minimum
error on held out part
find pruning that minimizes

(training error) + constant - (tree size)

Example: Spam Filtering

e problem: filter out spam (junk email)

e gather large collection of examples of spam and non-spam:
From: yoav@att.com Rob, can you review a paper... non-spam
From: xa412@hotmail.com Earn money without working!!!! ... spam

e main observation:
easy to find “rules of thumb” that are “often” correct
If ‘buy now’ occurs in message, then predict ‘spam’
hard to find single rule that is very highly accurate

Decision Trees

e best known:

C4.5 (Quinlan)
CART (Breiman, Friedman, Olshen & Stone)

e very fast to train and evaluate
o relatively easy to interpret

e but: accuracy often not state-of-the-art

The Boosting Approach

e devise computer program for deriving rough rules of thumb
e apply procedure to subset of emails

e obtain rule of thumb

e apply to 2nd subset of emails

e obtain 2nd rule of thumb

e repeat /' times

Boosting

Details

e how to choose examples on each round?
concentrate on “hardest” examples
(those most often misclassified by previous rules of thumb)
e how to combine rules of thumb into single prediction rule?
take (weighted) majority vote of rules of thumb

Boosting

e boosting = general method of converting rough rules of thumb
into highly accurate prediction rule

e technically:
assume given “weak” learning algorithm that can consistently find
classifiers (“rules of thumb”) at least slightly better than random,
say, accuracy > 55%
given sufficient data, a boosting algorithm can provably construct
single classifier with very high accuracy, say, 99%

Round 1

€1=0.30
o 1:4).42

AdaBoost

e given training examples (z;, ;) where y; € {—1,+1}

Round 2

/13 I)3

e initialize D = uniform distribution on training examples i ar . 0 + B n +
efort=1,...,7T + +
train weak classifier (“rule of thumb”) /; on D; i - + © S + T —
choose a; > 0
compute new distribution D ;: ar o iz = +
for each example i: o S —
. N e~ (< 1) ify; = hel(xy)]
multiply Dy (z;) by ot (> 1) ify; # hilzy) i;:n_l’
renormalize 05=0.65
e output final classifier Hy, , (x) = sign (; atht(x))
Toy Example Round 3
D
+
to+ + - +
+ - _ ar e —|— _|_ I ar 4L
i - + = - ® - @ —
+ —
_ + = + - ®

weak classifiers = vertical or horizontal half-planes

€3=0.14
0,=0.92
3

Final Classifier

H_ =sign | 0.42 +0.65 +0.92
final

Actual ical Run

15'1 C4.5 test error
10:

0: _train
10 100 1000
of rounds (7

e test error does not increase, even after 1000 rounds
(total size > 2,000,000 nodes)

e test error continues to drop even after training error is zero!

error

(boosting C4.5 on
“letter” dataset)

rounds

5 11001]1000
train error |0.0| 0.0 0.0
test error | 8.4 3.3| 3.1

Theory: Training Error

e weak learning assumption: each weak classifier at least slightly better
than random

i.e., (error of hy on Dy) < 1/2 — ~ for some v > (
e given this assumption, can prove:

, 92
training error(Hy,,)) < ¢ >

The Margins Explanation

e key idea:
training error only measures whether classifications are right or
wrong
should also consider confidence of classifications

e recall: Hy, ., is weighted majority vote of weak classifiers
e measure confidence by margin = strength of the vote

e empirical evidence and mathematical proof that:

large margins = better generalization error

(regardless of number of rounds)

boosting tends to increase margins of training examples
(given weak learning assumption)

How Will Test Error Behave? (A First Guess)

error

of rounds (7)

° QILct:
training error to continue to drop (or reach zero)
test error to increase when //j;,,,] becomes “too complex”
(overfitting)

Boosting

o fast (but not quite as fast as other methods)
e simple and easy to program

o flexible: can combine with any learning algorithm, e.g.

C4.:5
very simple rules of thumb

e provable guarantees
e state-of-the-art accuracy
e tends not to overfit (but occasionally does)

e many applications

Support-Vector Machines

Finding the Maximum Margin Hyperplane

e examples x;, y; where y; € {—1,+1}
e find hyperplane w - x = 0 with || w =1
e margin = y(w - x)

e maximize: vy
subject to: y;(w - x;) > v and |w|=1

esetw —w/y=7y=1/[w||
e minimize % [w|?
subject to: y;(w - x;) > 1

Geometry of SVM’s

e given linearly separable data

e margin = distance to separating hyperplane
e choose hyperplane that maximizes minimum margin
e intuitively:
want to separate +’s from —’s as much as possible
margin = measure of confidence

Convex Dual

e form Lagrangian, set /0w = (
e get quadratic program:
e maximize > o; — % 0y X
)] <1,
subject to: «; > 0
® W =X QY;X;
1
e o; = Lagrange multiplier
> () < support vector

* key points:
optimal w is linear combination of support vectors
dependence on x;’s only through inner products
maximization problem is convex with no local maxima

Theoretical Justification

e let 7 = minimum margin
IR = radius of enclosing sphere

e then ,

VC.dim < []
/

~

so larger margins = lower “complexity”
independent of number of dimensions

e in contrast, unconstrained hyperplanes in R” have

VC-dim = (# parameters) = n + 1

What If Not Linearly Separable?

e answer #1: penalize each point by distance from margin 1, i.e.,

minimize:

Llw HZ +constant - > max{0, | — y;(w - x;)}
- (3

e answer #2: map into higher dimensional space in which data

becomes linearly separable

Example

e not linearly separable
e map x = (21, 29) — O(x) = (1,21, 20, T129, 27, 3)
e hyperplane in mapped space has form
a+ by + cro + drywe + 6’,.’1,‘% + fl% =0
= conic in original space

e linearly separable in mapped space

Kernels

e kernel = function K for computing

K(x,z) = ®(x) - d(z)

e permits efficient computation of SVM’s in very high dimensions

e /{’ can be any symmetric, positive semi-definite function
(Mercer’s theorem)

e some kernels:

polynomials
Gaussian exp (— || x —z | /20)
defined over structures (trees, strings, sequences, etc.)

e evaluation:

w - O(x) = ¥ a;y®(x;) - P(x) = £ oy K (x5, %)

time depends on # support vectors

Higher Dimensions Don’t (Necessarily) Hurt

e may project to very high dimensional space

o statistically, may not hurt sincc VC-dimension independent of
number of dimensions ((1/~)?%)

e computationally, only need to be able to compute inner products
P(x) - (z)

sometimes can do very efficiently using kernels

SVM'’s versus boosting

e both are large-margin classifiers
(although with slightly different definitions of margin)

e both work in very high dimensional spaces
(in boosting, dimensions correspond to weak classifiers)

e but different tricks are used:

SVM'’s use kernel trick
boosting relies on weak learner to select one dimension (i.e., weak
classifier) to add to combined classifier

Example (cont.)

o modify O slightly:
O(x) = (1,21, V229, V22179, 27, 23)

e then

O(x) - P(z) = 1+ 22121 + 22929 + 221292120 + 1%212 + 15 + zf

(142121 + w929)°
=(1+x- z)‘)

e in general, for polynomial of degree d, use (1 + x - z)d

e very efficient, even though finding hyperplane in O(n,d) dimensions

SVM’s

o fast algorithms now available, but not so simple to program
(but good packages available)

o state-of-the-art accuracy
e power and flexibility from kernels
o theoretical justification

e many applications

Further reading on machine learning in general:

Luc Devroye, Lazl6 Gyorfi and Gdbor Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.

Richard O. Duda, Peter E. Hart and David G. Stork. Pattern Classification (2nd ed.). Wiley, 2000.

Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements of Statistical Learning : Data Mining, Inference, and
Prediction. Springer, 2001.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory. MIT Press, 1994.
Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.
Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.

Decision trees:

Leo Breiman, Jerome H. Friedman, Richard A. Olshen and Charles J. Stone. Classification and Regression Trees.
Wadsworth & Brooks, 1984.

J.Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
Boosting:

Robert E. Schapire. The boosting approach to machine learning: An overview. In MSRI Workshop on Nonlinear Estimation
and Classification, 2002. Available from: www.research.att.com/~schapire/boost.html.
Many more papers, tutorials, etc. available at www.boosting.org.
Support-vector machines:
Nello Cristianni and John Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-based learning
methods. Cambridge University Press, 2000. See www.support-vector.net.

Many more papers, tutorials, etc. available at www.kernel-machines.org.

