PLANETLAB

Sophia: An Information Plane for Networked
Systems

Mike Wawrzoniak
Princeton University

Larry Peterson
Princeton University

Timothy Roscoe
Intel Research Berkeley

PDN-03-014
July 2003

Status: Ongoing Dratft.

Sophia: An Information Plane for Networked Systems

Mike Wawr zoniak and Larry Peterson

Princeton University

Abstract

This paper motivates and describes an example network
Information Plane, called Sophia, currently deployed on
PlanetLab. Sophia is a distributed system that collects,
stores, propagates, aggregates, and reacts to observations
about the network’s current conditions. Sophia’s approach
is novel: it can be viewed as a multi-user distributed ex-
pression evaluator in which sensors and actuators form the
ground terms, and statements take on the complete expres-
siveness of a logic language like Prolog. This paper argues
that this approach has several advantages in managing and
controlling a complex, federated, and evolving network:
(1) a declarative logic language provides a natural way to
express the kinds of statements that are common to this
application domain, through temporal and positional logic
rules, facts and expressions; and (2) distributed evaluation
of such logic expressions provides many opportunities for
performance optimization yielding an efficient system.

1 Introduction

Consider a global overlay infrastructure like PlanetLab [5],
designed to run on thousands of machines distributed
worldwide, and host hundreds of network services that use
and interact with each other and the Internet in complex
and unpredictable ways. Managing this infrastructure—
collecting, storing, propagating, aggregating, discovering,
and reacting to observations about the system’s current
conditions—is one of the most difficult challenges such a
networked system faces.

We propose a shared Information Plane to address this
challenge. The Information Plane is a distributed system
running throughout the network. It incorporates three func-
tions: collecting information about network elements, eval-
uating statements (questions) about this state, and react-
ing according to conclusions drawn about the information.
Building such an Information Plane is complicated by two
factors. Firstly, information in the system is widely dis-
tributed in space (across all elements in the network), and
constantly varies over time (we care about both state in

Timothy Roscoe
Intel Research Berkeley

the past and future events). Secondly, it is difficult to ex-
press meaningful statements about expected, anomalous,
or desired behavior in the system: such statements are of-
ten highly complex, or can only be made at a very high
level. Moreover, we cannot in general know what these
statements are a priori, meaning that we must be able to
formulate them at runtime.

In this paper, we describe an example network Informa-
tion Plane we have built, called Sophia, that addresses these
issues. Sophia models the three functions closely: a dis-
tributed set of sensors report data about aspects of the sys-
tem, including both local state (e.g., the load or memory
usage on a particular node) and the local perspective of the
rest of the network (e.g., the reachability of other nodes).
A declarative programming environment, also distributed,
evaluates logic statements about the system. Finally, a set
of actuators distributed throughout the network perform lo-
cal actions (e.g. killing a misbehaving service on a node).
Sophia is deployed today over PlanetLab.

Sophia’s approach to decentralized management is
novel: it can be viewed as a distributed expression evalua-
tor in which sensors and actuators form the ground terms,
and statements take on the complete expressiveness of a
language like Prolog [3].

This has several advantages in managing and controlling
a complex, federated, and evolving network. First, a declar-
ative logic language provides a natural way to express the
kinds of statements that are common to this application do-
main. Second, logic expressions can be transformed at run-
time to a new form that is equivalent, but more suitable for
efficient evaluation. Third, programs and data are equiv-
alent in Sophia (they are Prolog-like predicates) making
it just as easy to move the (sub)program to the data as to
bring the data to the program. This makes Sophia efficient
and easy to extend at runtime. It also allows the system
to employ introspection to optimize its own performance,
based on the information it is processing. We know of no
other network management system with this property. Fi-
nally, since explicit notions of time and space are embed-
ded into Sophia, it is easy to both transparently distribute

expressions across the entire network, and to process both
past and future information (i.e. process logs and schedule
events).

The rest of this paper describes and motivates Sophia’s
architecture in detail, including the role of distributed uni-
fication to resolve logic expressions over a network, the use
of capabilities to provide secure sharing of system data, and
support for caching as both an optimization and a way to
seamlessly incorporate logged information.

2 Design Considerations

This section identifies the requirements that influenced
Sophia’s design, and in the process, motivates the architec-
tural decisions we made. We also give illustrative examples
that help make our case.

2.1 Expressivity

The first requirement is that the Information Plane must
provide a language that makes it easy to express what we
want—to make statements about the overall network state
and behavior. This is harder than it sounds. One approach
would be to use a domain-specific language whose design
encodes our assumptions about possible states of the net-
work. Alternatively, statements about the network might
be represented within a predefined relational schema by
means of a declarative query language.

We reject both of these approaches for the same reason:
they incorporate a priori assumptions about possible states
of the system. This characteristic is valuable in smaller
and/or centralized systems since it provides useful abstrac-
tions and reduces the possibilities for bugs in code written
in the language. However, in a wide-area, decentralized
environment that evolves over time, such a priori assump-
tions will frequently become invalid. Users—those writing
queries and specifying actions in the system—need a pro-
grammatic way to determine when such assumptions no
longer hold, formulate new assumptions, and resolve ap-
parent contradictions in system state.

Consequently, based on our experience with an InfoS-
pect [7] deployment on PlanetLab, we designed Sophia
to use a logic programming language to express informa-
tion about actual and desired system state. More precisely,
Sophia supports both a high-level language designed for
programmers (based on Prolog) and a low-level functor-
based language (instruction set) that is used internally by
Sophia. In general, alternative high-level languages (e.g.,
a functional language) could be used and mapped onto the
low-level form, but for the purpose of this paper, we gloss
over the distinction between these two levels and give ex-
amples using Prolog syntax.

The important point is that a computational model based
on logical unification is at the heart of Sophia. The primary
interface to the Sophia core is the eval (Term) functor,

which uses unification to prove the Term to be true for some
free variable substitution, or fails. Thus, when evaluated on
a Sophia node, the expression:

eval (bandwi dt h(Bwvar)).
may succeed, returning the expression:
eval (bandw dt h(81920)).

Practically speaking, the evaluation returns the bandwidth
value. In general, the Term can be a complete logic pro-
gram. For example,

eval ((bandwi dt h(Bwar), Bwar < 65536)).

will succeed with a value for BwVar if and only if it
is within range. The actual values associated with many
Sophia predicates are returned by sensors running on nodes
throughout the network.

Unlike many situations where a logic programming
model might be used, we are using it to express prop-
erties of a continuously-running networked system. This
means we need to be able to express where and when log-
ical predicates might hold. Our approach is to make both
location and time an explicit part of every Term processed
by Sophia, so that all expressions are bound to a certain en-
vironment and their interpretation in the system is precise.

All Sophia terms have a location component, meaning
that the return of the evaluation of the previous example
would actually be of the form:

eval (bandwi dt h(env(node(id42)), 81920)).

meaning that the value of bandwidth at the particular node
with id i d42 is 81920. If necessary, the relevant subex-
pression will be sent to an appropriate node for unification.
Similarly, because of the dynamic nature of the environ-
ment all facts and results may be time dependent, and so we
bind all expressions with a time component. Thus, a more
precise evaluation result of our ongoing example is

eval (bandwi dt h(env(node(i d42),
time(1057766930)),
81920)).

Both t i me and node are part of an environment pred-
icate is associated with every functor. The predicate may
contain variables and logic expressions describing them.
As a consequence, it is easy to manipulate the environment
component of expressions, allowing arbitrary time/location
selection. As an illustration of the expressive power of this
technique, when combined with a declarative language like
Prolog, consider the following expression:

eval ((bandw dt h(env(node(Node),
time(Time),
Time > 1057766930),
Bwvar) ,
Bwvar > 65536)).

which would, if possible, instantiate Ti me, Node, and
BwVar variables to indicate a node where the bandwidth
exceeded 65536 in the period between time 105776693 and
NOW.

As a more comprehensive example, the following shows
a rule declaration followed by its evaluation. The rule de-
fines a sl i ce_bandwi dt h expression to be the sum of
slice bandwidths on all the nodes within the last 30 sec-
onds. A slice is a PlanetLab distributed virtual machine
abstraction, so evaluating this rule determines the total
bandwidth consumed (Sl i ceBandwi dt h) by a particu-
lar slice (sl i ce47) across all PlanetLab nodes.

slice_bandwi dth(Slice, Bandw dth) :-
forall ([Node, Bwar],
(node(Node) ,
bandwi dt h(env(node(Node),
time(Time),
(' Ti me>now 30)),
slice(Slice),
Bwvar)),
Result),
sunl i st (Resul t, Bandwi dth).
eval (slice_bandw dth(slice47,
Sli ceBandwi dth)).

2.2 Performance

Performance in an Information Plane has many facets. Raw
sensor data must be obtained in a timely fashion, and dis-
tributed computation on the data must be performed effi-
ciently in the face of network latency. Furthermore, some
computations cannot be performed immediately since it
refers to results in the future, and so must be deferred.
Sophia addresses its performance demands with caching,
evaluation scheduling, and planning.

2.2.1 Caching

Sophia nodes cache evaluation results including the facts
extracted from sensors. This has several benefits. In sit-
uations where computation latency is more important than
freshness of the data, no delay is incurred in evaluating a
full expression and contacting the sensor. Since all Sophia
expressions are bound to an environment that includes
time, the freshness of the data can always be inferred if
the desired time is not specified, and specified if required.
For example, in the expression:

eval (bandwi dt h(env(node(i d42),
ti me(SoneTi ne)),
Bwar)).

the time is a free variable, and so a cached value of BwVar
is obtained if one exists. On the other hand,

eval (bandw dt h(env(node(i d42),
ti me(SonmeTi ne),

SoneTi ne >= now),
Bwvar)).

forces an up-to-date value to be obtained. Similarly, con-
straining SonmeTi me to a particular period in the past
would effectively allow one to query a log of stored sensor
readings. It should be clear from this example that Sophia’s
caching of partial results and sensor values, and the ability
to specify evaluation times in the past, correspond to one
and the same mechanism.

2.2.2 Scheduling

Evaluation scheduling provides the ability to pre-schedule
expression evaluation ahead of time, so the results are avail-
able when and where they are needed. This is accom-
plished by evaluating expressions with a time value in the
future. Using this mechanism, it is possible to schedule ex-
pressions to be always evaluated within a certain interval,
thereby refreshing the cache with fresh values.

2.2.3 Planning

In database systems, query planning or optimization is the
stage of processing that takes a purely declarative descrip-
tion of the query results and generates the set of operations
to obtain them efficiently. In Sophia, the analogous oper-
ation is evaluation planning, and includes notions of loca-
tion and time as well as translating an expression into an
efficient form for evaluation. For example, to achieve good
performance it may be optimal to evaluate a subexpression
at a location in the network close to a dependency. Simi-
larly, it may be best to schedule an evaluation only at the
right time so that the dependencies are already resolved.
Finally, it may be beneficial to rewrite the original expres-
sion into a logically equivalent expression, but into a form
which can easily be decomposed into components that can
benefit from separate planning.

The example expressions we have shown so far have not
addressed the issues of what to evaluate and where; how-
ever Sophia’s real power comes when this information is
derived by the system from a higher-level specification.

In Sophia, planning is implemented at the same level as
query evaluation and proceeds by unification: the planner
is a set of logical rules that expand high-level terms into the
kinds of explicit evaluations we have just seen. This lack
of an explicit boundary between query specification and
query planning/optimization allows great flexibility. It is
relatively straightforward to include static query-planning
techniques analogous to those found in databases, where a
purely declarative query is translated into a plan as a sep-
arate step. However, with Sophia we can potentially do
much better: query plans can be formulated on the fly as
the evaluation proceeds, using partial results to re-optimize
the query.

This can be extremely powerful in a distributed environ-
ment. Although deriving an efficient plan is a difficult task,

the important point is that this performance optimization is
possible because of Sophia’s logic model, together with the
integration of time and location at a low level. We view this
as an exciting area for future work.

2.3 Failures

The Information Plane must function in a large-scale,
widely distributed environment in which failures and
anomalies must be treated as the norm, not an exception.
These conditions can make certain expression evaluations
impossible, since it may not be feasible to satisfy some of
the dependencies at any given point in time.

We recognize that it is often better to get an answer than
to not get the most complete answer. As a consequence,
Sophia’s expression evaluation mechanism deals with par-
tial failures using logic holes—a sub-expression that cannot
be evaluated, and hence, analogous to a conditional proof
and partial result processing in relational databases [6]. In
a sense, this allows Sophia to sacrifice completeness for
performance. The expression is not fully evaluated until all
logic holes are evaluated, however, the partial results may
be useful. Moreover, this allows for incremental evaluation
by proving the holes as the dependencies are satisfied. Said
another way, decomposing an expression so as to isolate
holes is a critical part of the evaluation planning problem.

24 Extensibility

Finally, the Information Plane must be extensible. This
means it must be easy for any one user to add new func-
tionality over time, but also that many different users must
be able to query the Information Plane in different ways.
Our decision to base Sophia on a programming language
is certainly an important part of the answer, but in addi-
tion, Sophia has been engineered to require a minimal core
on each node, extended with loadable core modules provid-
ing providing complete system.The real challenge is how to
manage the various contexts in which expressions are eval-
uated, in a way that supports the desired levels of isolation
versus sharing.

Our approach is to run a single Sophia system with mul-
tiple user modules loaded into it. Sophia uses capabilities
to protect modules, grant and revoke privileges, and sup-
port module composition. Capabilities in Sophia take the
form of simple rule declarations and are transparently han-
dled by the low-level language. We have built a “capa-
bilitizing compiler” that permits the high-level language to
hide capabilities from the programmer. The following dis-
cusses the various roles that capabilities paly in more detail.

24.1 Privileges

Capabilities are used to assign and enforce system privi-
leges. For example, if only some users are allowed to eval-
uate the previously described bandwi dt h rule, the rule is

turned into a capability at the functor level. That is, instead
of

bandwi dt h(Val) :- read sensor.
the rule is changed to
cap389456(Vval) :- read sensor.

and to evaluate the bandwi dt h rule, the user must have
the right capability, which is also just a rule

bandwi dt h(Bwval) :- cap389456(Bwval).

Note that capabilities are based on randomized 128-bit
strings, although we shorten them in the examples for the
sake of convenience. Also note that the local unification al-
gorithm restricts the user evaluations from listing the con-
tents of the term database. Otherwise, it would be possible
to list all the capabilities and make them useless.

Since capabilities are just rules, many elaborate protec-
tion systems can be easily implemented. For example, to
make the bandwi dt h capability revocable, the privilege
granter creates an intermediate capability to the real capa-
bility, e.g.,

cap568907(Vval) :- read sensor.
cap389456(Vval) :- cap568907(Val).

where cap389456 is an intermediate capability that cur-
rently references the target capability cap568907. The
user is given only the intermediate capability. To revoke a
user’s privilege of reading the sensor, the privilege granter
simply removes the target capability, so the user’s evalua-
tion of bandwi dt h rule always fails since evaluation of
the intermediate capability fails. Similarly, an use-N-times
capability could delete itself during its N-th evaluation, a
two-way authorization capability could check additional ar-
guments for keys, and so on.

2.4.2 Module Protection

In addition to granting privileges, modules are protected
from each other using capabilities. If a user’s module is
to be completely private—that is, all of its predicates are
to be visible within the module only—all of its predicates
are transformed into capabilities. The capabilities are then
grouped to a key-capability rule, and the user of the private
module must possess that rule to unlock the module for
evaluation.

2.4.3 Module Composition

Capabilities are also the key mechanism used to control
module composition. All rules of a module are by default
transformed to private capabilities visible only within the
module. However if a module wants to expose an inter-
face, it may explicitly leave a rule with a well-known name

declared without turning it into a capability. Any other
module would be able to evaluate the public rule. On the
other hand, if a module wishes to interface only with certain
modules, it may transform the given rule into a capability,
and then pass the capability to only the user that is allowed
to use the interface. A more elaborate capability rule could
be composed to authenticate the user.

2.4.4 Capabilitiesand Caching

It is important to notice how well the capability rules and
caching interplay with each other. One danger of creating
interfaces to common predicates through capabilities is that
caching could be performed on the capability rules, causing
the equivalent rule evaluations through different interfaces
to miss the cache. On the other hand, exposing the cache
to the untrusted entity might jeopardize its module protec-
tion. In Sophia however, the evaluation of capability rules
that provide access to the same target rule share the cache
without compromising protection. The results of the tar-
get rule are cached and cache hits are on the target rule,
thereby avoiding redundant evaluations. At the same, time
users gain no unauthorized access to the shared cache.

3 Implementation

This section outlines the main components of the im-
plementation of Sophia which currently runs as a dis-
tributed service over PlanetLab. Each node in the sys-
tem runs a minimal local kernel, with most of Sophia’s
core functionality—including its distributed unification
algorithm—implemented as loadable modules. This allows
for alternative implementations of the core components to
be available on a running system. User modules can choose
to compose with the preferred implementation of the core
system modules, or user modules can implement special-
ized core system modules (given they have the necessary
privileges). The local core running on each node consists
of the following five components.

First, Sophia uses a single, flat logic terms database for
storing all of its terms. The database supports assert
Termandr et ract Ter moperations, and is used by the
unification engine to match terms. The stored terms include
all predicate rules and facts, as well as loadable modules,
which are just a set of terms. For example, the database
may contain rule terms of a slice policing module, some of
which are:

slice_malicious(Slice) :-

sl ice_bandwi dth(Slice, Bandw dth),

Bandwi dth > bwimt.
slice_malicious(Slice) :-

slice_ip_dest(Slice, DstCount),

Dst Count > ip_dest_limt.
slice_police(Slice) :-
slice_malicious(Slice),

slice_stop(Slice).
slice_police_all :-
forall ([Slice],
(slice(Slice),
slice_police(Slice)), _).

In reality, all the terms in the database are stored in the
low-level functor-based format, constrained with the envi-
ronment predicate (i.e., time and location are bound in ev-
ery term), as follows

(FunctorNane, Env,
Env = env(time(Tine),

Terml, ..., TernN)
node(Node), _)

Second, Sophia includes a local unification engine that
is based on standard logic unification, with the following
differences. First, environment (time and location) depen-
dent caching is a part of the engine’s mechanism, favoring
matches in the local cache rather than delegating evalua-
tion to another node. Second, to protect users from listing
available capabilities, there is a restriction on rules listing
other terms in the terms database. Third, the term database
is augmented with session-dependent terms for the sake
of unification. A session-manager maintains these private
terms, which typically include the user’s capability rules.

Third, Sophia interfaces with sensors and actuators of
the host system [8], which effectively serve as 1/0 for
Sophia. The interface provides a bridge to access sensory
data from the host environment, as well as act on its ac-
tuators. The interface exposes the sensors and actuators as
regular terms, which makes them transparent to the unifica-
tion process. For example, in support of the slice policing
module introduced above, a sensor showing IP destinations
contacted by the host and an actuator to stop a PlanetLab
slice are exposed as transparent terms:

i p_dest (DestList).
slice_stop(Slice).

Fourth, a remote evaluator is responsible for delegating
evaluation of an expression to a particular remote Sophia
node. It handles the networking and Sophia protocol be-
tween the nodes. The results of the evaluation are cached
localy for local unification. For example, the evaluation

eval (env(node(id82)),
i p_dest (env(node(id82),
time(T)),
Dest))

is delegated to node id82 unless there is a local cache hit.
It is interesting to note that eval is just a predicate and
can be statically specified as part of rule definitions, allow-
ing static specification of an evaluation plan. Note that any
strategy for distributed unification is implemented in a sep-
arate module; it is not part of the remote evaluator.

Finally, an expression scheduling mechanism is respon-
sible for maintaining the calendar of evaluations scheduled

for the future. It inserts appropriate event handlers into
Sophia’s event facility. A utility module provides a pred-
icate that allows for scheduling expressions to be evaluated
with a certain frequency, keeping their results fresh. For
example,

eval (schedul e(env(tine(T),
fresh(10),
slice_police_all)).

T>=now),

schedules the rule slice_police_all to be re-

evaluated every 10 seconds.

4 Related Work

The management of large networked systems is an entire
field in itself. Commercial network management systems
such as HP OpenView and Micromuse Netcool provide
simplified interfaces to routing functionality such as topol-
ogy discovery, service provisioning, and equipment status
checks, and are routinely used by ISPs. Host-oriented man-
agement systems such as IBM’s Tivoli and Computer As-
sociates’ UniCenter address the corresponding problems of
managing large numbers of desktop and server machines in
an enterprise. Both kinds of system are aimed at single or-
ganizations with well-defined applications and goals seek-
ing to manage and control the equipment they own. Man-
aging a wide-area, evolving, federated system like Planet-
Lab (or the Internet as a whole) poses different challenges,
however, and a goal of Sophia is to better understand this
new problem space.

The case for Sophia as a framework in which the behav-
ior of a widely-distributed network can be monitored and
controlled is similar to that of the Knowledge Plane [2].
In fact, Sophia’s high-level model of using sensors to col-
lect information, a distributed expression evaluator to ask
questions and make statements about that information, and
a set of actuators to take actions in response to conclu-
sions drawn about the information, evolved out of early
discussions about the architecture of the Knowledge Plane.
In other words, one could view Sophia as an incarnation
of the Knowledge Plane for PlanetLab, although we also
note that PlanetLab provides multiple vantage points from
which Sophia could be extended to serve as a prototype
Knowledge Plane for the Internet as a whole.®

Sophia also owes much of its design philosophy to In-
foSpect [7], which argued that a declarative programming
language like Prolog is a natural choice for expressing com-
plex queries about system behavior in a network monitor-
ing system. The main way in which Sophia extends InfoS-
pect is that it is distributed over the network. At a more de-
tailed level, Sophia also has explicit notions of time, space,
caching, modularity, and capabilities, whereas InfoSpect is

1\We use the term “Information Plane” rather than “Knowledge Plane”
because we do not currently explore the use of learning algorithms, and
other Al techniques, to adapt to unforeseen behavior.

in essence an evolving but centralized set of Prolog queries
about instantaneous, remotely determined system state. We
are currently re-deploying InfoSpect as an application on
top of in Sophia.

It is instructive to compare Sophia to distributed query
processing engines currently being deployed in wide-area
networks, such as PIER [4] (which applies a relational
model to wide-area queries) and IRIS [1] (which has a hi-
erarchical data model using XML and XPath). Although
these two systems do not have the explicit goal of mon-
itoring and managing the network (they draw their moti-
vation from distributed databases and sensor networks, re-
spectively), they are both being used alongside Sophia to
monitor PlanetLab, and in fact, we defined a universal sen-
sor interface for PlanetLab [8] so that all three systems (as
well as others) could have access to all information we col-
lected about the network.

These three systems represent different design points
in terms of representation and expressiveness: Sophia is
designed around a declarative logic programming model
where the location of code execution is both explicit in the
language and can be calculated in the course of the evalua-
tion. In contrast, the details of execution of queries in PIER
is left to the underlying implementation to optimize (in the
tradition of relation databases), subject to the constraints
introduced by the use of a DHT for rehashing. In IrisNet,
the hierarchical structure enforces where query execution
must occur, and consequently efficient execution is a ques-
tion of establishing an appropriate hierarchy when the sys-
tem is deployed. The consequence is that Sophia queries
can potentially be much more sophisticated in both expres-
sion and optimization—both the user and the system can
participate in the evaluation planning to varying degrees.

5 Conclusions

Sophia represents a promising new direction in manag-
ing widely-distributed and continuously-changing network
systems. Qur experience to-date suggests that Sophia’s
foundation in a computational model based on logical unifi-
cation is particularly powerful: (1) it defines a natural way
to express assumptions and requirements; (2) it provides
a rich space for exploring adaptive distributed query plan-
ning algorithms, including algorithms that can work around
transient failures; and (3) it enables a flexible tradeoff be-
tween privacy and sharing through the use of capabilities.
However, much work remains to be done to fulfill the po-
tential of these opportunities. Most importantly, we need to
learn how to use (program) tools like Sophia to help us bet-
ter manage and control the increasingly complex networks
we are deploying.

References

[1] IrisNet: Internet-Scale Resource-Intensive Sensors.

(2]

(3]

[4]

[5]

[6]

[7]

(8]

http://ww. intel-iris.net/,July2003.

D. Clark, C. Partridge, C. Ramming, and J. Wro-
clawski. A Knowledge Plane for the Internet. In Proc.
ACM SIGCOMM, Karlsruhe, Germany, August 2003.

W. Clocksin and C. Mellish. Programming in Prolog.
Springer Verlag, 1984.

R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In Proc. VLDB, May 2003.

L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. In Proc. HotNets-1, Princeton, NJ, USA,
October 2002.

V. Raman and J. M. Hellerstein. Partial Results for On-
line Query Processing. In Proc. ACM SIGMOD, Madi-
son, WI, USA, June 2002.

T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. In-
foSpect: Using a Logic Language for System Health
Monitoring in Distributed Systems. In Proc. of the
ACM SIGOPS European Workshop, Saint-Emilion,
France, September 2002.

T. Roscoe, L. Peterson, S. Karlin, and M. Wawr-
zoniak. A Simple Common Sensor Interface
for PlanetLab. PlanetLab Design Node PDN-
03-010, http://ww. pl anet -1 ab. or g/ pdn/
pdn03- 010. pdf , March 2003.

