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Abstract

Deterministic fully dynamic graph algorithms are presented
for connectivity, minimum spanning forest, 2-edge connec-
tivity, and biconnectivity. Assuming that we start with no
edges in a graph with n vertices, the amortized operation
costs are O(log? n) for connectivity and O(log* n) for mini-
mum spanning forest, 2-edge connectivity, and biconnectity.

1 Introduction

We consider the fully dynamic graph problems of connec-
tivity, minimum spanning forest, 2-edge connectivity and
biconnectivity. In a fully dynamic graph problem, we are
considering a graph G over a fixed vertex set V, |V| = n.
The graph G’ may be updated by insertions and deletions of
edges. Unless otherwise stated, we assume that we start with
an empty edge set.

For the fully dynamic connectivity problem, the up-
dates may be interspersed with connectivity queries, asking
whether two given vertices are connected in G. Both updates
and queries are presented on-line, meaning that we have to
respond to an update or query without knowing anything
about the future. The connectivity problem reduces to the
problem of maintaining a spanning forest (a spanning tree
for each component) in that if we can maintain any spanning
forest F' for G at cost O(t(n) logn) per update, then, using
dynamic trees [17], we can answer connectivity queries in
time O(log n/ log t(n)). In this paper, we present a very sim-
ple deterministic algorithm for maintaining a spanning forest
in a graph in amortized time O(log” n) per update. Connec-
tivity queries are then answered in time O(logn/ loglogn).

In the fully dynamic minimum spanning forest problem,
we have weights on the edges, and we wish to maintain a
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minimum spanning forest F’ of G. Thus, in connection with
any update to G, we need to respond with the corresponding
updates for F, if any. We will present a deterministic algo-
rithm for maintaining a minimum spanning forest in a graph
in O(log* n) amortized time per operation.

A graph is 2-edge connected if and only if it is con-
nected and no single edge deletion disconnects it. The 2-
edge-connected components are the maximal 2-edge con-
nected subgraphs, and two vertices v and w are 2-edge con-
nected if and only if they are in the same 2-edge connected
component, or equivalently, if and only if v and w are con-
nected by two edge-disjoint paths. A graph is biconnected
if and only if it is connected and no single vertex deletion
disconnects it. The biconnected components are the max-
imal biconnected subgraphs, and two vertices v and w are
biconnected if and only if they are in the same biconnected
component, or equivalently, if and only if either (v,w) is
an edge or v and w are connected by two internally disjoint
paths. In the fully dynamic 2-edge and biconnectivity prob-
lems, the updates may be interspersed with queries asking
whether two given vertices are 2-edge or biconnected. We
present O(log* n) algorithms for these two problems.

Previous work For deterministic algorithms, all the pre-
vious best solutions to the fully dynamic connectivity prob-
lem were also solutions to the minimum spanning tree prob-
lem. In 1985 [5], Frederickson introduced a data struc-
ture known as topology trees for the fully dynamic min-
imum spanning tree problem with a worst case cost of
O(y/m) per update, permitting connectivity queries in time
O(logn/log(/m/logn)) = O(1). In 1992, Epstein et.
al. {3] improved the update time to O(y/n) using the sparsi-
fication technigue. Finally in 1997 Henzinger and King [12]
gave an algorithm with O(¥/nlogn) update time and con-
stant time per connectivity query.

Randomization has been used to improve the bounds
for the connectivity problem. In 1995 [10], Henzinger and
King showed that a spanning forest could be maintained
in O(log® n) expected amortized time per update. Then
connectivity queries are supported in O(logn/loglogn)
time. The update time was further improved to O(log® n)




in 1996 [14] by Henzinger and Thorup. No random-
ized technique was known for improving the deterministic
O(¥/nlogn) update cost for the minimum spanning tree
problem.

In 1991 [6], Fredrickson succeeded in generalizing his
O(y/m) bound from 1983 [5] for fully dynamic connectivity
to fully dynamic 2-edge connectivity. As for connectivity,
the sparsification technique of Eppstein et.al. {3} improved
this bound to O(y/n). Further, Henzinger and King gener-
alized their randomization technique for connectivity to give
an O(log® n) expected amortized bound [10, 11}. It should
be noted that the above mentioned improvement for con-
nectivity of Henzinger and Thorup [14], does not affect the
O(log® n) bound for 2-edge connectivity.

For biconnectivity, the previous results are a lot worse.
The first non-trivial result was a deterministic bound of
O(m?/3) from 1992 by Rauch [8]. In 1994 [16], Rauch
improved this bound to O(min{y/mlogn,n}). In 1995,
(Rauch) Henzinger and Poutré further improved the deter-
ministic bound to O(yv/nlogniog{m/n]) {13]. In 1995
[9], Henzinger and King generalized their randomized algo-
rithm from [10] to the biconnectivity problem to achieve an
O(Alog* n) expected amortized cost per operation, where
A is the maximal degree (In [9], the bound is incorrectly
quoted as O(log* n) [Henzinger, personal communication,
1997]).

Finally, we note that for all of the above problems, we
have a lower bound of Q(log n/ loglogn) which was proved
independently by Fredman and Henzinger [7] and Miltersen,
Subramanian, Vitter, and Tamassia [15].

For the incremental (no deletions) and decremental (no
insertions) problems, the bounds are as follows. Incremen-
tal connectivity is the union-find problem, for which Tarjan
has provided an O(a(m,n)) bound [18]. Westbrook and
Tarjan have obtained the same time bound for incremental
2-edge and biconnectivity [20]. Further Sleator and Tarjan
have provided an O(log n) bound [17] for incremental mini-
mum spanning forest.

Decrementally, for connectivity and 2-edge connectiv-
ity, Thorup has provided an O(logn) bound if we start with
Q(n log® n) edges, and an O(1) bound if we start with Q(n?)
edges [19]. For decremental minimum spanning tree and bi-
connectivity, no better bounds were known than those for the
fully dynamic case.

Our results First we present a very simple determinis-
tic fully dynamic connectivity algorithm with an update cost
of O(log® n), thus matching the previous best randomized
bound and improving substantially over the previous best de-
terministic bound of O(¥/7 log n).

Our technique relies on some of the same intuition as was
used in Henzinger and King [10] in their randomized algo-
rithm. Our deterministic algorithm is, however, much sim-
pler, and in contrast to their algorithm, it generalizes to the
minimum spanning tree problem. More precisely, a special-
ization of our connectivity algorithm gives a simple decre-
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mental minimum spanning tree with an amortized cost of
O(log? n) per operation for any sequence of 2(m) opera-
tions. Then we use a technique from [12] to convert our
deletions-only structure to a fully dynamic data structure for
the minimum spanning tree problem using O(log* n) amor-
tized time per update. This is the first polylogarithmic bound
for the problem, even when we include randomized algo-
rithms.

Finally, our connectivity techniques are generalized to
2-edge and biconnectivity, leading to O(log* n) algorithms
for both of these problems. The generalization uses some of
the ideas from [6, 9, 11] of organizing information around
a spanning forest. However, finding a generalization that
worked was rather delicate, particularly for biconnectivity,
where we needed to make a careful recycling of information,
leading to the first polylogarithmic algorithm for this prob-
lem.

The reader is referred to (2, 3, 4, 5, 6, 10] for discus-
sions of problems that get improved by our new fully dy-
namic graph algorithms,

2 Connectivity

In this section, we present a simple O(log® n) time determin-
istic fully dynamic algorithm for graph connectivity. First
we give a high level description, ignoring all problems con-
cerning data structures. Second, we implement the algorithm
with concrete data structures and analyze the running times.

2.1 High level description

Our dynamic algorithm maintains a spanning forest F' of
a graph G. The edges in F will be referred to as tree-
edges. Internally, the algorithm associates with each edge
e a level £(e) < L = [log,n]. For each i, F; denotes
the sub-forest of F induced by edges of level at least i.
Thus, = Fy D F; D --- D Fy,. The following invariants
are maintained.

(i) F is a maximum (w.r.t. £) spanning forest of G, that is,
if (v, w) is a non-tree edge, v and w are connected in
Ft(v:w)'

(if) The maximal number of nodes in a tree in F; is |n/ 25J.
Thus, the maximal relevant level is L.

Initially, all edges have level 0, and hence both invariants
are satisfied. We are going to present an amortization ar-
gument based on increasing the levels of edges. The levels
of edges are never decreased, so we can have at most L in-
creases per edge. Intuitively speaking, when the level of a
non-tree edge is increased, it is because we have discovered
that its end points are close enough in F to fit in a smaller
tree on a higher level. Concerning tree edges, note that in-
creasing their level cannot violate (i), but it may violate (ii).

We are now ready for a high-level description of insert
and delete.




Insert(e): The new edge is given level 0. If the end-points were
not connected in F' = Fy, e is added to Fp.

Delete(e): If e is not a tree-edge, it is simply deleted. If e is a
tree-edge, it is deleted and a replacement edge, reconnecting F at
the highest possible level, is searched for. Since F was a
maximum spanning forest, we know that the replacement edge has
to be of level at most £(e). We now call Replace(e, £(e)). Note
that when a tree-edge e is deleted, F' may no longer be spanning,
in which case (i) is violated unti} we have found a replacement
edge. In the time in between, if (v, w) is not a replacement edge,
we still have that v and w are connected in Frio,w).

Replace((v, w),7): Assuming that there is no replacement edge
on level > 3, finds a replacement edge of the highest level < i, if
any.

Let T, and Ty, be the trees in F; containing v and w, respectively.
Assume, without loss of generality, that |T,| < |T,|. Before
deteting (v,w), T = T, U {(v,w)} U T,, was a tree on level §
with at least twice as many nodes as 7. By (ii), T had at most
[n/2’ | nodes, so now T, has at most [n/2+! | nodes. Hence,
preserving our invariants, we can take all edges of T, of level § and
increase their level to ¢ + 1, so as to make 7}, a tree in Fiy.

Now level 1 edges incident to T, are visited one by one until either
a replacement edge is found, or all edges have been considered.
Let f be an edge visited during the search.

If f does not connect T, and T.,, we increase its level to § + 1.
This increase pays for our considering f.

If f does connect T, and T, it is inserted as a replacement edge
and the search stops.

If there are no level ¢ edges left, we call Replace((v, w),i — 1);
except if ¢ = 0, in which case we conclude that there is no
replacement edge for (v, w).

2.2 Implementation

For each 4, we wish to maintain the forest F; together with
all non-tree edges on level i. For any vertex v, we wish to be
able to:

¢ Identify the tree T, in F: containing v.

¢ Compute the size of T,.

Find an edge of T, on level i, if one exists,

Find a level ¢ non-tree edge incident to T, if any.

The trees in F; may be cut (when an edge is deleted) and
linked (when a replacement edge is found, an edge is inserted
or the level of a tree edge is increased). Moreover, non-tree
edges may be introduced and any edge may disappear on
level i (when the level of an edge is increased or when non-
tree edges are inserted or deleted).

All the above operations and queries may be supported
in O(log n) time using the ET-trees from [10], to which the
reader is referred for additional details. An ET-tree is a stan-
dard balanced binary tree over the Euler tour of a tree. Each
node in the ET-tree represents the segment of the Euler tour
below it. The point in considering Euler tours is that if trees
in a forest are linked or cut, the new Euler tours can be
constructed by at most 2 splits and 2 concatenations of the
original Euler tours. Rebalancing the ET-trees affects only
O(log n) nodes.
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Here we have an ET-tree over each tree in F;. Each node
of the ET-tree contains a number telling the size of the Euler
tour segment below it, a bit telling if any tree edges in the
segment have level 7, and a bit telling whether there is any
level ¢ non-tree edges incident to a vertex in the segment.

Given a vertex v we can find the tree T, containing v
by moving O(logn) steps up till we find a root of an ET-
tree. This root represents the Euler tour of T,. The size
s of the Euler tour of a tree is twice the number of edges,
so the number of vertices is 5/2 + 1. To find a tree edge of
level i or an incident non-tree edge, if any, we move O(log n)
steps down the ET-tree, using the bits telling us under which
nodes such edges are to be found. If a tree edge (v,w) is
moved from level 4, we only need to update the bits on the
paths from (v, w) and (w, v) to the root, using O(log n) time.
If a non-tree edge (v, w) is introduced/disappear, we only
need to update the bits on the paths from v and w to their
respective roots. This takes O(log n) time. When the trees
are cut or linked, only O(log n) nodes are affected, and the
information in each node is updated in constant time.

It is now straightforward to analyze the amortized cost
of the different operations. When an edge e is inserted on
level 0, the direct cost is O(log n). However, its level may
increase O(log n) times, so the amortized cost is O(log? n).

Deleting a non-tree edge e takes time O(logn). When
a tree edge e is deleted, we have to cut all forests Fj, 5 <
£(e), giving an immediate cost of O(log® n). We then have
O(log n) recursive calls to Replace, each of cost O(logn)
plus the cost amortized over increases of edge levels. Finally,
if a replacement edge is found, we have to link O(logn)
forests, in O(log? n) total time.

Thus, the cost of inserting and deleting edges from G
is O(log? n). The balanced binary tree over Fy = F im-
mediately allows us to answer connectivity queries between
arbitrary nodes in time O(log n). In order to reduce this time
to O(log n/ loglogn), as in [10], we introduce an extra bal-
anced O (log n)-ary B-tree over the Euler tour of each tree in
F'. The B-tree has depth O(log n /loglogn), which is hence
the time it takes for a connectivity query. Each delete or in-
sert gives rise to at most one cut and one link in ', and for
O(log n)-ary B-trees, such operations can be supported in
O(log? n/log log n) time. Thus, we conclude:

Theorem 1 Given a graph G with m edges and n vertices,
there exists a deterministic Jully dynamic algorithm that an-
swers connectivity queries in O(log n/ log log n) time worst
case, and uses O(log® n) amortized time per insert or delete,

3 Minimum spanning forest

We will now expand on the ideas from the previous section
to the problem of maintaining a minimum spanning forest
(MSF). First we present an O(log? n) deletions-only algo-
rithm, and then we apply a general construction from [12]
transforming a deletions-only MSF al gorithm into a fully dy-
namic MSF algorithm.




3.1 Decremental minimum spanning forests

It turns out that if we only want to support deletions, we can
obtain an MSF-algorithm from our connectivity algorithm
by some very simple changes. The first is, of course, the ini-
tial spanning forest F has to be a minimal spanning forest.
The second is that when in replace (cf. page 3). we consider
the level ¢ non-tree edges incident to T, instead of doing
it in an arbitrary order, we should do it in order of increas-
ing weights. That is, we repeatedly take the lightest incident
level 7 edge e: if e is a replacement edge, we are done; oth-
erwise, we move e to level 7 + 1, and repeat with the new
lightest incident level ¢ edge, if any. For the above changes
to work, it is crucial, that all weights are distinct. To ensure
this, we associate a unique number with each edge. If two
edges have the same weight, it is the one with the smaller
number that is the smaller.

To see that the above simple changes suffice to maintain
that F' is a minimum spanning forest, we will prove that in
addition to (i) and (ii), the following invariant is maintained:

(iii) If e is the heaviest edge on a cycle C, then e has the
lowest level on C.

The original replace function found a replacement edge on
the highest possible level, but now, among the replacement
edges on the highest possible level, we choose the one of
minimum weight. Using (iii), we will show that this edge
has minimum weight among all replacement edges.

Lemma 2 For any tree edge e, among all replacement
edges, the lightest edge is on the maximum level.

Proof: Lete; and ey be replacement edges for e. Let C;
be the cycle induced by e;; then e € C;. Suppose e, is lighter
than e;. We want to show that £(e;) > £(e).

Consider the cycle C = (Cy UCy) \ (C1 N C2). Since F
is a minimum spanning forest, we know that e; is the heavi-
est edge on C;. Hence ey is the heaviest edge on C. By (iii)

this implies that e; has the lowest level on C. In particular,
l(er) > £ es). a

Since our algorithm is just a specialized version of the decre-
mental connectivity algorithm, we already know that (i) and
(ii) are maintained.

Lemma 3 (iii) is maintained.

Proof: Initially (iii) is satisfied since all edges are on level
0. We will now show that (iii) is maintained under all the dif-
ferent changes we make to our structure during the deletion
of an edge. If an edge e is just deleted, any cycle in G \ {e}
also existed in G, so (iii) is trivially preserved. Also note
that replacing a deleted tree-edge cannot in itself violate (iii)
since it does not change the levels or weights of any edges.
Our real problem is to show that (iii) is preserved during
Replace when the level of an edge e is increased. This cannot
violate (iii) if e is not the heaviest edge on some cycle, so
assume that e is the heaviest edge on a cycle C. To prove that
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(iii) is not violated, we want to show that before the increase,
all other edges in C have level > ¢ + 1.

No tree edge is heaviest on any cycle, so e is a non-tree
edge. When £(e) is to be increased from i to i + 1, we know
itis the lightest level ¢ edge incident to T}, (cf. the description
of replace on page 3). Moreover, by (iii), all other edges on
C have level at least i. Thus, all other edges from C incident
to T, have level at least 7 + 1.

~ To complete the proof, we show that all edges in C' are
incidentto T,,. Suppose, for a contradiction, that C contained
an edge f leaving T},. Since e is to be increased, e # f. Also,
the call to Replace requires that there is no replacement edge
of level > 4, so £(f) < i. This contradicts that all edges # e
from C incident to T, have level > i + 1. 0

It has now been established that the above change in replace
suffice to maintain a minimum spanning forest. A last point
is that we need to modify our ET-trees to give us the lightest
non-tree edge incident to a tree. So far, for each node in
the ET-trees, we had a bit telling us whether the Euler tour
segment below it had an incident non-tree edge. Now, with
the node, we store the minimum weight of a non-tree edge
incident to the Euler tour segment below it. Clearly, we can
still support the different operations in O(logn) time. We
conclude

Theorem 4 There exists a deletions-only MSF algorithm
that can be initialized on a graph with n nodes and m edges
and support any sequence of Q(m) deletions in total time
O(mlog?n). m|

3.2 Fully dynamic MSF

To obtain a fully dynamic minimum spanning forest algo-
rithm we apply a general reduction, which is a slight gener-
alization of the one provided by Henzinger and King [12, pp.
600-603]. The reduction is described as follows.

Lemma 5 Suppose we have a deletions-only MSF algorithm
that for any k, I, can be initialized on a graph with k nodes
and l edges and support any sequence of Q(l) deletions in
total time O(l-t(k,1)) where t is non-decreasing. Then there
exists a fully-dynamic MSF algorithm for a graph onn nodes
starting with no edges, that for m edges, supports an update
in amortized time

logam 4

O (log®n+ Z Zt(min{n,Q’},?)

i=1 j=1

“Proof”: Essentially, we combine the reduction from [12]
with a contraction idea from [11]. We will only sketch the
changes needed in [12]. Asin [12], we operate on a series of
graphs A;, where A; has 2 non-tree edges. In [12], A; may
have n — 1 MSF-edges, and this forces them to introduce a
special efficient operation for adding a batch of edges. Here,
instead, when we first create A;, we contract all MSF-paths




that are not incident to any non-tree edge. The “super” edge
e replacing a MSF-path P gets the minimum weight on P,
Moreover, if any edge from P is deleted, we have to delete e
in A;. As aresult, we can base our fully-dynamic algorithm
directly on deletions-only algorithms. -8

From Theorem 4, we get t(k,{) = O(log® k), and hence we
get a fully dynamic algorithm with update cost

logam 4

O|log’n+ ) > "log? (min{n,2}) | =0 (log* n) .

i=1 j=1

Note for comparison, that in [12], Henzinger and King
had t(k,1) = O(¥/1logk), giving them an update cost of
O(/mlogn). Then sparsification [3] reduces the cost to
O(¥nlogn). From the combination of Theorem 4 and
Lemma 5, we conclude

Theorem 6 There is a fully-dynamic MSF algorithm that for
a graph with n nodes and starting with no edges maintains
a minimum spanning forest in O(log* n) amortized time per
edge insertion or deletion.

4 2-edge connectivity

In this section we present an O(log* n) deterministic algo-
rithm for the 2-edge connectivity problem for a fully dy-
namic graph G. An important secondary goal is to present
ideas and techniques that will be reused in the next section
for dealing with the more complex case of biconnectivity.

As in the previous sections we will maintain a spanning
forest F' of G. If v and w are connected in F,v---w de-
notes the simple path from v to w in F. If they are further
connected to u, meet(u, v, w) denotes the intersection vertex
of the three paths u - - - v, u--~w,andv--w.

A tree edge e is said to be covered by a non-tree edge
(v,w) ife € v---w, that is if e is in the cycle induced by
(v,w). A bridge is an edge e whose removal disconnects a
component, or, equivalently, an edge whose end-points are
not 2-edge connected. Hence e is a bridge if and only if it is
a tree edge not covered by any non-tree edge. Since 2-edge
connectivity is a transitive relation on vertices, it follows that
two vertices r and y are 2-edge connected if and only if they
are connected in F' and all edges in z - - - y are covered (6].

Recall from connectivity that our spanning forest F' was
a certificate of connectivity in G in that vertices were con-
nected in G if and only if they were so in F. If an edge from
F was deleted, we needed to look for a replacement edge
reconnecting F, if possible. An amortization argument paid
for all non-replacement edges considered.

Now, for 2-edge connectivity we have a certificate con-
sisting of F together with a set C consisting of a covering
edge for each non-bridge edge in F. Thus two vertices are
2-edge connected in G if and only if they are so in F U C.
However, if an edge f € C is deleted, we may need to add
several “replacement edges” to C in order regain a certifi-
cate. Nevertheless, by carefully choosing the order in which
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potential replacement edges are considered, we will be able
to amortize the cost of considering all but two of them.

4.1 High level description

The algorithm associates with each non-tree edge e a level
te) < L = [log,n]. However, in contrast to connec-
tivity, the tree edges do not have associated levels. For
each 1, let G; denote the subgraph of G induced by edges
of level at least ¢ together with the edges of F. Thus,
G=GoDG;D---DG, DF.The following invariant is
maintained:

(i’) The maximal number of'nodcs in a 2-edge connected
componentof G; is [n/2*]. Thus, the maximal relevant
level is L.

Initially, all non-tree edges have level 0, and hence the invari-
ant is satisfied. As for connectivity, we will amortize work
over level increases. We say that it is legal 1o increase the
level of a non-tree edge e to j if this does not violate i,
that is, if the 2-edge connected component of e in GilU{e}
has at most |n/27 | vertices.

For every tree edge e € F, we implicitly maintain the
cover level c(e) which is the maximum level of a covering
edge. If e is a bridge, c(e) = —1. The definition of a cover
level is extended to paths by defining c¢(P) = min.cp c(e).
During the implementation of an edge deletion or insertion,
the c-values may temporarily have too small values. We say
that v and w are c-2-edge connected on level i if they are
connected and c(v - - -w) > 1. Assuming that ali c-values are
updated, we have our basic 2-edge connectivity query:

2-edge-connected (v, w): Decides if v and w are c-2-edge
connected on level 0.

Further note that with updated c-values, ¢ € F'is a bridge in
G if and only if ¢(e) < i. For basic updates of c-values, we
need

InitTreeEdge(v, w): c(v,w) := —1.

Cover(v, w,t): Where v and w are connected. For all
e€uv--w,ifcle) < 1,setcle) :=i.

Uncover(v, w,): Where v and w are connected. For all
e€v--wifcle) <1,setcle) := —1.

We can now compute c-values correctly by first calling
InitTreeEdge (v, w) for all tree edges (v, w), and then calling
Cover(q, r, (g, 7)) for all non-tree edges (g,7). Inserting an
edge is straightforward;

Insert(v, w): If the end-points of (v, w) were not connected in F,
(v, w) is added to F and InitTreeEdge(v, w) is called. Otherwise
set £(v, w) := 0 and call Cover(v, w, 0). Clearly (i) is not
violated in either case.

In connection with deletion, the basic problem is to deal with
the deletion of a non-tree edge. If a non-bridge tree edge
(v, w) is to be deleted, we first swap it with a non-tree edge
as described in Swap below. The sub-routine FreeTreeEdge
is dummy for now, but is included so that Swap can be reused
directly for the biconnectivity problem,

Swap(v, w): Where (v, w}) is a tree-cdge which is not a bridge.
Let (z, y) be a non-tree edge covering (v, w) with

-\



#(z,y) = c(v,w) = i, and set £(v, w) := i. Call
FreeTreeEdge(v, w). Replace (v, w) by (z,y) in F. Call
InitTreeEdge(x, y) and Cover(v, w, 7).

To see that the above updates the cover information, note
that it is only the edges being swapped whose covering is
affected. We are now ready to describe delete.

Delete(v, w): If (v, w) is a bridge, we simply delete it. If (v, w)
is a tree edge, but not a bridge, we call Swap(v, w). Thus, if (v, w)
is not a bridge, we are left with the problem of deleting a non-tree
edge (v, w) on level ¢ = £(v, w). Now call Uncover(v, w, i) and
delete the edge (v, w). This may leave some c-valueson v - w to
low and thus for i = £(v, w), ..., 0, we call Recover(v, w, ).
Recover{v, w,1): We divide into two symmetric phases. Set

u := v and let u step through the vertices of v - - - w towards w.
For each value of u, consider, one at the time, the non-tree edges
(z,y) with meet(z,v,w) = uandVe € u---x,c(e) > i. If
legal, increase the level of (z,y) to 7 + 1 and call

Cover(z, y,¢ + 1). Otherwise, we call Cover(z,y, %) and stop the
phase.

If the first phase was stopped, we have a second symmetric phase,
starting with v = w, and stepping through the vertices in w - - - v
towards v.

The problem in seeing that the above algorithm is correct,
is to check that the calls to Recover computes the correct c-
values on v - - - w. We say that v- - - w is fine on level i if all
c-values in F' are correct, except that c-values <ionv.--w
may be too low. Clearly, v---w is fine on level £(e) + 1
when we make the first call Recover(v, w, £(v,w)). Thus,
correctness follows if we can prove

Lemma 7 Assuming thatv - - -w is fine on level i + 1. Then
after a call Recover(v,w,1), v- - -w is fine on level i.

Proof: First note that we do not violate v - - - w being fine
on level ¢ + 1 if we take a level 1 edge (z,y) and either call
Cover(z, y, 1) directly, or first increase the level to i + 1, and
then call Cover(z,y,1 + 1).

Given that v - - - w remains fine on level i + 1, to prove
that it gets fine on level ¢, we need to show that for any re-
maining level i non-tree edge (r,y), all edges e in z---y
have c(e) > . In particular, it follows that v - - - w does be-
come fine on level ¢ if phase 1 runs through without being
stopped.

Now, suppose phase 1 is stopped. Let u; be the last value
of u considered, and (z1,y:) be the last edge considered,
thus increasing the level of (z1,y1) is illegal. Then phase
2 will also stop, for otherwise, it would end up illegally in-
creasing the level of (xzy,y;). Let us be the last value of u
considered, and let (z3,y2) be the last edge considered in
phase 2.

Since the phases were not interrupted for non-tree edges
(z,y) covering edges u before u; or after us, we know that
if (x, y) remains on level i, it is because z - - -y Nv---w C
uy - - - uz. Hence, we prove fineness of level 1, if we can show
that all c-values in u; - - - ug are > 1.

For k 1,2, from the illegality of increasing the
level of (zx,yx), it follows that the 2-edge connected com-
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ponent Ci of zx in Giy1 U {(z,yk)} has > [n/2¢+1]
nodes. However, we know that before the deletion of
(v,w), Cy and C, where both part of a 2-edge con-
nected component D of G;, and this component had at
most |n/2*] nodes. Hence C; NCy #®. Thus, they are
contained in the same 2-edge connected component C of
Gi1 U {(z1,11),(z2,y2)}. Since covering is done for all
level i + 1 edges, it follows that our calls Cover(z1,y1,1)
and Cover(zz, y2, ) imply that all tree-edges in C has got ¢-
values > i. Moreover uy € C, sou; - --up C C, and hence
all edges in u; - - - u have c-values > 1. a

After the last call Recover(v,w,0), we now know that
v---w is fine on level 0, that is, all c-values in F are cor-
rect, except that c-values < 0 on v---w may be too low.
However, since —1 is the smallest value, we conclude that
all c-values are correct, and hence our fully dynamic 2-edge-
connectivity algorithm is correct.

4.2 Implementation

4.2.1 Top-trees

In order to efficiently process information concerning paths
in F', we shall use a variant from [1] of Frederickson’s topol-
ogy trees [5]. The original topology trees are defined for
ternary trees which can then be used to encode trees of un-
bounded degrees. This is often quite technical, so instead we
use a variant from [1], called rop-trees, which works directly
for trees of unbounded degree, and which gives rise to much
fewer cases. For our purposes, top-trees are also easier to use
than the dynamic trees of Sleator and Tarjan [17].

The top-tree is a data structure for dynamic trees that al-
lows simple divide and conquer algorithms. The basic idea is
to maintain a balanced binary tree 7 representing a recursive
subdivision of the tree T into clusters, which are subtrees of
T that are connected to the rest of T' through at most two
boundary nodes. Each leaf of T represents a unique edge of
T and each internal node of 7 represents the cluster that is
the union of the clusters represented by its children.

The set of boundary nodes of a given cluster C is denoted
0C, and a node in C \ OC is called an internal node of C.
If 0C = {a, b} then the path a - - - b is called the cluster path
of C and is denoted 7(C). If a # b then the cluster is called
a path-cluster. The cluster C' is said to be a path-ancestor
of the cluster A and A is called a path-descendant of C if
they are both path-clusters and 7(A4) C «(C). If C is also
the parent of A then A is called a path-child of C. If a is a
boundary node of C and C as two children A and B, then
A is considered nearest to a if a ¢ B or if 04 = {a}.
If 0C = 0A = 3B = {a}, the nearest cluster is chosen
arbitrarily (see figure 1).

As a slight generalization from the above description
we may have up to two external boundary nodes for each
top-tree 7. These nodes are considered boundary nodes of
any cluster in which they appear. In particular, they are the
only boundary nodes of the root cluster of 7.
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Figure 1: The 5 cluster compositions. Cluster A is nearest to
a. In 4 the choice of nearest is arbitrary,

The top-tree supports the following update operations:

Link(v, w): Where v and w are in different top-trees 7, and To,.
Creates a single new top-tree 7 representing 7, U To, U {(v, w)}.
Cut(e): Removes the edge e from the top-tree T containing it,
thus separating the endpoints of e.

Expose(v, w): Makes v and w external boundary nodes of the
tree 7 containing them and returns the new root cluster.

Every update of the top-tree can be implemented as a se-
quence of the following two operations:

Merge(4, B, S): Where A and B are the root-clusters of two
top-trees T4 and 75, AU B is a cluster,

(0AUBB)\ (0ANOB) C S CHAUOB and |S| < 2. Creates
anew cluster C = AU B with 8C = S and makes it the common
roat of A and B, thus turning 74 and 7 into a single new top-tree
T with (possibly external) boundary nodes .

Split(C): Where C is the root-cluster of a top-tree 7 and has
children 4 and B. Deletes C, thus turning 7 into the two top-trees
Taand Ty

Theorem 8 ([1, 5]) We can maintain a top-tree of height
Ollog n) supporting each of the operations Link, Cut and
Expose, using a sequence of at most O(logn) Merges and
Splits per operation. In addition this sequence can be com-
puted in Ollogn) time.

Note that since the height of any top-tree is O(logn), we
have that an edge is contained in at most O(logn) clusters. A
node is internal to at most O(log n) clusters, and we assume
pointers from each node to the unique smallest cluster it is
internal to.

To illustrate the power of our machinery, we now give a
short proof of a result from [17]:

Corollary 9 We can maintain a Sully dynamic forest F and
Support queries about the maximum weight between any two
nodes in O(log n) time per operation.

Proof: For cach path-cluster C' we maintain the maximum
weight We on the cluster path. Then C :=Merge(4, B, S)
sets We = max{Wp|D € {A,B}isa path-cluster}, while
Split(C) just deletes C. Both operations take constant
time. To answer the query MaxWeight(v - - - w) we just call
C :=Expose(v, w) and return We. a
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4.2.2 2-edge connectivity by top-trees

The algorithm maintains the spanning forest in a top-
tree data structure. For each cluster ' we maintain
¢c = c(m(C)). Thus, 2-edge connectivity queries are im-
plemented by:

2-edge-connected(v, w): Set C :=Expose(v, w). Return

(cc 2 0).

In connection with Swap, for a given tree edge (v, w), we
need a covering edge e with £(e) = c(v,w). This is done,
by maintaining for each cluster C a non-tree edge ec cov-
ering an edge on 7(C) with £{ec) = cc. Then the desired
edge e is found by setting C' :=Expose(w, w) and returning
ec. Calls to cover and uncover also reduces to operations on
clusters:

Cover(v, w,): Set C :=Expose(v, w). Call Cover(C, i, (v, w)).
Uncover(v, w,): Set C :=Expose(v, w). Call Uncover(C, 7).

The point is, of course, that we cannot afford to propagate
the cover/uncover information the whole way down to the
edges. When these operations are called on a path-cluster C,
we will implement them directly in C, and then store lazy
information in C about what should be propagated down in
case we want to look at the descendants of C. The precise
lazy information stored is

o ¢t cg and ey, where ¢, < ¢o and €(el) = c}. This
represents that for all edges e € #(C), if c(e) < cG, we
should set c(e) := cf and e(e) := ef;.

The lazy information has no effect if ¢, = ¢ = ~1. Triv-
ially, the cover information in a root cluster is always correct
in the sense that there cannot be any relevant lazy informa-
tion above it. Moreover, note that the lazy cover information
only effects 7(C), hence only path descendants of C. Thus,
the cover information is always correct for all non-path clus-
ters.

In order to guide Recover, we need two things: first we
need to find the level ¢ non-tree edges (g, r), second we need
to find out if increasing the level of (¢, ) to i + 1 will create a
too large level ¢ 41 component. Thus, we introduce counters
size and incident that are further defined so as to facilitate
efficient local computation of all of Cover, Uncover, Split,
and Merge.

e For any node v and any level i, let size,,; = 1 and let
incident, ; be the number of level i non-tree edges with an
endpoint in v.

e Letiand j be levels, and let v be a boundary node of a path-
cluster C. Let X, c,i,; be the sct of internal nodes from
the cluster C' that are reachable from v by a path P where
(PN x(C)) > iand c(P\ #(C)) > j. Then sizey,¢,i,; =

weXy o Sizey,i) is the number of nodes in X,.c,i,; and
incident, ¢ ; ; = (Ewexv,c,i,]’ incident,, ;) is the number of
(directed) level j non-tree edges (g, r) with g € Xu.c,i,5. By
directed we mean that (g, r) is counted twice if 7 is also in
Xo,Cije

¢ Similarly for any level i and any non-path cluster C with
0C = {v} let X, 0. be the set of internal nodes q
from C such that c(v---q) > 4. Then sizey,c,i =
(Zwexv ¢.:51Z8w,i) is the number of nodes in X, c; and
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incident,,c,; = (Zwexvvcy‘_incidentw,;) is the number of
(directed) level 2 non-tree edges (¢, r) withg € X, ¢...
We are now ready to implement all the different procedures:
Cover(C,i,e): Ifcc <i,setec:=iandec :=e. Ifi < ¢, do
nothing. If ¢, > i > ¢k, setcf ;= iand e} :=e. Ifi > g, set
cg :=iandc :=iand el := e. For X € {size,incident} and
forall -1 < j<iand -1 < k < L and for v € 8C set
Xo,Ck 2= Xo 01,k
Uncover(C,:): Ifcc <i,setce := —1 and ec := nil. If
1< cg, do nothing. If ¢ > cé, set cg := —1and
¢c = max{cg, i} and e} :=nil. For X € {size,incident} and for
all-1<j<iand -1 <k < L and for v € 8C set
Xo,0jk = Xo,Crit1 k-
Clean(C): For each path-child A of C, call Uncover(A, cg) and
Cover(A, cf, ed). Setcl := —1and ¢; := —1 and ef; :=nil.

Split(C): Call Clean(C). Delete C.

Merge(A, B, {a}): Where a € dA. Create a parent C of A and
B with 8C = {a}. Let c be the node in 4 N dB.

For X € {size,incident} and for j := 0,..., L: If A is a non-path
cluster, set Xo,c,j := Xa,a,; + Xa B,;. Otherwise set

Xa,cj = Xa,a,5,i(+Xe,j + Xe.p,j ifca > 9).

Merge(A, B, {a,b}): Wherea € 84 and b € OB. Create a
parent C of 4 and B with C = {a, b}. Let ¢ be the node in
8ANOB. Let D be the path-child of C minimizing cp, then set
¢c :=cp and ec := ep. Setct := ~land ¢ := —1 and
el :=nil. For X € {size,incident} and for ¢, := —1,..., L
compute X, c,i,; as follows (Xp,¢,i,; is symmetrical): If A is a
non-path cluster, set X, ci,; = Xa 4,; + Xa,B,i,j. Otherwise if
B is a non-path cluster, set
Xa,C,i,j 1= Xa,A,,‘,]’(-{-Xc,B,j ifca > l) Finally if both 4 and
B are path-clusters, set
X005 = Xa,a,i,5(+Xej + X B j ifca > ).
Recover(v, w, i):
e Foru:=v,w
- Set C :=Expose(v, w).
~ While incidenty, ¢, ~1,; +incident, ; > 0 and not
stopped,
* Set (g, r) :=Find(u, C, i).
* D :=Expose(q, r).
* If sizeq p,-1,i +2 > n/2",
- Cover(D, i, (q,r)).
- Stop the while loop.
* Else
- Set£(g,r) := i + 1, decrement incident, ; and
incident, ; and increment incident, ;+; and
incident,. ; ;.
- Cover(D,i +1,(q,7)).
* C :=Expose(v, w).
Find(a,C,i): Ifincident.,; > O then return a non-tree edge
incident to a on level i. Otherwise call Clean(C) and let A and B
be the children of C with A nearestto a. If A is a non-path cluster
and incidentq, 4,: > 0 or A is a path cluster and
incidenta, 4,~1,; > 0, then return find(a, A, i). Else, let b be the
boundary node nearest to a in B, return find(b, B, ).

Theorem 10 There exists a deterministic Jully dynamic al-
gorithm for maintaining 2-edge connectivity in a graph, us-
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ing O(log* n) amortized time per operation.

Proof: Cover(C,i,e) and Uncover(C, i) both take
O(log’n) time. This means that Clean(C) and thus
Split(C) takes O(log® n) time. Since Merge(A, B, S) also
takes O(log® n) time we have by theorem 8 that Link(v, w),
Cut(e) and Expose(v, w) takes O(log® n) time. This again
means that FindCoverEdge (v, w), 2-edge-connected (v, w),
Cover(v---w,,e) and Uncover(v---w, i) take O(log® n)
time. Find(a,C,1) calls Clean(C) O(logn) times and
thus takes O(log®n) time. Finally Recover(v, w, 1) takes
O(¢log® n) time where £ is the number of non-tree edges
whose level is increased. Since the level of a particular
edge is increased at most O(logn) times we spend at most
O(log* n) time on a given edge between its insertion and
deletion. (W]

5 Biconnectivity

In this section we present an O(log? n) deterministic algo-
rithm for the biconnectivity problem for a fully dynamic
graph G. We will follow the same pattern as was used for
2-edge connectivity. Historically, such a generalization is
difficult. For example, it took several years to get sparsifi-
cation to work for biconnectivity {3, 13]. Furthermore, the
generalization in [9] of the O(log® n) randomized 2-edge
connectivity algorithm from [11] has an expected bound of
O(Alog* n), where A is the maximal degree {Henzinger,
pc 1997]. Our main new idea for preserving the O(log* n)
bound for biconnectivity, is an efficient recycling of the in-
formation as described in Lemma 12 below.

A rtriple is a length two path zyz in the graph G, and a
tree triple yz in F is said to be covered by a non-tree edge
(v,w) if zyz C v---w, that is if zyz is a segment of the
cycle induced by (v, w). Covered triples are also transitively
covered, and if zyz and z'yz are transitively covered, then
so is zyx'. An articulation point is a vertex whose removal
disconnect a component of G.

Lemma 11 v is an articulation point if and only if there is
an uncovered tree triple uvw. Moreover, v and w are bicon-
nected ifand only if forall zyz C v - - - w, TYz is transitively
covered.

5.1 High-level

As with 2-edge connectivity, with each non-tree edge e, we
associate a level £(e) € {0,...,L}, L = |log,n], and
for each 4, we let G; denote the subgraph of G induced by
edges of level at least i together with the edges of F. Thus
G=Go2G,D...0GL D F. Here, for biconnectivity,
we will maintain the invariant:

(i) The maximal number of nodes in a biconnected compo-
nent of G; is [n/2').

As for 2-edge connectivity, the invariant is satisfied initially,
by letting all non-tree edges have level 0. We say that it is
legal to increase the level of a non-tree edge e to j if this
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does not violate (i”), that s, if the biconnected component of
e in Gj U{e} has at most |n/27 | vertices.

For each vertex v and each level 1, we implicitly main-
tain the disjoint sets of neighbors biconnected on level ¢. If
u is a neighbor of v, the set of neighbors of v biconnected
to u on level ¢ is maintained as ¢, ;(u). As for 2-edge con-
nectivity, the c-values may temporarily not be fully updated.
If P is a path in G, ¢(P) denotes the maximal 1 such that
for all triples zyz C P, z € ¢, ;(x). If there is no such i,
¢(P) = —1. Thus ¢(P) > ¢ witnesses that the end points
of P are biconnected on level i. Typically P will be a tree
path, but in connection with Recover, we will consider paths
where the last edge (q,7) is a non-tree edge. We say that v
and w are c-biconnected on level i if they are connected and
c(v---w) > 1. If all c-values are updated, we therefore have

biconnected(v,w): Decides if v and w are c-biconnected on
level 0.

To update c-values from scratch, we need

InitTreeEdge(v, w): Fori:=0, -, L, setc, i(y) := {y} and
cy.i(z) == {z}.

FreeTreeEdge(v, w): Remove y from c...(-) and remove z from
¢y, ()

Cover(zyz,1): Where zyz is a tree triple, unions ¢y,i{z) and
eyi{z)forj:=0,... 4

Cover(v, w,?): Calls Cover(zyz,i) forall zyz C v - - w.

Now, as for 2-edge connectivity, we can compute all c-values
by first calling InitTreeEdge(v, w) for all tree edges (v, w),
and then calling Cover(q,r, ¢(q,r)) for all non-tree edges
(g,7). The above routines immediately complete the de-
scriptions of Insert and Swap. In order to describe Delete,
we need to define both Uncover and Recover. To do this
efficiently, we have to recycle cover information using 'the
following:

Lemma 12 Let (v,w) be a level i non-tree edge covering
a tree triple xyz C v---w. Suppose s is a neighbor to y
biconnected on level J < itox, and hence toy, and z. Then,
if (v, w) is deleted, afterwards, s is biconnected on level jto
T orz, and it may be biconnected to both,

The lemma suggests, that when (v, w) is deleted, we should
store the neighbors s mentioned. This is done in ¢y, (z]2)
by Uncover. More precisely, ¢, j(z|z) will be the set of
neighbors to y that we know are biconnected to z or z, but
that are not yet c-biconnected to either. This will be used in
one of two ways. Either z and z get c-biconnected on level
J» in which case we just restore ¢y,i(z) and ¢y ;(z) by set-
ting ¢y.5(z) 1= ¢,,;(2) = ¢, 5 (@)} U ey ;(z) U cy () and
¢y i(z|z) := ¢, Alternatively, suppose we know we have fin-
ished updating ¢y,j(z) and that z ¢ ¢, ;(x). Then we can set
€y,j(2) := ¢y j(z]2) U ¢y,i(2) and ¢y j(z|2) := 0.
Uncover(zyz, i): where zyz is a tree triple c-biconnected on
level 4, if it is also c-biconnected on level i + 1, do nothing;
otherwise, forj:=1i,...,0,set

i (2l2) 1= ey 5 (@) \ (ey,141(2) U ey g (2)),

©05(2) 1= ¢ j41(2), and ¢y ;(z) := cy,j+1(2).

%‘
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Strictly  speaking, above, we should also set
cy,i(8) := ¢y j+1(s) for all s ¢ ¢y,j{z|2), but our algo-
rithm will never query any subset of ¢y i(z]2).

Uncover(v, w,i): Calls Uncover(zyz,i) forall zyz C v- - - w.
Cover(zyz,1): Where zyzis a tree triple. Forj = 0, ..., 4, if
¢y,;(z]2) # 0, union ¢, ;(z), ¢y,5(2), and ¢y ;(zx|z), and set
¢y,;(z]z) := 0. Otherwise, union ¢y,;(z) and ¢, ;(z), subtracting
them from any ¢y ; (-}-) they might appear in.

To complete the description of Delete, we need to define Re-
cover.

Recover(v, w,7): We divide into two symmetric phases. Phase 1
goes as follows:
Setu := v and let u’ be the successor of % in v,
(*) While there is a level i non-tree edge (g, r) such
that w = meet(q, v, w) and c(u' u - - - qr) > i, if
legal, increase the level of {¢,7)t0i+ 1 and call
Cover(q, r,i + 1); otherwise, just call
Cover(q, r, 1) and stop Phase 1.
While 3u'un” C v-- - w with cy.i(z|z) # 0,
Let u'un” be such a triple nearest to v.
Run (*) again with the new values of v and u'.
Union ¢, ;(u") and ¢, ; (u'|u"), and set
Cu,j(W']u”) := 0
Run (*) again with 4" in place of o’
If Phase 1 was stopped in (*), we have a symmetric Phase 2, which
is the same except that we start with = w and in the loop choose
the triple vw'uw” C w- - - v nearest to w.

The proof of correctness is essentially the same as for 2-edge
connectivity. As a small point, note that different bicon-
nected components may overlap in one vertex. Nevertheless,
we cannot have two different biconnected components with
> [n/2*1] nodes whose combined size is < [n/2.

Note that at the end of Recover(v,w, 7), all sets
¢yi(zl2), zyz C v---w, will be empty. Hence, for each
Y, there can be at most one pair z and z with cyi(z|z) # 0.
Then we refer to z and z as the uncovered neighbors of y.

5.2 Impiementation

The main difference between implementing biconnectivity
and 2-edge connectivity, is that we need to maintain the bi-
connectivity of the neighbors of all vertices efficiently. For
each vertex y, we will maintain cy,-(+) as alist with weights
on the links between succeeding elements such that c(zyz)
is the minimum weight of a link between z and 2 in cy,- ().
Then ¢y i(z) is a segment of ¢, .(-) and using standard tech-
niques for manipulating lists, we can easily find ¢(zyz) or
identify ¢, ;(x) in time O(log n).

Now, if ¢y ;_1(z) = ¢, ;.1(2), we can union ¢y, (2)
and ¢, ;(z) without affecting Cy,j—1(z), simply by moving
Cy,j(2) 10 ¢y ;() on level j as follows. First we extract
¢y,;(2), replacing it by the minimal link to it neighbors.
Since both of these links are at most j — 1, this does not af-
fect the minimum weight between elements outside ¢y ;(2).
Second we insert ¢, ;(z) after Cy,j () with link j in between.
The link after ¢, ;(z) becomes the link we had after ¢y, ().
Note thatif z € ¢, . (u'|u") and we move Cu,;(T) 1o ¢y j(u'),




then, implicitly, we delete ¢, ;(z) from ¢, ;(u'lu"), as re-
quired.

InitTreeEdge(v, w): Link w to cy,.(-) on level -1 and v to ¢, (*)
on level -1.

FreeTreeEdge(v, w): Extract w from cy,.(-) and v from cu,.(:).
Cover(zyz,i): Where zyzis atree triple. For j = 0,...,4,ifz
and z are uncovered neighbors of y and ¢y, ; (z|z) # @, move
cy,i(z|2) and ¢y ;(2) to ¢y,; (). Else, if z is an uncovered
neighbor of y, move ¢, (2) to ¢y,; (z). Else move ¢y,; () to
cy.i(2).

Uncover(ryz,i): where c{zyz) > i, if ¢(zyz) > 4, do nothing;
otherwise, for j :=1,...,0, first extract ¢y ; () and set

¢y.j (z]2) = cy,;(z). Then move ¢y j+1(z) and ¢y, ;4+1(2) back to
the neighbor list cy,.(+) on level -1.

Biconnectivity by top-trees As for 2-edge connec-
tivity, the algorithm maintains the spanning forest in a
top-tree data structure. For each cluster C' we maintain
co = c(n((C)).

Biconnected(v, w): Set C :=Expose(v, w). Return (cc > 0).

Also, ec, ¢}, ¢z, and e} are defined analogously to in 2-
edge connectivity. The cover edges ec and eg are exactly
the same, while cg and c, like cc, now refer to covering of
triples instead of edges.

A main new idea is that we overrule the top-trees by us-
ing the neighbor lists ¢,,.(-) to propagate information from
minimal non-path clusters to path clusters. Recall that in 2-
edge, the information in non-path clusters is never missing
any lazy information. Let v be the boundary node of a path
cluster C, and let w be any neighbor to v in C \ 7(C). Then
we call w a cluster neighbor of v. It is easy to see that there is
then a non-path cluster A C C with {v} = 0Aandw € A.
We call the minimal such cluster A the neighbor cluster of
{(v,w), and denote it NC(v,w). Note that the ordering of
v and w matters. It is easy to see that there cannot be an-
other (v,w') with NC(v,w') == NC(v,w). Hence, for any
neighbor cluster NC (v, w), we can uniquely talk about the
neighbor edge (v, w). We are going to use the neighbor lists
to propagate counters directly from neighbor clusters to the
minimal path clusters containing them, skipping all non-path
clusters in between.

We are now ready for the rather delicate definitions of
the counters size and incident for path clusters and neighbor
clusters.

e Let j and k be levels, and let C be a path-cluster with 0C =
{v, w}. Let size, ¢ ;& denote the number of internal nodes ¢
of C such that either ¢ € «(C) and ¢{v---¢) > 1 or there
exist a triple v'uu”’ C w(C) with u = meet(v,w,q) and
(u,7) € u---gsuchthatc(v---u) > j,clu---¢q) > kand
either c(v'uz) > k or c(u'vu”) > jand z € cyu ik (u’) U
cu.k(v'|u'). Let incident, ¢ ;& be the number of (directed)
non-tree edges (g, r) with the path v - - - gr satisfying the con-
ditions from above for the pathv - - - q.

o Similarly let k be a level and let C be a neighbor cluster with
neighbor edge (v, w). Let sizey, ¢, be the number of internal
nodes ¢ of C such that c(vw - - - ¢) > k, and let incident,, ¢ x
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be the number of (directed) non-tree edges (g, r) where q is
an internal node of C and c(vw - - - gr) > k.

To get from neighbor clusters to path clusters, and vice versa,
we need the following functions:

Size(v, W, i): where W is a set of neighbors of v, returns
Y wew (SiZey Ne(v,w),i if w cluster neighbor of v, 0 otherwise).

Incident(v, W, 7): where W is a set of neighbors of v, returns
ZWEW (1 if w non-tree neighbor of v, Incident, xc(v,w),i if w
cluster neighbor of v, and 0 otherwise).

Neighbor X (u, v, i): X € {Size, Incident}, X (u, c.,:(u'), )

Neighbor X (u,u’ V +”',i): X € {Size, Incident},
X (u, cui(u) Uewi{u) Ui (o |u), 9).

NeighborFind(u,v',7): Finds z € c.,:(u’) such that z is either a
non-tree neighbor of « or a cluster neighbor with
incident, NC(u,z),i > 0.

Whenever the counters of a neighbor cluster NC'(v,w) are
updated, we update corresponding counters of w in the
neighbor list ¢,,.(-) of v. Standard list data structures allow
us, in O(log n) logarithmic time, to update any one of the
2L counters of a neighbor, or to answer a query NeighborX.
The remaining operations are implemented analogously to in
2-edge connectivity.

Cover(C, 1, e): First we do as in 2-edge connectivity. If C has
path children A and B and {u} = AN 8B ¢ 8C and v'uu” is
the triple with v’ € A and u” € B, then we call Cover(v'uu”, 7).

Uncaver(C,1): First we do as in 2-edge connectivity. If C has
path children A and B and {u} = 8A N8B € 8C and v'uu" is
the triple with v’ € A and u” € B, then we call

Uncover(u' uu” , 7).

Merge(A, B, {a}): Where a € 0A. Create a parent C of A and
B with 8C = {a}. If A is a non-path cluster, we are done.
Otherwise, let «'uu” be the unique triple such that v’ € w(A),
{u} = AN 8B and B is the neighbor cluster of (u,¢"). Then
for X € {size,incident} and k := —1,..., L, Xo ok := Xa,4,k,k
ifcq <k, Xa,C.k = Xa‘Ayk,k-i-NeighborX(u, u', k) if

ca > kAc(u'vu") <k, and finally

Xa,ck = Xa,akx+NeighborX (u, v’ Vu' k) + X, B« if
ca > kAc(u'uu') > k. Let a’ be the successor of a in w{A).
Then C = NC(a,a’), so we have to update the 2L counters
associated with a’ in a’s neighbor list c,,. (+).

Merge(A, B, {a,b}): Wherea € 04 and b € OB. Create a
parent C of A and B with 8C = {a,b}. cc, ec, c&, cg and e},
are maintained as in 2-edge connectivity. For X € {size,incident}
and j,k := —1,..., L compute X, ¢,j, as follows (X3 c,j.& is
symmetrical): If A is a non-path cluster, set X4, ¢,j.x := Xa,B,j k-
Otherwise if B is a non-path cluster, set X, ,c,j .k 1= Xa,A,j.k-
Finally if both A and B are path-clusters, let u'uu’ be the triple
such that v’ € w(A), {u} = 84U 8B, and u" € n(B). Then
Xa,0jk :=Xa,a,kifca <j,

Xa,c,jk = Xa,a,jk+NeighborX (u, v, k) if

ca 2 jAc(v'uu'") < j, and finally

Xa,0,.k = Xa,a,j,k+NeighborX (u, v’ vV u" k) + Xy, p.jx if
ca > jAc(u'uu) > 3.

Recover(v, w,1): We divide into two symmetric phases. Phase 1
goes as follows:

Set C :=Expose(v, w).




Set u := v and let u’ be the successor of wonu- - - w.
(*) While NeighborIncident(u, v’ ) > 0,
e Set(g,r) :=VertexFind(u, C,4,v').
o D :=Expose(q,r).
e Let(g,¢') and (r',r) beedgesongq---r
s Ifsizeq,p,~1,: + 2+ NeighborSize(q, ¢', i)+
NeighborSize(r, ', i) > n/2¢,
~ Cover(D, i,(q,1)).
— Stop the phase.
« Else
— Set £(q,7) := i + 1, updating the
corresponding incidence counters cg,.(-) and
er,(+)-
- Move cq,i41(7) 10 ¢q,i41(g") and ¢, i1 (q) to
cri1(r’) onlevel i + 1.
- Cover(D,i+1,(q,7)).
s C :=Expose(v, w).
u :=FindBranch(v, C, {).
While u #nil,
Let u' be the predecessor, and let u” be the
successorof uinwv- - - w.
Run (*) again with the new values of v and v’.
Move ¢y ,;(x]2) to cy,;(2) and set
cyslx]z) =0
Run (*) again with v" in place of '
u :=FindBranch(v, C, 7).
If Phase 1 was stopped in (*), we have a symmetric Phase 2 with
the roles of v and w interchanged.

FindBranch(s, C, #): Ifincidenty,c _1 ; = 0 return nil else call
Clean(C). If C has only one path-child a then return
FindBranch(a, 4, 7). Otherwise let A and B be the children of C
with A nearest to a and let u'uu" be the triple such that

v € w(A)andu” € 7(B) andu € AU JB. If

incidents, 4, —1; > O then return FindBranch(a, A, i). Otherwise
if eyi(u'|u") # @ then return u else return FindBranch(u, B, i).
VertexFind(u, C,4,v'): Call Clean(C). Let

z :=NeighborFind(u, ', 1). If z is a non-tree neighbor, return

(u, z). Otherwise z is a cluster neighbor and then NC(u, z) has
‘Wo children A and B withu € A, AN B = {b}. If

incident(w, A, 4,4) > 0, return PathFind(u, A, i). Otherwise,
return VertexFind(b, B, 1,b') where b’ is the predecessor of b in
e--b.

PathFind(a, C,i): Call VertexFind(a, C, 1, a’) where a’ is the
fuccessor of a on a - - - b. If no edge was returned, let A and B be
the children of C with A4 nearest to a. If incidentg, 4,—;,; > 0 then
feturn PathFind(a, A, 1). Else let b be the boundary node nearest to
¢in B, return PathFind(b, B, i). If no edge was found return
VertexFind(b, C, ,b'), where b’ is the predecessor of bon a - - - b.

Theorem 13 There exists a deterministic Jully dynamic al-
&orithm for maintaining biconnectivity in a graph, using
O(log* n) amortized time per operation.
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