The training error theorem for boosting
Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: (x1,y1),...,(xN,yny) where z; € X, y; € {—1,+1}
Initialize Dy(i) = 1/N.
Fort=1,...,T:

Train weak learner using training data weighted according to distribution D;.
Get weak hypothesis h; : X — {—1,+1}.
Measure “goodness” of h; by its weighted error with respect to Dj:
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where Z; is a normalization factor (chosen so that D,.; will be a distribution).

Output the final classifier:

H(z) = sign <ti1 &tht(a:)> .

Although the notation is different, this algorithm is the same as in Fig. 18.10 of R&N.
In class, we proved the training error theorem, which states that the training error of H

1s at most ’
exp (—2 > )
t=1

where ¢, = % — Y.
We prove this in three steps.

Step 1: The first step is to show that
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Proof: Note that Eq. (1) can be rewritten as
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since y; and hy(x;) are both in {—1,41}. Unwrapping this recurrence, we get that
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Step 2: Next, we show that the training error of the final classifier H is at most

Proof:

training error(H) = N > { é
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Step 3: The last step is to compute Z;.
We can compute this normalization constant as follows:
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by definition of the training er-
ror

since H(z) = sign(f(z)) and
Y; € {—1, +1}

since e* > 11if 2 <0
by Step 1 above

since D, is a distribution

by definition of ¢

by our choice of «; (which was
chosen to minimize this expres-
sion)

plugging in ¢ = 5 —

using 1 4+ x < x for all real x

Combining with Step 2 gives the claimed upper bound on the training error of H.



