Computer Science 341 Discrete Mathematics

Problem Session 1 September 23, 2002

Problem 1

Prove that if $x \ge -1$, then for any integer $n \ge 0$, $(1+x)^n > nx$.

Problem 2

Use induction to prove that for any $n \ge 1$, $2^{2^n} + 3^{2^n} + 5^{2^n}$ is divisible by 19.

Problem 3

Show that every sequence of $n^2 + 1$ distinct numbers has either an increasing sequence of length n + 1 or a decreasing sequence of length n + 1.

Problem 4

Prove that n straight lines in general position divide the plane into exactly n(n+1)/2+1 regions. (A set of lines is said to be in *general position* if the intersection of every pair of lines is a single point and no two pairs have the same intersection.)

Problem 5

Prove that any amount greater than 7 cents can be paid exactly with 5-cent and 3-cent coins only.