Administrative Issues

* Textbook update:
» Bookstore will get one additional copy of textbook.

» Copies will be available at Triangle, 150 Nassau Street
(Tel: 609 924 4630) for $35 beginning today. They are

COS 341 Discrete Mathematics open M-F 8am-6pm.

« Updated collaboration policy

Advanced Counting
* Tutoring ?
+ Readings for this week: Matousek and Nesetril, Chapter 10
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A B | A UA,U--UA, |
- Z‘Ai|_ Z ‘AilmAizy
i=1 1<i\<i,<n
c + Y. 14 N4.N4 |
1<) <ip <iy<n I ‘
|AUBUC| = |4] + [B| +|C| - ...+(_1)"*1 | A NA4,NNA, |
- |ANB|-1ANC|-|BNC|
+|ANBNC| , )




Hatcheck lady problem

n gentlemen arrive at a party and leave their hats in the
cloak room. On their departure, the hatcheck lady absent-
mindedly hands back a hat to each man at random.

What is the probability that none of the men receives their
own hat ?

* n! ways of assigning hats back to men

* What fraction of these assignments are such that
no man receives his own hat ?

Hatcheck lady

Number hats and men 1,2,..,n

7(i): number of hat received by ith man
T is a permutation

Index i with w(i) =1 is a fixed point of ©

D(n): number of permutations with no fixed point

Enter inclusion-exclusion

S, set of all permutations
s Ai={meS, ni)=1}
* U; A bad permutations
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Finishing up
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Probability that nobody gets their hat back
converges to the constant e’! = 0.36787
independent of the number of men !

Algebraic derivation of identities on
binomial coefficients

Binomial Theorem:

(1+x)"= i[z

[kg(])+[';]x+[;]x2+...+[n" 1]+[]

Equality of two polynomials implies equality of
corresponding coefficients
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Algebraic derivation of identities on
binomial coefficients
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Algebraic derivation of identities on
binomial coefficients
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Algebraic derivation of identities on
binomial coefficients

O
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coefficient of x"on LHS = Z(_ 1) [”] n J
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coefficient of x"on RHS = L[ n
=D" /9 n even
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Algebraic derivation of identities on
binomial coefficients
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Algebraic derivation of identities on
binomial coefficients
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Power series

Infinite series of the form a, +a,x +a,x* +---

1
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Series converges for x in the interval (-1,1)
Function contains all the information about series

Differentiate k times and substitute x=0,
we get k! times coefficient of xk
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Taylor series of the function T atx=0
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Power series

(ay,q,,a,,...) :sequence of real numbers
n
ja, < K
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For any number x € (—+,+), the series

a(x) = ZZO a,-x' converges
Values of a(x) in arbitrarily small neighborhod of 0
uniquely determine (q,,q,,a,,...)
(m)
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Generating functions

(ay,q,,a,,...): sequence of real numbers

Generating function of this sequence is

oo

the power series a(x) = Z;:o a,-x

i

Generating function basics

What is the generating function of the sequence
(1L,3:55,)?
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Generating function toolkit:
Generalized binomial theorem

rlrr—0(r—=2)...(r—k+1)
k| k!

(1+x)" is the generating function
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always converges for all | x|<1
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Negative binomial coefficients ?
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Operations on power series
+ Addition
(a,+by,a,+b,,...) has generating function a(x)+ b(x)

» Multiplication by fixed real number

(aa,,a,,...) has generating function ca(x)

+ Shifting the sequence
(0,...0,a,,a,,...) has generating function x"a(x)
iyl

nx

+ Shifting to the left
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* Substituting ax for x
(a,,0a,,0’a, ...) has generating function a(ow)

(1,2,4,8,...) has generating function ?

* Substitute x" for x

(1,1,2,2,4,4,8,8,...) has generating function ?
1 n X
1-2x*  1-2%7

23

* Integration and differentiation
(ay,2a,,3a,...) has generating function ?

(0,ay,%a,,%a,...) has generating function ?

» Multiplication of generating functions

24




