

Administrative Issues

- Textbook update:
- Bookstore will get **one** additional copy of textbook.
- Copies will be available at **Triangle**, **150 Nassau Street** (**Tel: 609 924 4630**) for \$35 beginning today. They are open M-F 8am-6pm.
- Updated collaboration policy
- Tutoring ?
- Readings for this week: Matousek and Nesetril, Chapter 10

2

Hatcheck lady problem

n gentlemen arrive at a party and leave their hats in the cloak room. On their departure, the hatcheck lady absentmindedly hands back a hat to each man at random.

What is the probability that none of the men receives their own hat ?

- n! ways of assigning hats back to men
- What fraction of these assignments are such that no man receives his own hat ?

5

7

Hatcheck lady

- Number hats and men 1,2,..,n
- $\pi(i)$: number of hat received by *i*th man
- π is a permutation
- Index i with $\pi(i) = i$ is a fixed point of π
- D(n): number of permutations with no fixed point

6

Enter inclusion-exclusion

- S_n: set of all permutations
- $A_i = \{ \pi \in S_n : \pi(i) = i \}$
- $\cup_i A_i$: *bad* permutations

$$|A_i| = (n-1)!$$

 $|A_i \cap A_j| = (n-1)!$

$$A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k} \models (n-k)!$$

Enter inclusion-exclusion

$$|A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}| = (n-k)!$$

$$|A_{1} \cup A_{2} \cup \dots \cup A_{n}| = \sum_{k=1}^{n} (-1)^{k-1} {n \choose k} (n-k)!$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{k!}$$

$$D(n) = n! - |A_{1} \cup A_{2} \cup \dots \cup A_{n}|$$

$$= n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^{n} \frac{n!}{n!}$$

$$= n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^{n} \frac{1}{n!}\right)$$
₈

Algebraic derivation of identities on binomial coefficients $\sum_{k=0}^{n} {\binom{n}{k}}^{2} = {\binom{2n}{n}}$ $(1+x)^{n} (1+x)^{n} = (1+x)^{2n}$ coefficient of xⁿ on LHS $= {\binom{n}{0} {\binom{n}{n}} + {\binom{n}{1} {\binom{n}{n-1}}} + {\binom{n}{2} {\binom{n}{n-2}}} + \dots + {\binom{n}{n} {\binom{n}{0}}}$ $= \sum_{k=0}^{n} {\binom{n}{k} {\binom{n}{n-k}}}$

Algebraic derivation of identities on binomial coefficients $\sum_{k=0}^{n} (-1)^{k} {n \choose k} {n \choose n-k} = ?$ $(1-x)^{n} (1+x)^{n} = (1-x^{2})^{n}$ $coefficient of x^{n} on LHS = \sum_{k=0}^{n} (-1)^{k} {n \choose k} {n \choose n-k}$ $coefficient of x^{n} on RHS = \begin{cases} 0 & \text{when n odd} \\ (-1)^{n/2} {n \choose n/2} & \text{n even} \end{cases}$

Algebraic derivation of identities on binomial coefficients $\sum_{k=0}^{n} (-1)^{k} k \binom{n}{k} = ?$ $-n(1-x)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} k \cdot x^{k-1}$ substitute x = 1 $0 = \sum_{k=0}^{n} (-1)^{k} k \binom{n}{k}$

Algebraic derivation of identities on
binomial coefficients
$$\sum_{k=0}^{n} (-1)^{k} k \binom{n}{k} = ?$$
$$(1-x)^{n} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} x^{k}$$
$$\frac{d}{dx} (1-x)^{n} = \frac{d}{dx} \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} x^{k}$$
$$-n(1-x)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} k \cdot x^{k-1}$$

Power series Infinite series of the form $a_0 + a_1x + a_2x^2 + \cdots$ $\frac{1}{1-x} = 1 + x + x^2 + \cdots$ Series converges for x in the interval (-1,1) Function contains all the information about series Differentiate k times and substitute x=0, we get k! times coefficient of x^k Taylor series of the function $\frac{1}{1-x}$ at x = 0

Power series $(a_{0}, a_{1}, a_{2}, ...): \text{ sequence of real numbers}$ $|a_{n}| \leq K^{n}$ For any number $x \in (-\frac{1}{K}, \frac{1}{K})$, the series $a(x) = \sum_{i=0}^{\infty} a_{i} \cdot x^{i}$ converges Values of a(x) in arbitrarily small neighborhod of 0 uniquely determine $(a_{0}, a_{1}, a_{2}, ...)$ $a_{n} = \frac{a^{(n)}(0)}{n!}$

Generating function basics What is the generating function of the sequence $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots)?$ $1 + \frac{1}{2}x + \frac{1}{3}x^{2} + \frac{1}{4}x^{3} + \cdots$ $-\frac{\ln(1-x)}{x}$ $x + \frac{1}{2}x + \frac{1}{3}x^{2} + \frac{1}{4}x^{3} + \cdots = -\ln(1-x)$ $1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots = e^{x}$

Generating functions

 $(a_0, a_1, a_2, ...)$: sequence of real numbers Generating function of this sequence is

the power series $a(x) = \sum_{i=0}^{\infty} a_i \cdot x^i$

Generating function toolkit: Generalized binomial theorem $\binom{r}{k} = \frac{r(r-1)(r-2)\dots(r-k+1)}{k!}$ $(1+x)^r$ is the generating function for the sequence $\binom{r}{0}, \binom{r}{1}, \binom{r}{2}, \binom{r}{3}, \dots$ The power series $\binom{r}{0} + \binom{r}{1}x + \binom{r}{2}x^2 + \binom{r}{3}x^3 + \dots$ always converges for all |x| < 1

18

Negative binomial coefficients ?

$$\binom{r}{k} = (-1)^{k} \binom{-r+k-1}{k} = (-1)^{k} \binom{-r+k-1}{-r-1}$$

 $\frac{1}{(1-x)^{n}} = \binom{n-1}{n-1} + \binom{n}{n-1} x + \binom{n+1}{n-1} x^{2} + \dots + \binom{n+k-1}{n-1} x^{k} + \dots$
 $\frac{1}{1-x} = 1 + x + x^{2} + \dots$

Operations on power series Addition (a₀+b₀, a₁+b₁,...) has generating function a(x)+b(x) Multiplication by fixed real number (αa₀, αa₁,...) has generating function αa(x) Shifting the sequence (0,...0, a₀, a₁,...) has generating function xⁿa(x) Shifting to the left

• Substituting αx for x

 $(a_0, \alpha a_1, \alpha^2 a_2 \dots)$ has generating function $a(\alpha x)$

(1, 2, 4, 8, ...) has generating function ?

- Substitute x^n for x

(1,1,2,2,4,4,8,8,...) has generating function ?

$$\frac{1}{1-2x^2} + \frac{x}{1-2x^2}$$