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COS 341   Discrete Mathematics

Advanced Counting
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Administrative Issues
• Textbook update:
• Bookstore will get one additional copy of textbook.
• Copies will be available at Triangle, 150 Nassau Street 

(Tel: 609 924 4630) for $35 beginning today. They are 
open M-F 8am-6pm. 

• Updated collaboration policy 

• Tutoring ?

• Readings for this week: Matousek and Nesetril, Chapter 10
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Inclusion-Exclusion principle
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Inclusion-Exclusion principle
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Hatcheck lady problem

n gentlemen arrive at a party and leave their hats in the 
cloak room. On their departure, the hatcheck lady absent-
mindedly hands back a hat to each man at random. 

What is the probability that none of the men receives their 
own hat ?

• n! ways of assigning hats back to men
• What fraction of these assignments are such that 

no man receives his own hat ?
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Hatcheck lady
• Number hats and men 1,2,..,n
• π(i): number of hat received by ith man
• π is a permutation
• Index i with π(i) = i is a fixed point of π
• D(n): number of permutations with no fixed point
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Enter inclusion-exclusion
• Sn: set of all permutations
• Ai = {π ∈ Sn : π(i) = i }
• ∪i Ai :  bad permutations
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Enter inclusion-exclusion
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Finishing up

11 1 11 ( 1)    converges to  
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Probability that nobody gets their hat back 
converges to the constant e-1 = 0.36787
independent of the number of men !
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Algebraic derivation of identities on 
binomial coefficients

Binomial Theorem:
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Equality of two polynomials implies equality of 
corresponding coefficients
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Algebraic derivation of identities on 
binomial coefficients
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Algebraic derivation of identities on 
binomial coefficients
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Algebraic derivation of identities on 
binomial coefficients
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Algebraic derivation of identities on 
binomial coefficients
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Algebraic derivation of identities on 
binomial coefficients
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Power series
2

0 1 2Infinite series of the form a a x a x+ + +"
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Series converges for x in the interval (-1,1)

Function contains all the information about series

Differentiate k times and substitute x=0, 
we get k! times coefficient of xk
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Power series
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Generating functions
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Generating function basics
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Generating function toolkit:
Generalized binomial theorem
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Negative binomial coefficients ?
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Operations on power series
• Addition

• Multiplication by fixed real number

• Shifting the sequence

• Shifting to the left

0 0 1 1   has generating function( , , ) ( ) ( ) a b a b a x b x+ + +…

0 1   has generating functi( , , ) (on )a a a xα α α…

N 0 1   has generating fu(0, 0 ncti, , on , ) ( )n

n

a a x a x
×

… …
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• Substituting αx for x

• Substitute xn for x

2
0 1 2   has generating funct( , , ion) ( ) a a a a xα α α…

 has generating (1, 2 func, 4 ti ?,8, ) on …

2 2

has generating functio(1,1, 2,2 n ?
1

1- 2

,4,4, 8

1

8, , )

2
x

x x
+

−

…



24

• Integration and differentiation

• Multiplication of generating functions
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