COS 341 Discrete Mathematics

Counting

Administrative Issues

Bookstore has run out of copies of textbook.

Readings for this week: Matousek and Nesetril, Chapter 2
next week: Chapter 10

Homework policy:

All problems on a homework carry the same weight, unless
stated otherwise

All homeworks will be equally weighted
Homeworks due in class on Wednesday

Late homeworks submitted by S5pm Friday will be
penalized 50%

No late homeworks accepted after Spm Friday.

How many ways are there to write a nonnegative integer m

as a sum of 7 nonnegative integers (order is important) ?

egm=3,r=2
3=0+3
=1+2
=2+1
=340

How many ordered r-tuples (i, i,,...,i.)
of nonnegative integers satisfy the equation
i+, ++i =m

i i, +ti=m

m indistinguishable balls and r boxes

How many ways of placing m balls in r boxes ?

Each placement gives a solution of the equation

Oo+1+0+3 + 1 + 2=17




Placing balls in boxes

m balls r-1 walls

Every arrangement of m balls and r-1 walls gives a
unique placement of m balls into r boxes

m+r-1 objects arranged in a row,

m balls, r-1 walls

Number of choices of r-1 positions amongst m+r-1
m—+r—1
r—1
Number of solutions of the equation

i4i, i =m

Properties of Binomial coefficients
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A messy proof
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A more elegant proof
n—1

U

Fix an element a of an n
element set

S

Number of k-element
subsets that include a

Number of k-element
subsets that do not include a

Total number of k-element
subsets

-y

n—1

N

Pascal’s triangle

I

What is the sum of numbers in the nth row of Pascal’s triangle ?

" |n
20, = 2

k=0

Total number of subsets
of n-element set

Number of k-element
subsets of n-element set

y”+[

Binomial Theorem
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Proof of Binomial theorem

n k _ .n—k
X
k] Y
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n times
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Coefficient of x"y
= number of ways of picking £ x's from n terms

n
k

Proofs using the binomial theorem

Substitute x =1 in

1+x)"= Zn:[Z] x*

k=0

Proofs using the binomial theorem
Substitute x =—1in
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Further identities

14 <[]

Right n

How many distinct words can you obtain by permuting the
letters of MISSISSIPPI?

11 letters: 1M, 41, 48S, 2P
M, LS, S, L,S;S,1, P, P, 1,
11! permutations

How many indexed words give you a particular unindexed word ?

e.g. SIPISMSIPIS

4! ways to place indices of |

4! ways to place indices of S number of distinct words

Generalization

n objects of m different kinds
k., indistinguishable objects of ith kind
ki 4k, 4. 4k, =n
Then the total number of distinct arrangements is

n! n
k k). k! k.k,,....k,

/'

Multinomial
coefficient

2! ways to place indices of P _ 11!
1! way for indices of M 41412111
18
n n
m = 2 =
k,n—k k

Multinomial theorem

(5 3, 0+ ,)" =
n

k4. 4k, =n klakza-"ak

Kook >0
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Inclusion-Exclusion principle

Given |Al, |BJ, |A N BJ, what is |A UB| ?
IAUB| = |A| + [B| - [ANB|
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Inclusion-Exclusion principle

A B
C
|AUBUC| = |4| + |B| +|C|
- |ANB|-|ANC|-|BNC|
+|ANBNC|
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Inclusion-Exclusion principle

| A U4, U---U4A
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Proof of inclusion-exclusion principle

Consider an element x€ 4, UA4, U---U4,
Contribution to LHS =1
What is the contribution to RHS ?

Suppose x belongs to j sets.

Rename sets to be 4, 4,,..., 4,
X appears in intersection of every
k-tuple of sets amongst 4,, 4, ..., 4,
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Proof of inclusion-exclusion principle

X appears in intersection of every

k-tuple of sets amongst 4, 4,,..., 4,

J

contribution of x to RHS

()
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