COS 341 — Discrete Math

Office Hours

¢ Currently, my office hours are on Friday, from
2:30 to 3:30.

Office Hours

* Currently, my office hours are on Friday, from
2:30 to 3:30.

* Nobody seems to care.
 Change office hours? Tuesday, 8 PM to 9 PM.

Homework 8

* Due on Wednesday at the beginning of class.
* No collaboration!

* Question 3:
— “Never crosses itself” is the key.
* Question 4:
— Assume n > 4 (the theorem is not true for n=4).

— For some values of n > 4, the bound may not be an
integer. It doesn’t matter (the number of crossings will
be strictly greater than that).




From last class

» Jordan curve theorem:

— Any Jordan curve divides the plane into two parts, the
interior and the exterior.

+ K, is not planar.

* K, is not planar.

2-Connected Graphs

 Recall that a graph is 2-connected if it has at least
3 vertices, and by deleting any single vertex we
obtain a connected graph.

* We also know the following:

— A graph G is 2-connected if and only if it can be
created from a triangle (K;) by a sequence of edge
subdivisions and edge insertions.

Faces and Cycles

e Theorem:

— Let G be a 2-vertex-connected planar graph. Then
every face in any planar drawing of G is a region of
some cycle of G.

Faces and Cycles

* Theorem:

— Let G be a 2-vertex-connected planar graph. Then
every face in any planar drawing of G is a region of
some cycle of G.

(We do need it to be 2-vertex-connected.)




Faces and Cycles

* Proof: by induction on n (number of vertices)
— Base case: n =3
* only 2-connected graph is the triangle
* one cycle, two regions: OK.
— Hypothesis: assume true for n = n,— 1, with n, > 3.
— Let’s prove it is true for n = n,,
* 2-connected graph G with at least 4 vertices.

Faces and Cycles

— Take a planar 2-connected graph G with n > 3 vertices.
— Can be built from a triangle by a sequence of edge
insertions and subdivisions.
— One of these must be true:
(a) There is an edge e such that G’ = G — e is 2-connected.
(b) There is a graph G’ = (V, E’) and there is an edge ¢’ in E”’
such that the subdivision of e’ creates G.
— In either case, G’ is a smaller 2-connected graph.

By the inductive hypothesis, every face in any planar
drawing of G’ is a region of some cycle of G

Faces and Cycles

— Case (a): there is an edge e such that G’ = G — e is
2-connected.
e Lete = {v,w}.
* There is a face F'in G’ corresponding to a cycle that contains
both v and w.
—v—-0,—-w-0,—v (a,and 0, are arcs in the cycle)
* The arc corresponding to e divides F into two faces, each
corresponding to a different cycle.
—v—0o,—w—o0d(e)—v
—v—e-w-0,—v

Faces and Cycles

— Case (b): there is a graph G’ = (V, E’) with an edge e’
in £’ such that the subdivision of e’ creates G.
* Each face of G’ is a region of some cycle G
* Subdividing e’ amounts to drawing a vertex inside the edge.

« This extends the length of the cycles e’ participates in, but
doesn’t change the property.




Combinatorial Characterization

Combinatorial Characterization

* Every subgraph of a planar graph must be planar:
— cannot contain K

— cannot contain K ;
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» Every subgraph of a planar graph must be planar:
— cannot contain K5
— cannot contain K ;
* More generally: no subgraph of a planar graph can
be a subdivision of a non-planar graph.
— cannot contain a subdivision of K

— cannot contain a subdivision of K ;

Combinatorial Characterization

* Every subgraph of a planar graph must be planar:
— cannot contain K;
— cannot contain Kj ;
* More generally: no subgraph of a planar graph can
be a subdivision of a non-planar graph.
— cannot contain a subdivision of K5
— cannot contain a subdivision of K ;

* Is that enough?




Combinatorial Characterization

» Kuratowski’s theorem:
— A graph G is planar if and only if it has no subgraph
isomorphic to a subdivision of K; ; or to a subdivision
of K.
* We can test if a graph is planar without actually
drawing it:
— we just have to verify if there are violating subgraphs.
— (There are faster ways of testing planarity, though.)

Euler’s Formula

* Theorem:

— Let G = (V, E) be a connected planar graph, and let f
be the number of faces of any planar drawing of G.
Then

V= E|+f=2.

* The number of faces does not depend on the
(planar) drawing, just on the graph itself.

Euler’s Formula

* Proof by induction on |E].
— Base case: |[E| = 0 (single vertex, single face):
[V|-IE|+f=1-0+1=2.
— |E| > 0 and G does not contain a cycle (it’s a tree):
VI=El + /= -(M-D+1=2.
—|E| > 0 and G = (V, E) contains a cycle:
» Some edge e belongs to a cycle; remove it.
* The resulting graph G’ obeys the formula: |V’| — |E”’| +f" =2
— Clearly, [V’| =|V| and |[E’| = [E| - .
— e was adjacent to two faces (by Jordan) that become one: f” = f — 1
V- IE+£=2
VI=(E[ =D+ (=D =|V|-[E[+f=2.

Regular Polytopes

» 3-dimensional convex bodies;

« finite number of faces;

* faces are congruent copies of the same regular
polygon;

* same number of faces meet at each vertex;

* also known as Platonic Solids.
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Regular Polytopes

Tetrahedron: 4 faces

Hexahedron (a.k.a. cube): 6 faces /““
Octahedron: 8 faces
Dodecahedron: 12 faces

Icosahedron: 20 faces

Are there more?

e ¢

Regular Polytopes

* Every convex polytope can be converted to a
planar graph:
— Find a sphere such that:
« center of sphere inside polytope;
* sphere contains the whole polytope.
— Project the polytope onto the sphere:
» we get a graph of the surface of a sphere;

« that graph can be converted to a planar graph with a
stereographic projection.

— Vertices, faces, and edges of the polytope become
vertices, faces, and edges of a planar graph.
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Regular Polytopes

e Tetrahedron I

Regular Polytopes
* Cube
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* Qctahedron

Regular Polytopes

\ g
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Regular Polytopes

* Dodecahedron

26

* Icosahedron

Regular Polytopes

’
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Regular Polytopes

» Parameters of a regular convex polytope:

— k: number of sides in each polygon (face)

— d: number of faces that meet at each vertex

— n. vertices

— m: edges

— f: faces

* Looking at the vertices:

— Every edge appears in exactly two vertices:
dn =2m
n=2m/d
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Regular Polytopes

» Parameters of a regular convex polytopes:
— k: number of sides in each face
— d: number of faces that meet at each vertex
— n: vertices
— m: edges
— f* faces
* Looking at the faces:
— Every edge appears in exactly two faces:
kf =2m
f=2m/k
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Regular Polytopes

» Parameters of a regular convex polytopes:
— k: number of sides in each face
— d: number of faces that meet at each vertex
— n. vertices
— m: edges
— f- faces

* Looking at the whole graph:
— It is planar, so we can apply Euler’s formula:

n—m+f=2
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Regular Polytopes

* So we have:
f=2m/k
n=2m/d
n—-m+f=2
* Substituting # and f'in the third equation:
n—-m+f=2
2m/d —m + 2m/k = 2
(dividing by 2m and rearranging...)
Tyr_1,1
d k£ 2 m
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Regular Polytopes

* So every regular polytope must obey 11,1
d

. 2
¢ In particular, k "

1 1_1
>

d k 2

If both d = 4 and k = 4, we would have:

1,1 1
—+ <=

* Se either d=3 or k=3 (or both).
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Regular Polytopes

e Assume d=3:

1 1 _ 1 1
—t—=—4—
d k 2 m
1 1 _1 1
—t—=— 4+ —
3k 2 m
1 1_1

k 6 m

* The right-hand side is positive, so k < 6.
« k=1{3,4,5}
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Regular Polytopes
* Assume k=3:

1 1 _1 1
—t—=—4—

d k 2 m

1 1 1 1
—t—=— 4 —

d 3 2 m
111

d 6 m

* The right-hand side is positive, so d < 6.
e d=1{3,4,5}
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Regular Polytopes
* So the only possibilities are:
d k n m f Polytope
3 3 4 6 4  tetrahedron
3 4 8 12 6 cube
3 5 20 30 12 dodecahedron
4 3 6 12 8  octahedron
5 3 icosahedron

AN DG

Number of Edges

* Theorem:

— Let G = (V,E) be a planar graph with at least 3
vertices. Then |E| <3|V|—6.

— If the graph is maximal (no edge can be added without
violating planarity), the equality holds: |E| = 3|V] —

« It suffices to prove the second statement; if the
graph is not maximal, we can always add edges
until it becomes one.
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Number of Edges

* Lemma:

— Every maximal planar graph G is a triangulation
(every face is a triangle).

* Proof: we show that if G is not a triangulation, it is
always possible to add an edge without violating
planarity.

— Three cases to consider:
* G is disconnected.
* If G is connected but not 2-connected.
* G is 2-connected.
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Number of Edges

* Case 1: G is not connected:
— An edge can be added between two components.

SEXCRIEE
D
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Number of Edges

* Case 1: G is not connected:
— An edge can be added between two components.

LD D
)
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Number of Edges

» Case 2: G is connected, but not 2-connected:
— There is a vertex v whose removal disconnects G.
— Let V}, V,, ..., Vi be the resulting components (k > 2).

— An edge can be added between components associated
with edges drawn next to each other around v.

” V
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Number of Edges

» Case 2: G is connected, but not 2-connected:
— There is a vertex v whose removal disconnects G.
—Let 1}, V,, ..., ¥, be the resulting components (k > 2).

— An edge can be added between components associated
with edges drawn next to each other around v.

” v (
Ia 41

Number of Edges

* Case 3: G is 2-connected.
— Every face is bounded by a cycle.
— Take any face with 4 or more edges:

Vi V)
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Number of Edges

» Case 3: G is 2-connected.
— Every face is bounded by a cycle.
— Take any face with 4 or more edges:

Yy V)

/
/

V4

— If v, and v; are not connected, you can add an edge

between them. -

Number of Edges

* Case 3: G is 2-connected.
— Every face is bounded by a cycle.
— Take any face with 4 or more edges:

— If v, and v; are connected, v,and v, can’t be.

— So you can add an edge between v,and v,. “




Number of Edges

* So every maximal planar graph is a triangulation.

— Because every face is a triangle and every edge is
incident to exactly two faces, we have:

3f=2|E|
f=2|E|/3.
— Using this value in Euler’s formula:
- E[+f=2
V|- |E| +2|E|/3 =2
[V —I|E|/3=2
|E| =3|V] - 6.

— Corollary: there exists a vertex of degree at most 5.

Triangle-Free Planar Graphs

* Theorem:

— Let G=(V,E) be a planar graph with no triangles (i.e.,
without K; as a subgraph) and at least 3 vertices. Then
|E| <2|V]|—4.

* Proof (similar to the previous one)
— Consider a maximal triangle-free planar graph G;
» we can always add edges until it becomes one.

— G is clearly connected.
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Triangle-Free Planar Graphs

— Assume G is connected, but not 2-connected.
— There is a vertex v whose removal disconnects G.

—Let V}, V,, ..., V|, be the resulting components (k > 2).

+ Edges can be added between these components without
violating planarity.

» But we could create a triangle if we joined vertices that are
adjancent to v.
— If every V, is a single vertex, then G is a tree:
El=[V-1
E|=[V]+3-4
|E| < |V] +|V]—4 (because G has at least three vertices)
|E|<2|V| -4 (the inequality holds)

47

Triangle-Free Planar Graphs

— Now consider the case in which component /; has at
least two vertices.
— Consider a face /" having both a vertex of V; and a
vertex of some other V; on its boundary.
— V, must have at least one edge {v,,v,} on the boundary
of F.
— We can’t have both v, and v, connected to v (or these
vertices would constitute a triangle).
— So an edge can be added between one of these vertices
and a vertex in V.
* G is not maximal — a contradiction.
* Maximal triangle-free planar graphs must be 2-connected. "




Triangle-Free Planar Graphs

— G is a 2-connected, maximal triangle-free planar graph.

— 2-connected:

« every face is a region of a cycle.
— Triangle-free:

* every cycle has at least 4 edges.
— Counting edges from faces: 2 |E| 24 f = f< |E|/2
— From Euler’s formula:

M —IEl + /=2
2—|VN+I|E|=f<|E|2
|E| <2|V] —4.

— Corollary: there exists a vertex of degree at most 3.
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Scores of Planar Graphs
* Theorem:
—Let G=(V,E) be a 2-connected planar graph
with at least 3 vertices. Define:
* n;; number of vertices of degree i;

* /- number of faces (in some fixed drawing of G)
bounded by cycles of length i.

Then we have

> (6-i)n, =12+2> (j=3)f..

i1 =3
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Scores of Planar Graphs

Why is this relevant?
We can rewrite

D (6-i)n, =12+2> (j=3) /..

>l Jjz3

as

Sny+4n,+3n;+2n,+ 0+ (L) =12+ ()
— The first “(...)” contains only negative terms.
— The second “(...)” contains only positive terms.
—So 5n, +4n,+3n;+ 2n, +n, 2 12.

— Among other things, this means that there are at least 3
vertices of degree at most 5 in every planar graph.
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Scores of Planar Graphs

* Proof of the theorem:
— Obvious facts:
S :zjf,- and V=21,
— From Euler’s formula:
[VI=1E|+f =2
. n=lE|+Y f, =2
20E|=3 2n,+) 2, —4
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Scores of Planar Graphs

* Proof of the theorem:
— From previous slide: 2[E| =3 2n, +Z,~2fj -4
— Counting edges from the faces:
2 UT)=21E|=3 2n,+) 2f -4
Y UT)-Y 2 +4=Y, 2
2=/, +4=3 2n,
— Counting edges from the vertices:
D (m)=2|E|=) 2n, +Zj_2fj -4
3,2/,= X0 B) =Y, 20, +4
22 =2, n(i=2)+4
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Scores of Planar Graphs

* Proof of the theorem:
— From the previous slide:
Z/_(j—Z)fj +4=3" 2n, (x2)
Zj(ngfj—4fj)+8:Zi 4, @)

22 =2 n(i=-) 4 (x(-D)
Z,(‘Z) fi=2, (2n —ilh) -4 (ii)
— Adding (i) and (ii), we get the final expression:
Zj(2j O, =4/, —2f))+8=) (4n,+2n,—ilh)—4
22/(1' =3)f,+12=3" (6-i)n,
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