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COS 341 – Discrete Math
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Office Hours
• Currently, my office hours are on Friday, from 

2:30 to 3:30.
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Office Hours
• Currently, my office hours are on Friday, from 

2:30 to 3:30.
• Nobody seems to care.
• Change office hours? Tuesday, 8 PM to 9 PM.
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Homework 8
• Due on Wednesday at the beginning of class.
• No collaboration!

• Question 3: 
– “Never crosses itself” is the key.

• Question 4:
– Assume n > 4 (the theorem is not true for n=4).
– For some values of n > 4, the bound may not be an 

integer. It doesn’t matter (the number of crossings will 
be strictly greater than that).
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From last class
• Jordan curve theorem:

– Any Jordan curve divides the plane into two parts, the 
interior and the exterior.

• K5 is not planar.
• K3,3 is not planar.
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2-Connected Graphs
• Recall that a graph is 2-connected if it has at least 

3 vertices, and by deleting any single vertex we 
obtain a connected graph.

• We also know the following:
– A graph G is 2-connected if and only if it can be 

created from a triangle (K3) by a sequence of edge 
subdivisions and edge insertions.
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Faces and Cycles
• Theorem:

– Let G be a 2-vertex-connected planar graph. Then 
every face in any planar drawing of G is a region of 
some cycle of G.
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Faces and Cycles
• Theorem:

– Let G be a 2-vertex-connected planar graph. Then 
every face in any planar drawing of G is a region of 
some cycle of G.

(We do need it to be 2-vertex-connected.)
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Faces and Cycles
• Proof: by induction on n (number of vertices)

– Base case: n = 3
• only 2-connected graph is the triangle
• one cycle, two regions: OK.

– Hypothesis: assume true for n = no – 1, with n0 > 3.
– Let’s prove it is true for n = no.

• 2-connected graph G with at least 4 vertices.
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Faces and Cycles
– Take a planar 2-connected graph G with n > 3 vertices.
– Can be built from a triangle by a sequence of edge 

insertions and subdivisions.
– One of these must be true:

(a) There is an edge e such that G’ = G – e is 2-connected.
(b) There is a graph G’ = (V’, E’) and there is an edge e’ in E’ 

such that the subdivision of e’ creates G.

– In either case, G’ is a smaller 2-connected graph.
• By the inductive hypothesis, every face in any planar 

drawing of G’ is a region of some cycle of G’.
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Faces and Cycles
– Case (a): there is an edge e such that G’ = G – e is      

2-connected.
• Let e = {v,w}.
• There is a face F in G’ corresponding to a cycle that contains 

both v and w.
– v – α1 – w – α2 – v  (α1 and α2 are arcs in the cycle)

• The arc corresponding to e divides F into two faces, each 
corresponding to a different cycle.

– v – α1 – w – α(e) – v
– v – e – w – α2 – v

α1

α2

F’
F”α(e)

v

w
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Faces and Cycles
– Case (b): there is a graph G’ = (V, E’) with an edge e’

in E’ such that the subdivision of e’ creates G.
• Each face of G’ is a region of some cycle G’.
• Subdividing e’ amounts to drawing a vertex inside the edge.
• This extends the length of the cycles e’ participates in, but 

doesn’t change the property.
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Combinatorial Characterization
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Combinatorial Characterization
• Every subgraph of a planar graph must be planar:

– cannot contain K5

– cannot contain K3,3
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Combinatorial Characterization
• Every subgraph of a planar graph must be planar:

– cannot contain K5

– cannot contain K3,3

• More generally: no subgraph of a planar graph can 
be a subdivision of a non-planar graph.
– cannot contain a subdivision of K5

– cannot contain a subdivision of K3,3
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Combinatorial Characterization
• Every subgraph of a planar graph must be planar:

– cannot contain K5

– cannot contain K3,3

• More generally: no subgraph of a planar graph can 
be a subdivision of a non-planar graph.
– cannot contain a subdivision of K5

– cannot contain a subdivision of K3,3

• Is that enough?
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Combinatorial Characterization
• Kuratowski’s theorem:

– A graph G is planar if and only if it has no subgraph 
isomorphic to a subdivision of K3,3 or to a subdivision 
of K5.

• We can test if a graph is planar without actually 
drawing it:
– we just have to verify if there are violating subgraphs.
– (There are faster ways of testing planarity, though.)



18

Euler’s Formula
• Theorem:

– Let G = (V, E) be a connected planar graph, and let  f  
be the number of faces of any planar drawing of G. 
Then

|V| – |E| + f = 2.

• The number of faces does not depend on the 
(planar) drawing, just on the graph itself.
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Euler’s Formula
• Proof by induction on |E|.

– Base case: |E| = 0 (single vertex, single face):
|V| – |E| + f = 1 – 0 + 1 = 2.

– |E| > 0 and G does not contain a cycle (it’s a tree):
|V| – |E| + f = |V| – (|V| – 1) + 1 = 2.

– |E| > 0 and G = (V, E) contains a cycle:
• Some edge e belongs to a cycle; remove it.
• The resulting graph G’ obeys the formula: |V’| – |E’| + f’ = 2

– Clearly, |V’| = |V| and |E’| = |E| – 1.
– e was adjacent to two faces (by Jordan) that become one: f’ = f  – 1

|V’| – |E’| + f’ = 2
|V| – (|E| – 1) + (f – 1) = |V| – |E| + f = 2.
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Regular Polytopes
• 3-dimensional convex bodies;
• finite number of faces;
• faces are congruent copies of the same regular 

polygon;
• same number of faces meet at each vertex;
• also known as Platonic Solids.
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Regular Polytopes
• Tetrahedron: 4 faces
• Hexahedron (a.k.a. cube): 6 faces
• Octahedron: 8 faces
• Dodecahedron: 12 faces
• Icosahedron: 20 faces

• Are there more?

[images from mathworld.wolfram.com]
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Regular Polytopes
• Every convex polytope can be converted to a 

planar graph:
– Find a sphere such that:

• center of sphere inside polytope;
• sphere contains the whole polytope.

– Project the polytope onto the sphere:
• we get a graph of the surface of a sphere;
• that graph can be converted to a planar graph with a 

stereographic projection.

– Vertices, faces, and edges of the polytope become 
vertices, faces, and edges of a planar graph.
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Regular Polytopes
• Tetrahedron



24

Regular Polytopes
• Cube
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Regular Polytopes
• Octahedron
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Regular Polytopes
• Dodecahedron
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Regular Polytopes
• Icosahedron
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Regular Polytopes
• Parameters of a regular convex polytope:

– k: number of sides in each polygon (face)
– d: number of faces that meet at each vertex
– n: vertices
– m: edges
– f: faces

• Looking at the vertices:
– Every edge appears in exactly two vertices:

dn = 2m
n = 2m/d
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Regular Polytopes
• Parameters of a regular convex polytopes:

– k: number of sides in each face
– d: number of faces that meet at each vertex
– n: vertices
– m: edges
– f: faces

• Looking at the faces:
– Every edge appears in exactly two faces:

kf = 2m
f = 2m/k
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Regular Polytopes
• Parameters of a regular convex polytopes:

– k: number of sides in each face
– d: number of faces that meet at each vertex
– n: vertices
– m: edges
– f: faces

• Looking at the whole graph:
– It is planar, so we can apply Euler’s formula:

n – m + f = 2
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Regular Polytopes
• So we have:

f = 2m/k
n = 2m/d

n – m + f = 2
• Substituting n and f in the third equation:

n – m + f = 2
2m/d – m + 2m/k = 2 

(dividing by 2m and rearranging...)

mkd
1

2
111 +=+
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Regular Polytopes
• So every regular polytope must obey
• In particular,

• If both d ≥ 4 and k ≥ 4, we would have:

• Se either d=3 or k=3 (or both).

mkd
1

2
111 +=+

2
111 >+

kd

2
111 ≤+

kd
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Regular Polytopes
• Assume d=3:

• The right-hand side is positive, so k < 6.
• k = {3, 4, 5}

mk

mk

mkd

1
6
11

1
2
11

3
1

1
2
111

=−

+=+

+=+
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Regular Polytopes
• Assume k=3:

• The right-hand side is positive, so d < 6.
• d = {3, 4, 5}

md

md

mkd

1
6
11

1
2
1

3
11

1
2
111

=−

+=+

+=+
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Regular Polytopes
• So the only possibilities are:

4
3 
3
3
d

icosahedron20301235
octahedron81263
dodecahedron1230205
cube61284
tetrahedron4643
Polytopefmnk
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Number of Edges
• Theorem:

– Let G = (V,E) be a planar graph with at least 3 
vertices. Then |E| ≤ 3|V| – 6.

– If the graph is maximal (no edge can be added without 
violating planarity), the equality holds: |E| = 3|V| – 6.

• It suffices to prove the second statement; if the 
graph is not maximal, we can always add edges 
until it becomes one.
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Number of Edges
• Lemma:

– Every maximal planar graph G is a triangulation 
(every face is a triangle).

• Proof: we show that if G is not a triangulation, it is 
always possible to add an edge without violating 
planarity.
– Three cases to consider:

• G is disconnected.
• If G is connected but not 2-connected.
• G is 2-connected.
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Number of Edges
• Case 1: G is not connected:

– An edge can be added between two components.

V1 V4V3

V2
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Number of Edges
• Case 1: G is not connected:

– An edge can be added between two components.

V1

V2

V3
V4
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Number of Edges
• Case 2: G is connected, but not 2-connected:

– There is a vertex v whose removal disconnects G.
– Let V1, V2, ..., Vk be the resulting components (k > 2).
– An edge can be added between components associated 

with edges drawn next to each other around v.

V1

V2

V4

V3

v
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Number of Edges
• Case 2: G is connected, but not 2-connected:

– There is a vertex v whose removal disconnects G.
– Let V1, V2, ..., Vk be the resulting components (k > 2).
– An edge can be added between components associated 

with edges drawn next to each other around v.

V1

V2

V4

V3

v
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Number of Edges
• Case 3: G is 2-connected.

– Every face is bounded by a cycle.
– Take any face with 4 or more edges:

v3
v4

v2v1
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Number of Edges
• Case 3: G is 2-connected.

– Every face is bounded by a cycle.
– Take any face with 4 or more edges:

– If v1 and v3 are not connected, you can add an edge 
between them.

v3
v4

v2v1
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Number of Edges
• Case 3: G is 2-connected.

– Every face is bounded by a cycle.
– Take any face with 4 or more edges:

– If v1 and v3 are connected, v2 and v4 can’t be.
– So you can add an edge between v2 and v4.

v1

v3
v4

v2
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Number of Edges
• So every maximal planar graph is a triangulation.

– Because every face is a triangle and every edge is 
incident to exactly two faces, we have:

3f = 2|E|
f = 2|E|/3.

– Using this value in Euler’s formula:
|V| – |E| + f = 2

|V| – |E| + 2|E|/3 = 2
|V| – |E|/3 = 2
|E| = 3|V| – 6.

– Corollary: there exists a vertex of degree at most 5.
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Triangle-Free Planar Graphs
• Theorem:

– Let G=(V,E) be a planar graph with no triangles (i.e., 
without K3 as a subgraph) and at least 3 vertices. Then 
|E| ≤ 2|V| – 4.

• Proof (similar to the previous one)
– Consider a maximal triangle-free planar graph G;

• we can always add edges until it becomes one.

– G is clearly connected.
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Triangle-Free Planar Graphs
– Assume G is connected, but not 2-connected.
– There is a vertex v whose removal disconnects G.
– Let V1, V2, ..., Vk be the resulting components (k > 2).

• Edges can be added between these components without 
violating planarity.

• But we could create a triangle if we joined vertices that are 
adjancent to v.

– If every Vi is a single vertex, then G is a tree:
|E| = |V| – 1
|E| = |V| + 3 – 4
|E| ≤ |V| + |V| – 4  (because G has at least three vertices)
|E| ≤ 2|V| – 4         (the inequality holds)
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Triangle-Free Planar Graphs
– Now consider the case in which component V1 has at 

least two vertices.
– Consider a face F having both a vertex of V1 and a 

vertex of some other Vi on its boundary.
– V1 must have at least one edge {v1,v2} on the boundary 

of F.
– We can’t have both v1 and v2 connected to v (or these 

vertices would constitute a triangle).
– So an edge can be added between one of these vertices 

and a vertex in Vi.
• G is not maximal – a contradiction.
• Maximal triangle-free planar graphs must be 2-connected.
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Triangle-Free Planar Graphs
– G is a 2-connected, maximal triangle-free planar graph.
– 2-connected:

• every face is a region of a cycle.

– Triangle-free:
• every cycle has at least 4 edges.

– Counting edges from faces: 2 |E| ≥ 4 f  ⇒ f ≤ |E|/2
– From Euler’s formula:

|V|  – |E| + f = 2
2 – |V| + |E| = f ≤ |E|/2 

|E| ≤ 2|V| – 4.
– Corollary: there exists a vertex of degree at most 3.
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Scores of Planar Graphs
• Theorem:

– Let G=(V,E) be a 2-connected planar graph 
with at least 3 vertices. Define:
• ni: number of vertices of degree i;
• fi: number of faces (in some fixed drawing of G) 

bounded by cycles of length i.
Then we have

.)3(212)6(
31
∑∑

≥≥

−+=−
j

j
i

i fjni
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Scores of Planar Graphs
• Why is this relevant?
• We can rewrite 

as 
5n1 + 4n2 + 3n3 + 2n2 + n1 + (...) = 12 + (...) 

– The first “(...)” contains only negative terms.
– The second “(...)” contains only positive terms.
– So 5n1 + 4n2 + 3n3 + 2n2 + n1 ≥ 12.
– Among other things, this means that there are at least 3 

vertices of degree at most 5 in every planar graph.

.)3(212)6(
31
∑∑

≥≥

−+=−
j

j
i

i fjni
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Scores of Planar Graphs
• Proof of the theorem:

– Obvious facts:
and

– From Euler’s formula: 

422||2

2||
2||||

−+=

=+−
=+−

∑∑
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Scores of Planar Graphs
• Proof of the theorem:

– From previous slide:
– Counting edges from the faces:

– Counting edges from the vertices:
∑∑
∑∑∑
∑∑∑

=+−
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−+==⋅

i ij j
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Scores of Planar Graphs
• Proof of the theorem:

– From the previous slide:

– Adding (i) and (ii), we get the final expression:
ii)(4)2()2(

))1((4)2(2

i)(48)42(

)2(24)2(
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