COS 341 – Discrete Math
Office Hours

• Currently, my office hours are on Friday, from 2:30 to 3:30.
Office Hours

• Currently, my office hours are on Friday, from 2:30 to 3:30.
• Nobody seems to care.
• Change office hours? Tuesday, 8 PM to 9 PM.
Homework 8

- Due on Wednesday at the beginning of class.
- No collaboration!

Question 3:
- “Never crosses itself” is the key.

Question 4:
- Assume $n > 4$ (the theorem is not true for $n=4$).
- For some values of $n > 4$, the bound may not be an integer. It doesn’t matter (the number of crossings will be strictly greater than that).
From last class

• Jordan curve theorem:
 – Any Jordan curve divides the plane into two parts, the *interior* and the *exterior*.

• K_5 is not planar.

• $K_{3,3}$ is not planar.
2-Connected Graphs

- Recall that a graph is 2-connected if it has at least 3 vertices, and by deleting any single vertex we obtain a connected graph.

- We also know the following:
 - A graph G is 2-connected if and only if it can be created from a triangle (K_3) by a sequence of edge subdivisions and edge insertions.
Faces and Cycles

• Theorem:
 – Let G be a 2-vertex-connected planar graph. Then every face in any planar drawing of G is a region of some cycle of G.
Faces and Cycles

• Theorem:

 – Let G be a 2-vertex-connected planar graph. Then every face in any planar drawing of G is a region of some cycle of G.

(We do need it to be 2-vertex-connected.)
Faces and Cycles

• Proof: by induction on n (number of vertices)
 – Base case: $n = 3$
 • only 2-connected graph is the triangle
 • one cycle, two regions: OK.
 – Hypothesis: assume true for $n = n_0 - 1$, with $n_0 > 3$.
 – Let’s prove it is true for $n = n_0$.
 • 2-connected graph G with at least 4 vertices.
Faces and Cycles

– Take a planar 2-connected graph G with $n > 3$ vertices.
– Can be built from a triangle by a sequence of edge insertions and subdivisions.
– One of these must be true:
 (a) There is an edge e such that $G' = G - e$ is 2-connected.
 (b) There is a graph $G' = (V', E')$ and there is an edge e' in E' such that the subdivision of e' creates G.
– In either case, G' is a smaller 2-connected graph.
 • By the inductive hypothesis, every face in any planar drawing of G' is a region of some cycle of G'.
Faces and Cycles

– Case (a): there is an edge e such that $G' = G - e$ is 2-connected.

• Let $e = \{v, w\}$.
• There is a face F in G' corresponding to a cycle that contains both v and w.
 $$v - \alpha_1 - w - \alpha_2 - v$$
 (α_1 and α_2 are arcs in the cycle)
• The arc corresponding to e divides F into two faces, each corresponding to a different cycle.
 $$v - \alpha_1 - w - \alpha(e) - v$$
 $$v - e - w - \alpha_2 - v$$
Faces and Cycles

– Case (b): there is a graph $G' = (V, E')$ with an edge e' in E' such that the subdivision of e' creates G.

 • Each face of G' is a region of some cycle G'.
 • Subdividing e' amounts to drawing a vertex inside the edge.
 • This extends the length of the cycles e' participates in, but doesn’t change the property.
Combinatorial Characterization
Combinatorial Characterization

• Every subgraph of a planar graph must be planar:
 – cannot contain K_5
 – cannot contain $K_{3,3}$
Combinatorial Characterization

• Every subgraph of a planar graph must be planar:
 – cannot contain K_5
 – cannot contain $K_{3,3}$

• More generally: no subgraph of a planar graph can be a subdivision of a non-planar graph.
 – cannot contain a subdivision of K_5
 – cannot contain a subdivision of $K_{3,3}$
Combinatorial Characterization

• Every subgraph of a planar graph must be planar:
 – cannot contain K_5
 – cannot contain $K_{3,3}$

• More generally: no subgraph of a planar graph can be a subdivision of a non-planar graph.
 – cannot contain a subdivision of K_5
 – cannot contain a subdivision of $K_{3,3}$

• Is that enough?
Combinatorial Characterization

• Kuratowski’s theorem:
 – *A graph G is planar if and only if it has no subgraph isomorphic to a subdivision of $K_{3,3}$ or to a subdivision of K_5.*

• We can test if a graph is planar without actually drawing it:
 – we just have to verify if there are violating subgraphs.
 – (There are faster ways of testing planarity, though.)
Euler’s Formula

• Theorem:

 – Let $G = (V, E)$ be a connected planar graph, and let f be the number of faces of any planar drawing of G. Then

 \[|V| - |E| + f = 2. \]

• The number of faces does not depend on the (planar) drawing, just on the graph itself.
Euler’s Formula

• Proof by induction on $|E|$.
 – Base case: $|E| = 0$ (single vertex, single face):
 $$|V| - |E| + f = 1 - 0 + 1 = 2.$$
 – $|E| > 0$ and G does not contain a cycle (it’s a tree):
 $$|V| - |E| + f = |V| - (|V| - 1) + 1 = 2.$$
 – $|E| > 0$ and $G = (V, E)$ contains a cycle:
 • Some edge e belongs to a cycle; remove it.
 • The resulting graph $G’$ obeys the formula: $|V’| - |E’| + f’ = 2$
 – Clearly, $|V’| = |V|$ and $|E’| = |E| - 1$.
 – e was adjacent to two faces (by Jordan) that become one: $f’ = f - 1$
 $$|V’| - |E’| + f’ = 2$$
 $$|V| - (|E| - 1) + (f - 1) = |V| - |E| + f = 2.$$
Regular Polytopes

• 3-dimensional convex bodies;
• finite number of faces;
• faces are congruent copies of the same regular polygon;
• same number of faces meet at each vertex;
• also known as *Platonic Solids*.
Regular Polytopes

- Tetrahedron: 4 faces
- Hexahedron (a.k.a. cube): 6 faces
- Octahedron: 8 faces
- Dodecahedron: 12 faces
- Icosahedron: 20 faces

- Are there more?

[images from mathworld.wolfram.com]
Regular Polytopes

• Every convex polytope can be converted to a planar graph:
 – Find a sphere such that:
 • center of sphere inside polytope;
 • sphere contains the whole polytope.
 – Project the polytope onto the sphere:
 • we get a graph of the surface of a sphere;
 • that graph can be converted to a planar graph with a stereographic projection.
 – Vertices, faces, and edges of the polytope become vertices, faces, and edges of a planar graph.
Regular Polytopes

- Tetrahedron
Regular Polytopes

- Cube
Regular Polytopes

- Octahedron
Regular Polytopes

• Dodecahedron
Regular Polytopes

• Icosahedron
Regular Polytopes

• Parameters of a regular convex polytope:
 – k: number of sides in each polygon (face)
 – d: number of faces that meet at each vertex
 – n: vertices
 – m: edges
 – f: faces

• Looking at the vertices:
 – Every edge appears in exactly two vertices:
 \[dn = 2m \]
 \[n = \frac{2m}{d} \]
Regular Polytopes

- Parameters of a regular convex polytopes:
 - k: number of sides in each face
 - d: number of faces that meet at each vertex
 - n: vertices
 - m: edges
 - f: faces

- Looking at the faces:
 - Every edge appears in exactly two faces:
 \[
 kf = 2m \\
 f = \frac{2m}{k}
 \]
Regular Polytopes

• Parameters of a regular convex polytopes:
 – k: number of sides in each face
 – d: number of faces that meet at each vertex
 – n: vertices
 – m: edges
 – f: faces

• Looking at the whole graph:
 – It is planar, so we can apply Euler’s formula:
 \[n - m + f = 2 \]
Regular Polytopes

• So we have:

\[f = \frac{2m}{k} \]
\[n = \frac{2m}{d} \]
\[n - m + f = 2 \]

• Substituting \(n \) and \(f \) in the third equation:

\[n - m + f = 2 \]
\[\frac{2m}{d} - m + \frac{2m}{k} = 2 \]

(dividing by \(2m \) and rearranging...)

\[\frac{1}{d} + \frac{1}{k} = \frac{1}{2} + \frac{1}{m} \]
Regular Polytopes

• So every regular polytope must obey \(\frac{1}{d} + \frac{1}{k} = \frac{1}{2} + \frac{1}{m} \)

• In particular,

\[
\frac{1}{d} + \frac{1}{k} > \frac{1}{2}
\]

• If both \(d \geq 4 \) and \(k \geq 4 \), we would have:

\[
\frac{1}{d} + \frac{1}{k} \leq \frac{1}{2}
\]

• Se either \(d=3 \) or \(k=3 \) (or both).
Regular Polytopes

• Assume \(d = 3 \):

\[
\frac{1}{d} + \frac{1}{k} = \frac{1}{2} + \frac{1}{m} \\
\frac{1}{3} + \frac{1}{k} = \frac{1}{2} + \frac{1}{m} \\
\frac{1}{k} - \frac{1}{6} = \frac{1}{m}
\]

• The right-hand side is positive, so \(k < 6 \).
• \(k = \{3, 4, 5\} \)
Regular Polytopes

- Assume $k=3$:

 \[
 \frac{1}{d} + \frac{1}{k} = \frac{1}{2} + \frac{1}{m} \\
 \frac{1}{d} + \frac{1}{3} = \frac{1}{2} + \frac{1}{m} \\
 \frac{1}{d} - \frac{1}{6} = \frac{1}{m}
 \]

- The right-hand side is positive, so $d < 6$.
- $d = \{3, 4, 5\}$
Regular Polytopes

- So the only possibilities are:

<table>
<thead>
<tr>
<th>d</th>
<th>k</th>
<th>n</th>
<th>m</th>
<th>f</th>
<th>Polytope</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>tetrahedron</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>cube</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>20</td>
<td>30</td>
<td>12</td>
<td>dodecahedron</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>octahedron</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>12</td>
<td>30</td>
<td>20</td>
<td>icosahedron</td>
</tr>
</tbody>
</table>
Number of Edges

• Theorem:
 – Let $G = (V,E)$ be a planar graph with at least 3 vertices. Then $|E| \leq 3|V| - 6$.
 – If the graph is maximal (no edge can be added without violating planarity), the equality holds: $|E| = 3|V| - 6$.

• It suffices to prove the second statement; if the graph is not maximal, we can always add edges until it becomes one.
Number of Edges

• Lemma:
 – *Every maximal planar graph* G *is a triangulation* (every face is a triangle).

• Proof: we show that if G is not a triangulation, it is always possible to add an edge without violating planarity.
 – Three cases to consider:
 • G is disconnected.
 • If G is connected but not 2-connected.
 • G is 2-connected.
Number of Edges

- Case 1: G is not connected:
 - An edge can be added between two components.
Number of Edges

• Case 1: G is not connected:
 – An edge can be added between two components.

\[V_1 \quad V_2 \quad V_3 \quad V_4 \]
Number of Edges

- **Case 2:** G is connected, but not 2-connected:
 - There is a vertex v whose removal disconnects G.
 - Let $V_1, V_2, ..., V_k$ be the resulting components ($k > 2$).
 - An edge can be added between components associated with edges drawn next to each other around v.

![Diagram of connected components](image-url)
Number of Edges

- Case 2: G is connected, but not 2-connected:
 - There is a vertex v whose removal disconnects G.
 - Let $V_1, V_2, ..., V_k$ be the resulting components ($k > 2$).
 - An edge can be added between components associated with edges drawn next to each other around v.

![Diagram showing V_1, V_2, V_3, V_4, and vertex v.]
Number of Edges

• Case 3: G is 2-connected.
 – Every face is bounded by a cycle.
 – Take any face with 4 or more edges:
Number of Edges

- **Case 3:** G is 2-connected.
 - Every face is bounded by a cycle.
 - Take any face with 4 or more edges:

 ![Diagram of a graph with vertices v_1, v_2, v_3, v_4 and edges connecting them]

 - If v_1 and v_3 are not connected, you can add an edge between them.
Case 3: G is 2-connected.
- Every face is bounded by a cycle.
- Take any face with 4 or more edges:
 - If v_1 and v_3 are connected, v_2 and v_4 can’t be.
 - So you can add an edge between v_2 and v_4.
Number of Edges

- So every maximal planar graph is a triangulation.
 - Because every face is a triangle and every edge is incident to exactly two faces, we have:
 \[3f = 2|E| \]
 \[f = 2|E|/3. \]
 - Using this value in Euler’s formula:
 \[|V| - |E| + f = 2 \]
 \[|V| - |E| + 2|E|/3 = 2 \]
 \[|V| - |E|/3 = 2 \]
 \[|E| = 3|V| - 6. \]
 - Corollary: there exists a vertex of degree at most 5.
Triangle-Free Planar Graphs

• Theorem:
 – Let $G=(V,E)$ be a planar graph with no triangles (i.e., without K_3 as a subgraph) and at least 3 vertices. Then $|E| \leq 2|V| - 4$.

• Proof (similar to the previous one)
 – Consider a maximal triangle-free planar graph G;
 • we can always add edges until it becomes one.
 – G is clearly connected.
Triangle-Free Planar Graphs

– Assume G is connected, but not 2-connected.
– There is a vertex v whose removal disconnects G.
– Let $V_1, V_2, ..., V_k$ be the resulting components ($k > 2$).
 • Edges can be added between these components without violating planarity.
 • But we could create a triangle if we joined vertices that are adjacent to v.
– If every V_i is a single vertex, then G is a tree:
 $|E| = |V| - 1$
 $|E| = |V| + 3 - 4$
 $|E| \leq |V| + |V| - 4$ (because G has at least three vertices)
 $|E| \leq 2|V| - 4$ (the inequality holds)
Triangle-Free Planar Graphs

– Now consider the case in which component V_1 has at least two vertices.

– Consider a face F having both a vertex of V_1 and a vertex of some other V_i on its boundary.

– V_1 must have at least one edge $\{v_1, v_2\}$ on the boundary of F.

– We can’t have both v_1 and v_2 connected to v (or these vertices would constitute a triangle).

– So an edge can be added between one of these vertices and a vertex in V_i.

 • G is not maximal – a contradiction.

 • Maximal triangle-free planar graphs must be 2-connected.
Triangle-Free Planar Graphs

- G is a 2-connected, maximal triangle-free planar graph.
- 2-connected:
 - every face is a region of a cycle.
- Triangle-free:
 - every cycle has at least 4 edges.
- Counting edges from faces: $2 |E| \geq 4f \Rightarrow f \leq |E|/2$
- From Euler’s formula:
 $$|V| - |E| + f = 2$$
 $$2 - |V| + |E| = f \leq |E|/2$$
 $$|E| \leq 2|V| - 4.$$
- Corollary: there exists a vertex of degree at most 3.
Scores of Planar Graphs

• Theorem:

 – Let $G=(V,E)$ be a 2-connected planar graph with at least 3 vertices. Define:

 • n_i: number of vertices of degree i;

 • f_i: number of faces (in some fixed drawing of G) bounded by cycles of length i.

 Then we have

 $$
 \sum_{i \geq 1} (6-i) n_i = 12 + 2 \sum_{j \geq 3} (j-3) f_j.
 $$

Scores of Planar Graphs

• Why is this relevant?
• We can rewrite

\[\sum_{i \geq 1} (6 - i)n_i = 12 + 2 \sum_{j \geq 3} (j - 3)f_j. \]

as

\[5n_1 + 4n_2 + 3n_3 + 2n_2 + n_1 + (...) = 12 + (...). \]

– The first “(...)” contains only negative terms.
– The second “(...)” contains only positive terms.
– So \(5n_1 + 4n_2 + 3n_3 + 2n_2 + n_1 \geq 12. \)
– Among other things, this means that there are at least 3 vertices of degree at most 5 in every planar graph.
Scores of Planar Graphs

• Proof of the theorem:
 – Obvious facts:
 \[f = \sum_j f_j \quad \text{and} \quad |V| = \sum_i n_i \]
 – From Euler’s formula:
 \[|V| - |E| + f = 2 \]
 \[\sum_i n_i - |E| + \sum_j f_j = 2 \]
 \[2|E| = \sum_i 2n_i + \sum_j 2f_j - 4 \]
Scores of Planar Graphs

• Proof of the theorem:
 – From previous slide: \[2 |E| = \sum_i 2n_i + \sum_j 2f_j - 4 \]
 – Counting edges from the faces:
 \[\sum_j (j \cdot f_j) = 2 |E| = \sum_i 2n_i + \sum_j 2f_j - 4 \]
 \[\sum_j (j \cdot f_j) - \sum_j 2f_j + 4 = \sum_i 2n_i \]
 \[\sum_j (j - 2) f_j + 4 = \sum_i 2n_i \]
 – Counting edges from the vertices:
 \[\sum_i (i \cdot n_i) = 2 |E| = \sum_i 2n_i + \sum_j 2f_j - 4 \]
 \[\sum_j 2f_j = \sum_i (i \cdot n_i) - \sum_i 2n_i + 4 \]
 \[\sum_j 2f_j = \sum_i n_i (i - 2) + 4 \]
Scores of Planar Graphs

• Proof of the theorem:
 – From the previous slide:
 \[\sum_j (j - 2) f_j + 4 = \sum_i 2n_i \quad (\times 2) \]
 \[\sum_j (2j \cdot f_j - 4f_j) + 8 = \sum_i 4n_i \quad (i) \]

 \[\sum_j 2f_j = \sum_i n_i(i - 2) + 4 \quad (\times (-1)) \]
 \[\sum_j (-2)f_j = \sum_i (2n_i - i \cdot n_i) - 4 \quad (ii) \]
 – Adding (i) and (ii), we get the final expression:
 \[\sum_j (2j \cdot f_j - 4f_j - 2f_j) + 8 = \sum_i (4n_i + 2n_i - i \cdot n_i) - 4 \]
 \[2 \sum_j (j - 3)f_j + 12 = \sum_i (6 - i)n_i \]