
Intel Architecture
Software Developer’s

Manual

Volume 2:
Instruction Set Reference

NOTE: The Intel Architecture Software Developer’s Manual consists of
three volumes: Basic Architecture, Order Number 243190; Instruction Set

Reference, Order Number 243191; and the System Programming Guide,
Order Number 243192.

Please refer to all three volumes when evaluating your design needs.

1997

ch01.bk : title.fm4 Page 1 Friday, January 17, 1997 12:59 PM

3/26/97 1:23 PM IADISC2.DOC

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating
to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability,
or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

Intel’s Intel Architecture processors (e.g., Pentium® processor, Pentium processor with MMX™ technology, and Pentium Pro
processor) may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Such errata are not covered by Intel’s warranty. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
 P.O. Box 7641
 Mt. Prospect IL 60056-7641

or call 1-800-879-4683
or visit Intel’s website at http:\\www.intel.com

Copyright © Intel Corporation 1996, 1997.

* Third-party brands and names are the property of their respective owners.

v

TABLE OF CONTENTS
PAGE

CHAPTER 1
ABOUT THIS MANUAL
1.1. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE

DEVELOPER’S MANUAL, VOLUME 2: INSTRUCTION SET REFERENCE 1-1
1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE

DEVELOPER’S MANUAL, VOLUME 1: BASIC ARCHITECTURE 1-2
1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE

DEVELOPER’S MANUAL, VOLUME 3: SYSTEM PROGRAMMING GUIDE1-3
1.4. NOTATIONAL CONVENTIONS. .1-5
1.4.1. Bit and Byte Order .1-5
1.4.2. Reserved Bits and Software Compatibility .1-5
1.4.3. Instruction Operands .1-6
1.4.4. Hexadecimal and Binary Numbers .1-6
1.4.5. Segmented Addressing .1-7
1.4.6. Exceptions .1-7
1.5. RELATED LITERATURE .1-8

CHAPTER 2
INSTRUCTION FORMAT
2.1. GENERAL INSTRUCTION FORMAT .2-1
2.2. INSTRUCTION PREFIXES .2-1
2.3. OPCODE .2-2
2.4. MODR/M AND SIB BYTES .2-2
2.5. DISPLACEMENT AND IMMEDIATE BYTES .2-3
2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB BYTES2-3

CHAPTER 3
INSTRUCTION SET REFERENCE
3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES 3-1
3.1.1. Instruction Format .3-1
3.1.1.1. Opcode Column .3-1
3.1.1.2. Instruction Column .3-2
3.1.1.3. Description Column .3-4
3.1.1.4. Description .3-4
3.1.2. Operation. .3-5
3.1.3. Flags Affected .3-8
3.1.4. FPU Flags Affected .3-8
3.1.5. Protected Mode Exceptions. .3-8
3.1.6. Real-Address Mode Exceptions .3-9
3.1.7. Virtual-8086 Mode Exceptions. .3-9
3.1.8. Floating-Point Exceptions .3-10
3.2. INSTRUCTION REFERENCE .3-10

AAA—ASCII Adjust After Addition .3-11
AAD—ASCII Adjust AX Before Division. .3-12
AAM—ASCII Adjust AX After Multiply .3-13
AAS—ASCII Adjust AL After Subtraction. .3-14
ADC—Add with Carry .3-15
ADD—Add .3-17

ch01.bk : ch01.toc Page v Friday, January 17, 1997 12:59 PM

TABLE OF CONTENTS

vi

PAGE

AND—Logical AND .3-19
ARPL—Adjust RPL Field of Segment Selector .3-21
BOUND—Check Array Index Against Bounds. .3-23
BSF—Bit Scan Forward. .3-25
BSR—Bit Scan Reverse .3-27
BSWAP—Byte Swap .3-29
BT—Bit Test. .3-30
BTC—Bit Test and Complement .3-32
BTR—Bit Test and Reset. .3-34
BTS—Bit Test and Set. .3-36
CALL—Call Procedure. .3-38
CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword3-49
CDQ—Convert Double to Quad. .3-50
CLC—Clear Carry Flag .3-51
CLD—Clear Direction Flag .3-52
CLI—Clear Interrupt Flag. .3-53
CLTS—Clear Task-Switched Flag in CR0 .3-55
CMC—Complement Carry Flag .3-56
CMOVcc—Conditional Move .3-57
CMP—Compare Two Operands .3-61
CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands 3-63
CMPXCHG—Compare and Exchange .3-66
CMPXCHG8B—Compare and Exchange 8 Bytes.3-68
CPUID—CPU Identification .3-70
CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
to Quadword .3-77
CWDE—Convert Word to Doubleword .3-78
DAA—Decimal Adjust AL after Addition .3-79
DAS—Decimal Adjust AL after Subtraction .3-81
DEC—Decrement by 1 .3-82
DIV—Unsigned Divide .3-84
EMMS—Empty MMX™ State .3-87
ENTER—Make Stack Frame for Procedure Parameters.3-88
F2XM1—Compute 2x–1 .3-91
FABS—Absolute Value .3-93
FADD/FADDP/FIADD—Add .3-95
FBLD—Load Binary Coded Decimal .3-98
FBSTP—Store BCD Integer and Pop .3-100
FCHS—Change Sign. .3-103
FCLEX/FNCLEX—Clear Exceptions .3-105
FCMOVcc—Floating-Point Conditional Move .3-107
FCOM/FCOMP/FCOMPP—Compare Real .3-109
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and
Set EFLAGS .3-112
FCOS—Cosine .3-115
FDECSTP—Decrement Stack-Top Pointer .3-117
FDIV/FDIVP/FIDIV—Divide .3-118

ch01.bk : ch01.toc Page vi Friday, January 17, 1997 12:59 PM

vii

TABLE OF CONTENTS

PAGE

FDIVR/FDIVRP/FIDIVR—Reverse Divide . 3-122
FFREE—Free Floating-Point Register. 3-126
FICOM/FICOMP—Compare Integer . 3-127
FILD—Load Integer . 3-129
FINCSTP—Increment Stack-Top Pointer . 3-131
FINIT/FNINIT—Initialize Floating-Point Unit. 3-132
FIST/FISTP—Store Integer . 3-134
FLD—Load Real . 3-137
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—
Load Constant . 3-139
FLDCW—Load Control Word. 3-141
FLDENV—Load FPU Environment . 3-143
FMUL/FMULP/FIMUL—Multiply. 3-145
FNOP—No Operation . 3-148
FPATAN—Partial Arctangent . 3-149
FPATAN—Partial Arctangent . 3-151
FPREM1—Partial Remainder . 3-154
FPTAN—Partial Tangent . 3-157
FRNDINT—Round to Integer . 3-159
FRSTOR—Restore FPU State. 3-160
FSAVE/FNSAVE—Store FPU State . 3-162
FSCALE—Scale. 3-165
FSIN—Sine . 3-167
FSINCOS—Sine and Cosine . 3-169
FSQRT—Square Root . 3-171
FST/FSTP—Store Real . 3-173
FSTCW/FNSTCW—Store Control Word . 3-176
FSTENV/FNSTENV—Store FPU Environment 3-178
FSTSW/FNSTSW—Store Status Word . 3-180
FSUB/FSUBP/FISUB—Subtract . 3-182
FSUBR/FSUBRP/FISUBR—Reverse Subtract 3-185
FTST—TEST . 3-188
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real 3-190
FWAIT—Wait . 3-193
FXAM—Examine . 3-194
FXCH—Exchange Register Contents . 3-196
FXTRACT—Extract Exponent and Significand 3-198
FYL2X—Compute y * log2x . 3-200
FYL2XP1—Compute y * log2(x +1) . 3-202
HLT—Halt . 3-204
IDIV—Signed Divide . 3-205
IMUL—Signed Multiply. 3-208
IN—Input from Port . 3-211
INC—Increment by 1 . 3-213
INS/INSB/INSW/INSD—Input from Port to String 3-215
INT n/INTO/INT 3—Call to Interrupt Procedure 3-218
INVD—Invalidate Internal Caches . 3-230

ch01.bk : ch01.toc Page vii Friday, January 17, 1997 12:59 PM

TABLE OF CONTENTS

viii

PAGE

INVLPG—Invalidate TLB Entry .3-232
IRET/IRETD—Interrupt Return .3-233
Jcc—Jump if Condition Is Met .3-241
JMP—Jump .3-245
LAHF—Load Status Flags into AH Register .3-252
LAR—Load Access Rights Byte .3-253
LDS/LES/LFS/LGS/LSS—Load Far Pointer .3-256
LEA—Load Effective Address .3-259
LEAVE—High Level Procedure Exit .3-261
LES—Load Full Pointer .3-263
LFS—Load Full Pointer .3-264
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register3-265
LGS—Load Full Pointer .3-267
LLDT—Load Local Descriptor Table Register .3-268
LIDT—Load Interrupt Descriptor Table Register3-270
LMSW—Load Machine Status Word .3-271
LOCK—Assert LOCK# Signal Prefix .3-273
LODS/LODSB/LODSW/LODSD—Load String .3-275
LOOP/LOOPcc—Loop According to ECX Counter3-278
LSL—Load Segment Limit .3-280
LSS—Load Full Pointer .3-283
LTR—Load Task Register .3-284
MOV—Move .3-286
MOV—Move to/from Control Registers .3-291
MOV—Move to/from Debug Registers .3-293
MOVD—Move 32 Bits .3-295
MOVQ—Move 64 Bits .3-297
MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String . . .3-299
MOVSX—Move with Sign-Extension .3-302
MOVZX—Move with Zero-Extend .3-304
MUL—Unsigned Multiply .3-306
NEG—Two's Complement Negation .3-308
NOP—No Operation .3-310
NOT—One's Complement Negation .3-311
OR—Logical Inclusive OR .3-313
OUT—Output to Port .3-315
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port3-317
PACKSSWB/PACKSSDW—Pack with Signed Saturation 3-320
PACKUSWB—Pack with Unsigned Saturation .3-323
PADDB/PADDW/PADDD—Packed Add .3-325
PADDSB/PADDSW—Packed Add with Saturation3-328
PADDUSB/PADDUSW—Packed Add Unsigned with Saturation 3-331
PAND—Logical AND .3-334
PANDN—Logical AND NOT .3-336
PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal3-338
PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for
Greater Than .3-341

ch01.bk : ch01.toc Page viii Friday, January 17, 1997 12:59 PM

ix

TABLE OF CONTENTS

PAGE

PMADDWD—Packed Multiply and Add . 3-344
PMULHW—Packed Multiply High . 3-346
PMULLW—Packed Multiply Low . 3-348
POP—Pop a Value from the Stack . 3-350
POPA/POPAD—Pop All General-Purpose Registers 3-354
POPF/POPFD—Pop Stack into EFLAGS Register 3-356
POR—Bitwise Logical OR . 3-359
PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical 3-361
PSRAW/PSRAD—Packed Shift Right Arithmetic. 3-364
PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical. 3-367
PSUBB/PSUBW/PSUBD—Packed Subtract . 3-370
PSUBSB/PSUBSW—Packed Subtract with Saturation 3-373
PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation . . 3-376
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—
Unpack High Packed Data . 3-379
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—
Unpack Low Packed Data . 3-382
PUSH—Push Word or Doubleword Onto the Stack. 3-385
PUSHA/PUSHAD—Push All General-Purpose Registers 3-388
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack 3-390
PXOR—Logical Exclusive OR . 3-392
RCL/RCR/ROL/ROR-—Rotate . 3-394
RDMSR—Read from Model Specific Register. 3-399
RDPMC—Read Performance-Monitoring Counters. 3-401
RDTSC—Read Time-Stamp Counter . 3-403
REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix . 3-404
RET—Return from Procedure . 3-407
ROL/ROR—Rotate. 3-413
RSM—Resume from System Management Mode 3-414
SAHF—Store AH into Flags . 3-415
SAL/SAR/SHL/SHR—Shift. 3-416
SBB—Integer Subtraction with Borrow . 3-420
SCAS/SCASB/SCASW/SCASD—Scan String. 3-422
SETcc—Set Byte on Condition . 3-425
SGDT/SIDT—Store Global/Interrupt Descriptor Table Register 3-427
SHL/SHR—Shift Instructions . 3-429
SHLD—Double Precision Shift Left . 3-430
SHRD—Double Precision Shift Right. 3-432
SIDT—Store Interrupt Descriptor Table Register. 3-434
SLDT—Store Local Descriptor Table Register. 3-435
SMSW—Store Machine Status Word . 3-437
STC—Set Carry Flag . 3-439
STD—Set Direction Flag . 3-440
STI—Set Interrupt Flag . 3-441
STOS/STOSB/STOSW/STOSD—Store String 3-443
STR—Store Task Register. 3-446
SUB—Subtract . 3-448

ch01.bk : ch01.toc Page ix Friday, January 17, 1997 12:59 PM

TABLE OF CONTENTS

x

PAGE

TEST—Logical Compare .3-450
UD2—Undefined Instruction .3-452
VERR, VERW—Verify a Segment for Reading or Writing3-453
WAIT/FWAIT—Wait .3-455
WBINVD—Write Back and Invalidate Cache. .3-456
WRMSR—Write to Model Specific Register .3-458
XADD—Exchange and Add .3-460
XCHG—Exchange Register/Memory with Register.3-462
XLAT/XLATB—Table Look-up Translation .3-464
XOR—Logical Exclusive OR .3-466

APPENDIX A
OPCODE MAP
A.1. KEY TO ABBREVIATIONS . A-1
A.1.1. Codes for Addressing Method. A-1
A.1.2. Codes for Operand Type . A-2
A.1.3. Register Codes . A-3
A.2. ONE-BYTE OPCODE INTEGER INSTRUCTIONS . A-3
A.3. TWO-BYTE OPCODE INTEGER INSTRUCTIONS. A-3
A.4. OPCODE EXTENSIONS FOR ONE- AND TWO-BYTE OPCODES A-8
A.5. ESCAPE OPCODE INSTRUCTIONS . A-9
A.5.1. Escape Opcodes with D8 as First Byte . A-10
A.5.2. Escape Opcodes with D9 as First Byte . A-12
A.5.3. Escape Opcodes with DA as First Byte. A-14
A.5.4. Escape Opcodes with DB as First Byte. A-16
A.5.5. Escape Opcodes with DC as First Byte. A-18
A.5.6. Escape Opcodes with DD as First Byte. A-20
A.5.7. Escape Opcodes with DE as First Byte. A-22
A.5.8. Escape Opcodes with DF As First Byte. A-24

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1. MACHINE INSTRUCTION FORMAT . B-1
B.1.1. Reg Field (reg). B-2
B.1.2. Encoding of Operand Size Bit (w) . B-3
B.1.3. Sign Extend (s) Bit. B-3
B.1.4. Segment Register Field (sreg). B-4
B.1.5. Special-Purpose Register (eee) Field . B-4
B.1.6. Condition Test Field (tttn) . B-5
B.1.7. Direction (d) Bit . B-5
B.2. INTEGER INSTRUCTION FORMATS AND ENCODINGS B-6
B.3. MMX™ INSTRUCTION FORMATS AND ENCODINGS . B-19
B.3.1. Granularity Field (gg). B-19
B.3.2. MMX™ and General-Purpose Register Fields (mmxreg

and reg) . B-19
B.3.3. MMX™ Instruction Formats and Encodings Table . B-20
B.4. FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS B-24

ch01.bk : ch01.toc Page x Friday, January 17, 1997 12:59 PM

xi

TABLE OF FIGURES
PAGE

Figure 1-1. Bit and Byte Order .1-5
Figure 2-1. Intel Architecture Instruction Format. .2-1
Figure 3-1. Bit Offset for BIT[EAX,21] .3-7
Figure 3-2. Memory Bit Indexing .3-8
Figure 3-3. Version and Feature Information in Registers EAX and EDX.3-71
Figure 3-4. Operation of MOVD Instruction. .3-295
Figure 3-5. Operation of the MOVQ Instructions. .3-297
Figure 3-6. Operation of the PACKSSDW Instruction. .3-320
Figure 3-7. Operation of the PACKUSWB Instruction. .3-323
Figure 3-8. Operation of the PADDW Instruction .3-325
Figure 3-9. Operation of the PADDSW Instruction .3-328
Figure 3-10. Operation of the PADDUSB Instruction .3-331
Figure 3-11. Operation of the PAND Instruction .3-334
Figure 3-12. Operation of the PANDN Instruction. .3-336
Figure 3-13. Operation of the PCMPEQW Instruction .3-338
Figure 3-14. Operation of the PCMPGTW Instruction. .3-341
Figure 3-15. Operation of the PMADDWD Instruction .3-344
Figure 3-16. Operation of the PMULHW Instruction .3-346
Figure 3-17. Operation of the PMULLW Instruction .3-348
Figure 3-18. Operation of the POR Instruction.. .3-359
Figure 3-19. Operation of the PSLLW Instruction .3-361
Figure 3-20. Operation of the PSRAW Instruction .3-364
Figure 3-21. Operation of the PSRLW Instruction. .3-367
Figure 3-22. Operation of the PSUBW Instruction .3-370
Figure 3-23. Operation of the PSUBSW Instruction .3-373
Figure 3-24. Operation of the PSUBUSB Instruction .3-376
Figure 3-25. High-Order Unpacking and Interleaving of Bytes

With the PUNPCKHBW Instruction. .3-379
Figure 3-26. Low-Order Unpacking and Interleaving of Bytes

With the PUNPCKLBW Instruction .3-382
Figure 3-27. Operation of the PXOR Instruction. .3-392
Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3). A-8
Figure B-1. General Machine Instruction Format . B-1
Figure B-2. Key to Codes for MMX™ Data Type Cross-Reference B-20

ch01.bk : ch01.lof Page xi Friday, January 17, 1997 12:59 PM

xii

TABLE OF TABLES
PAGE

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte .2-4
Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte .2-5
Table 2-3. 32-Bit Addressing Forms with the SIB Byte .2-6
Table 3-1. Register Encodings Associated with the +rb, +rw, and +rd Nomenclature. . . .3-2
Table 3-2. Exception Mnemonics, Names, and Vector Numbers 3-9
Table 3-3. Floating-Point Exception Mnemonics and Names .3-10
Table 3-4. Information Returned by CPUID Instruction .3-70
Table 3-5. Processor Type Field .3-72
Table 3-6. Feature Flags Returned in EDX Register .3-72
Table 3-7. Encoding of Cache and TLB Descriptors .3-74
Table A-1. One-Byte Opcode Map1. A-4
Table A-2. Two Byte Opcode Map (First byte is 0FH)1 . A-6
Table A-3. Opcode Extensions for One- and Two-Byte Opcodes by Group Number1 . . A-8
Table A-4. D8 Opcode Map When ModR/M Byte is Within 00H to BFH1 A-10
Table A-5. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-11
Table A-6. D9 Opcode Map When ModR/M Byte is Within 00H to BFH1 A-12
Table A-7. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-13
Table A-8. DA Opcode Map When ModR/M Byte is Within 00H to BFH1 A-14
Table A-9. DA Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-15
Table A-10. DB Opcode Map When ModR/M Byte is Within 00H to BFH1 A-16
Table A-11. DB Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-17
Table A-12. DC Opcode Map When ModR/M Byte is Within 00H to BFH1 A-18
Table A-13. DC Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-19
Table A-14. DD Opcode Map When ModR/M Byte is Within 00H to BFH1 A-20
Table A-15. DD Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-21
Table A-16. DE Opcode Map When ModR/M Byte is Within 00H to BFH1 A-22
Table A-17. DE Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-23
Table A-18. DF Opcode Map When ModR/M Byte is Within 00H to BFH1 A-24
Table A-19. DF Opcode Map When ModR/M Byte is Outside 00H to BFH1 A-25
Table B-1. Special Fields Within Instruction Encodings . B-2
Table B-2. Encoding of reg Field When w Field is Not Present in Instruction B-2
Table B-3. Encoding of reg Field When w Field is Present in Instruction. B-3
Table B-4. Encoding of Operand Size (w) Bit . B-3
Table B-5. Encoding of Sign-Extend (s) Bit . B-3
Table B-6. Encoding of the Segment Register (sreg) Field . B-4
Table B-7. Encoding of Special-Purpose Register (eee) Field. B-4
Table B-8. Encoding of Conditional Test (tttn) Field. B-5
Table B-9. Encoding of Operation Direction (d) Bit . B-6
Table B-10. Integer Instruction Formats and Encodings . B-6
Table B-11. Encoding of Granularity of Data Field (gg) . B-19
Table B-12. Encoding of the MMX™ Register Field (mmxreg) . B-19
Table B-13. Encoding of the General-Purpose Register Field (reg) When

Used in MMX™ Instructions . B-20
Table B-14. MMX™ Instruction Formats and Encodings . B-20
Table B-15. General Floating-Point Instruction Formats . B-24
Table B-16. Floating-Point Instruction Formats and Encodings . B-25

ch01.bk : ch01.lot Page xii Friday, January 17, 1997 12:59 PM

1
About This Manual

ch01.bk : ch01div.doc Page 1 Friday, January 17, 1997 12:59 PM

ch01.bk : ch01div.doc Page 2 Friday, January 17, 1997 12:59 PM

1-1

CHAPTER 1
ABOUT THIS MANUAL

The Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference
(Order Number 243191) is part of a three-volume set that describes the architecture and
programming environment of all Intel Architecture processors. The other two volumes in this
set are:

• The Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture (Order
Number 243190).

• The Intel Architecture Software Developer’s Manual, Volume 3: System Programing Guide
(Order Number 243192).

The Intel Architecture Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of an Intel Architecture processor; the Intel Architecture Soft-
ware Developer’s Manual, Volume 2, describes the instructions set of the processor and the
opcode structure. These two volumes are aimed at application programmers who are writing
programs to run under existing operating systems or executives. The Intel Architecture Software
Developer’s Manual, Volume 3, describes the operating-system support environment of an Intel
Architecture processor, including memory management, protection, task management, interrupt
and exception handling, and system management mode. It also provides Intel Architecture
processor compatibility information. This volume is aimed at operating-system and BIOS
designers and programmers.

1.1. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 2 : INSTRUCTION SET
REFERENCE

The contents of this manual are as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all
Intel Architecture instructions and gives the allowable encodings of prefixes, the operand-iden-
tifier byte (ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement
and immediate bytes.

Chapter 3 — Instruction Set Reference. Describes each of the Intel Architecture instructions
in detail, including an algorithmic description of operations, the effect on flags, the effect of
operand- and address-size attributes, and the exceptions that may be generated. The instructions
are arranged in alphabetical order. The MMX™ instructions are included in this chapter.

ch01.bk : ch01.doc Page 1 Friday, January 17, 1997 12:59 PM

1-2

ABOUT THIS MANUAL

Appendix A — Opcode Map. Gives an opcode map for the Intel Architecture instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form
of each Intel Architecture instruction.

1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 1 : BASIC
ARCHITECTURE

The contents of the Intel Architecture Software Developer’s Manual, Volume 1, are as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Introduction to the Intel Architecture. Introduces the Intel Architecture and the
families of Intel processors that are based on this architecture. It also gives an overview of the
common features found in these processors and brief history of the Intel Architecture.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization
and describes the register set used by applications.

Chapter 4 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack
and the mechanisms provided for making procedure calls and for servicing interrupts and
exceptions.

Chapter 5 — Data Types and Addressing Modes. Describes the data types and addressing
modes recognized by the processor.

Chapter 6 — Instruction Set Summary. Gives an overview of all the Intel Architecture
instructions except those executed by the processor’s floating-point unit. The instructions are
presented in functionally related groups.

Chapter 7 — Floating-Point Unit. Describes the Intel Architecture floating-point unit,
including the floating-point registers and data types; gives an overview of the floating-point
instruction set; and describes the processor's floating-point exception conditions.

Chapter 8 — Programming with Intel MMX™ Technology. Describes the Intel MMX tech-
nology, including MMX registers and data types, and gives an overview of the MMX instruction
set.

Chapter 9 — Input/Output. Describes the processor’s I/O architecture, including I/O port
addressing, the I/O instructions, and the I/O protection mechanism.

Chapter 10 — Processor Identification and Feature Determination. Describes how to deter-
mine the CPU type and the features that are available in the processor.

Appendix A — EFLAGS Cross-Reference. Summaries how the Intel Architecture instructions
affect the flags in the EFLAGS register.

ch01.bk : ch01.doc Page 2 Friday, January 17, 1997 12:59 PM

1-3

ABOUT THIS MANUAL

Appendix B — EFLAGS Condition Codes. Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes the exceptions that can be
raised by floating-point instructions.

Appendix D — Guidelines for Writing FPU Exception Handlers. Describes how to design
and write MS-DOS* compatible exception handling facilities for FPU exceptions, including
both software and hardware requirements and assembly-language code examples. This appendix
also describes general techniques for writing robust FPU exception handlers.

1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 3 : SYSTEM
PROGRAMMING GUIDE

The contents of the Intel Architecture Software Developer’s Manual, Volume 3, are as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation of an Intel
Architecture processor and the mechanisms provided in the Intel Architecture to support oper-
ating systems and executives, including the system-oriented registers and data structures and the
system-oriented instructions. The steps necessary for switching between real-address and
protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers,
and instructions that support segmentation and paging and explains how they can be used to
implement a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection. Describes the support for page and segment protection provided in
the Intel Architecture. This chapter also explains the implementation of privilege rules, stack
switching, pointer validation, user and supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms
defined in the Intel Architecture, shows how interrupts and exceptions relate to protection, and
describes how the architecture handles each exception type. Reference information for each
Intel Architecture exception is given at the end of this chapter.

Chapter 6 — Task Management. Describes the mechanisms the Intel Architecture provides to
support multitasking and inter-task protection.

Chapter 7 — Multiple Processor Management. Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and the advanced program-
mable interrupt controller (APIC).

ch01.bk : ch01.doc Page 3 Friday, January 17, 1997 12:59 PM

1-4

ABOUT THIS MANUAL

Chapter 8 — Processor Management and Initialization. Defines the state of an Intel Archi-
tecture processor and its floating-point unit after reset initialization. This chapter also explains
how to set up an Intel Architecture processor for real-address mode operation and protected
mode operation, and how to switch between modes.

Chapter 9 — Memory Cache Control. Describes the general concept of caching and the
caching mechanisms supported by the Intel Architecture. This chapter also describes the
memory type range registers (MTRRs) and how they can be used to map memory types of phys-
ical memory. MTRRs were introduced into the Intel Architecture with the Pentium® Pro
processor.

Chapter 10 — MMX™ Technology System Programming Model. Describes those aspects
of the Intel MMX technology that must be handled and considered at the system programming
level, including task switching, exception handling, and compatibility with existing system envi-
ronments.

Chapter 11 — System Management Mode (SMM). Describes the Intel Architecture’s system
management mode (SMM), which can be used to implement power management functions.

Chapter 12 — Machine Check Architecture. Describes the machine check architecture,
which was introduced into the Intel Architecture with the Pentium processor.

Chapter 13 — Code Optimization. Discusses general optimization techniques for program-
ming an Intel Architecture processor.

Chapter 14 — Debugging and Performance Monitoring. Describes the debugging registers
and other debug mechanism provided in the Intel Architecture. This chapter also describes the
time-stamp counter and the performance monitoring counters.

Chapter 15 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the Intel
Architecture.

Chapter 16 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 17 — Intel Architecture Compatibility. Describes the programming differences
between the Intel 286, Intel386™, Intel486™, Pentium, and Pentium Pro processors. The differ-
ences among the 32-bit Intel Architecture processors (the Intel386, Intel486, Pentium, and
Pentium Pro processors) are described throughout the three volumes of the Intel Architecture
Software Developer’s Manual, as relevant to particular features of the architecture. This chapter
provides a collection of all the relevant compatibility information for all Intel Architecture
processors and also describes the basic differences with respect to the 16-bit Intel Architecture
processors (the Intel 8086 and Intel 286 processors).

Appendix A — Performance-Monitoring Counters. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events.

Appendix B — Model Specific Registers (MSRs). Lists the MSRs available in the Pentium Pro
processor and their functions.

ch01.bk : ch01.doc Page 4 Friday, January 17, 1997 12:59 PM

1-5

ABOUT THIS MANUAL

1.4. NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual easier
to read.

1.4.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. Intel Architec-
ture processors is a “little endian” machines; this means the bytes of a word are numbered
starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.4.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits
are marked as reserved, it is essential for compatibility with future processors that software treat
these bits as having a future, though unknown, effect. The behavior of reserved bits should be
regarded as not only undefined, but unpredictable. Software should follow these guidelines in
dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28

24
20
16
12
8

4
0 Address

Byte Offset

ch01.bk : ch01.doc Page 5 Friday, January 17, 1997 12:59 PM

1-6

ABOUT THIS MANUAL

NOTE

Avoid any software dependence upon the state of reserved bits in Intel Archi-
tecture registers. Depending upon the values of reserved register bits will
make software dependent upon the unspecified manner in which the
processor handles these bits. Depending upon reserved values risks incompat-
ibility with future processors.

1.4.3. Instruction Operands

When instructions are represented symbolically, a subset of the Intel Architecture assembly
language is used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands argument1, argument2, and argument3 are optional. There may be from zero
to three operands, depending on the opcode. When present, they take the form of either
literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.4.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following set:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

ch01.bk : ch01.doc Page 6 Friday, January 17, 1997 12:59 PM

1-7

ABOUT THIS MANUAL

1.4.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to locate
the byte or bytes memory. The range of memory that can be addressed is called an address
space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.4.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP(0)

See Chapter 5, Interrupt and Exception Handling, in the Intel Architecture Software Developer’s
Manual, Volume 3, for a list of exception mnemonics and their descriptions.

ch01.bk : ch01.doc Page 7 Friday, January 17, 1997 12:59 PM

1-8

ABOUT THIS MANUAL

1.5. RELATED LITERATURE

The following books contain additional material related to Intel processors:

• Intel Pentium® Pro Processor Specification Update, Order Number 242689.

• Intel Pentium® Processor Specification Update, Order Number 242480.

• AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618.

• AP-578, Software and Hardware Considerations for FPU Exception Handlers for Intel
Architecture Processors, Order Number 242415-001.

• Pentium® Pro Processor Family Developer’s Manual, Volume 1: Specifications, Order
Number 242690-001.

• Pentium® Processor Family Developer’s Manual, Order Number 241428.

• Intel486™ Microprocessor Data Book, Order Number 240440.

• Intel486™ SX CPU/Intel487™ SX Math Coprocessor Data Book, Order Number 240950.

• Intel486™ DX2 Microprocessor Data Book, Order Number 241245.

• Intel486™ Microprocessor Product Brief Book, Order Number 240459.

• Intel386™ Processor Hardware Reference Manual, Order Number 231732.

• Intel386™ Processor System Software Writer's Guide, Order Number 231499.

• Intel386™ High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
Management, Order Number 231630.

• 376 Embedded Processor Programmer's Reference Manual, Order Number 240314.

• 80387 DX User's Manual Programmer's Reference, Order Number 231917.

• 376 High-Performance 32-Bit Embedded Processor, Order Number 240182.

• Intel386™ SX Microprocessor, Order Number 240187.

• Microprocessor and Peripheral Handbook (Vol. 1), Order Number 230843.

• AP-528, Optimizations for Intel's 32-Bit Processors, Order Number 242816-001.

ch01.bk : ch01.doc Page 8 Friday, January 17, 1997 12:59 PM

2
Instruction Format

ch01.bk : ch02div.doc Page 1 Friday, January 17, 1997 12:59 PM

ch01.bk : ch02div.doc Page 2 Friday, January 17, 1997 12:59 PM

2-1

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel Architecture processors.

2.1. GENERAL INSTRUCTION FORMAT

All Intel Architecture instruction encodings are subsets of the general instruction format shown
in Figure 2-1. Instructions consist of optional instruction prefixes (in any order), one or two
primary opcode bytes, an addressing-form specifier (if required) consisting of the ModR/M byte
and sometimes the SIB (Scale-Index-Base) byte, a displacement (if required), and an immediate
data field (if required).

2.2. INSTRUCTION PREFIXES

The instruction prefixes are divided into four groups, each with a set of allowable prefix codes:

• Lock and repeat prefixes.

— F0H—LOCK prefix.

— F2H—REPNE/REPNZ prefix (used only with string instructions).

— F3H—REP prefix (used only with string instructions).

— F3H—REPE/REPZ prefix (used only with string instructions).

• Segment override.

— 2EH—CS segment override prefix.

— 36H—SS segment override prefix.

Figure 2-1. Intel Architecture Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of

1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4

bytes or none

1 byte
(if required)

1 byte
(if required)

1 or 2 byte
opcode

Up to four
prefixes of

1-byte each
(optional)

ch01.bk : ch02.doc Page 1 Friday, January 17, 1997 12:59 PM

2-2

INSTRUCTION FORMAT

— 3EH—DS segment override prefix.

— 26H—ES segment override prefix.

— 64H—FS segment override prefix.

— 65H—GS segment override prefix.

• Operand-size override, 66H

• Address-size override, 67H

For each instruction, one prefix may be used from each of these groups and be placed in any
order. The effect of redundant prefixes (more than one prefix from a group) is undefined and may
vary from processor to processor.

2.3. OPCODE

The primary opcode is either 1 or 2 bytes. An additional 3-bit opcode field is sometimes encoded
in the ModR/M byte. Smaller encoding fields can be defined within the primary opcode. These
fields define the direction of the operation, the size of displacements, the register encoding,
condition codes, or sign extension. The encoding of fields in the opcode varies, depending on
the class of operation.

2.4. MODR/M AND SIB BYTES

Most instructions that refer to an operand in memory have an addressing-form specifier byte
(called the ModR/M byte) following the primary opcode. The ModR/M byte contains three
fields of information:

• The mod field combines with the r/m field to form 32 possible values: eight registers and
24 addressing modes.

• The reg/opcode field specifies either a register number or three more bits of opcode infor-
mation. The purpose of the reg/opcode field is specified in the primary opcode.

• The r/m field can specify a register as an operand or can be combined with the mod field to
encode an addressing mode.

Certain encodings of the ModR/M byte require a second addressing byte, the SIB byte, to fully
specify the addressing form. The base-plus-index and scale-plus-index forms of 32-bit
addressing require the SIB byte. The SIB byte includes the following fields:

• The scale field specifies the scale factor.

• The index field specifies the register number of the index register.

• The base field specifies the register number of the base register.

See Section 2.6., “Addressing-Mode Encoding of ModR/M and SIB Bytes”, for the encodings
of the ModR/M and SIB bytes.

ch01.bk : ch02.doc Page 2 Friday, January 17, 1997 12:59 PM

2-3

INSTRUCTION FORMAT

2.5. DISPLACEMENT AND IMMEDIATE BYTES

Some addressing forms include a displacement immediately following either the ModR/M or
SIB byte. If a displacement is required, it can be 1, 2, or 4 bytes.

If the instruction specifies an immediate operand, the operand always follows any displacement
bytes. An immediate operand can be 1, 2 or 4 bytes.

2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB
BYTES

The values and the corresponding addressing forms of the ModR/M and SIB bytes are shown in
Tables 2-1 through 2-3. The 16-bit addressing forms specified by the ModR/M byte are in Table
2-1, and the 32-bit addressing forms specified by the ModR/M byte are in Table 2-2. Table 2-3
shows the 32-bit addressing forms specified by the SIB byte.

In Tables 2-1 and 2-2, the first column (labeled “Effective Address”) lists 32 different effective
addresses that can be assigned to one operand of an instruction by using the Mod and R/M fields
of the ModR/M byte. The first 24 give the different ways of specifying a memory location; the
last 8 (specified by the Mod field encoding 11B) give the ways of specifying the general purpose
and MMX registers. Each of the register encodings list four possible registers. For example, the
first register-encoding (selected by the R/M field encoding of 000B) indicates the general-
purpose registers EAX, AX or AL, or the MMX register MM0. Which of these four registers is
used is determined by the opcode byte and the operand-size attribute, which select either the
EAX register (32 bits) or AX register (16 bits).

The second and third columns in Tables 2-1 and 2-2 gives the binary encodings of the Mod and
R/M fields in the ModR/M byte, respectively, required to obtain the associated effective address
listed in the first column. All 32 possible combinations of the Mod and R/M fields are listed.

Across the top of Tables 2-1 and 2-2, the 8 possible values of the 3-bit Reg/Opcode field are
listed, in decimal (fifth row from top) and in binary (sixth row from top). The sixth row is labeled
“REG=” which represents the use of these 3 bits to give the location of a second operand, which
must be a general-purpose register or an MMX register. If the instruction does not require a
second operand to be specified, then the 3 bits of the Reg/Opcode field may be used as an exten-
sion of the opcode, which is represented by the fifth row, labeled “/digit (Opcode)”. The four
rows above give the byte, word and doubleword general-purpose registers and the MMX regis-
ters that correspond to the register numbers, with the same assignments as for the R/M field
when Mod field encoding is 11B. As with the R/M field register options, which of the four
possible registers is used is determined by the opcode byte along with the operand-size attribute.

The body of Tables 2-1 and 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”)
contains a 32 by 8 array giving all of the 256 values of the ModR/M byte, in hexadecimal. Bits
3, 4 and 5 are specified by the column of the table in which a byte resides, and the row specifies
bits 0, 1 and 2, and also bits 6 and 7.

ch01.bk : ch02.doc Page 3 Friday, January 17, 1997 12:59 PM

2-4

INSTRUCTION FORMAT

NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effec-
tive addresses.

2. The “disp16” nomenclature denotes a 16-bit displacement following the ModR/M byte, to be added to the
index.

3. The “disp8” nomenclature denotes an 8-bit displacement following the ModR/M byte, to be sign-extended
and added to the index.

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
/digit (Opcode)
REG =

AL
AX
EAX
MM0
0
000

CL
CX
ECX
MM1
1
001

DL
DX
EDX
MM2
2
010

BL
BX
EBX
MM3
3
011

AH
SP
ESP
MM4
4
100

CH
BP1

EBP
MM5
5
101

DH
SI
ESI
MM6
6
110

BH
DI
EDI
MM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0
ECX/CX/CL/MM1
EDX/DX/DL/MM2
EBX/BX/BL/MM3
ESP/SP/AHMM4
EBP/BP/CH/MM5
ESI/SI/DH/MM6
EDI/DI/BH/MM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

ch01.bk : ch02.doc Page 4 Friday, January 17, 1997 12:59 PM

2-5

INSTRUCTION FORMAT

NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement following the SIB byte, to be added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement following the SIB byte, to be sign-extended and
added to the index.

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
/digit (Opcode)
REG =

AL
AX
EAX
MM0
0
000

CL
CX
ECX
MM1
1
001

DL
DX
EDX
MM2
2
010

BL
BX
EBX
MM3
3
011

AH
SP
ESP
MM4
4
100

CH
BP
EBP
MM5
5
101

DH
SI
ESI
MM6
6
110

BH
DI
EDI
MM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1

disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

disp8[EAX]3

disp8[ECX]
disp8[EDX]
disp8[EBX];
disp8[--][--]
disp8[EBP]
disp8[ESI]
disp8[EDI]

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

disp32[EAX]
disp32[ECX]
disp32[EDX]
disp32[EBX]
disp32[--][--]
disp32[EBP]
disp32[ESI]
disp32[EDI]

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0
ECX/CX/CL/MM1
EDX/DX/DL/MM2
EBX/BX/BL/MM3
ESP/SP/AH/MM4
EBP/BP/CH/MM5
ESI/SI/DH/MM6
EDI/DI/BH/MM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

ch01.bk : ch02.doc Page 5 Friday, January 17, 1997 12:59 PM

2-6

INSTRUCTION FORMAT

Table 2-3 is organized similarly to Tables 2-1 and 2-2, except that its body gives the 256 possible
values of the SIB byte, in hexadecimal. Which of the 8 general-purpose registers will be used as
base is indicated across the top of the table, along with the corresponding values of the base field
(bits 0, 1 and 2) in decimal and binary. The rows indicate which register is used as the index
(determined by bits 3, 4 and 5) along with the scaling factor (determined by bits 6 and 7).

NOTE:

1. The [*] nomenclature means a disp32 with no base if MOD is 00, [EBP] otherwise. This provides the
following addressing modes:

disp32[index] (MOD=00).
disp8[EBP][index] (MOD=01).
disp32[EBP][index] (MOD=10).

Table 2-3. 32-Bit Addressing Forms with the SIB Byte

r32
Base =
Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

ch01.bk : ch02.doc Page 6 Friday, January 17, 1997 12:59 PM

3
Instruction Set
Reference

ch01.bk : ch03div.doc Page 1 Friday, January 17, 1997 12:59 PM

ch01.bk : ch03div.doc Page 2 Friday, January 17, 1997 12:59 PM

3-1

CHAPTER 3
INSTRUCTION SET REFERENCE

This chapter describes the complete Intel Architecture instruction set, including the integer,
floating-point, MMX technology, and system instructions. The instruction descriptions are
arranged in alphabetical order. For each instruction, the forms are given for each operand combi-
nation, including the opcode, operands required, and a description. Also given for each instruc-
tion are a description of the instruction and its operands, an operational description, a description
of the effect of the instructions on flags in the EFLAGS register, and a summary of the excep-
tions that can be generated.

3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES

This section describes the information contained in the various sections of the instruction refer-
ence pages that make up the majority of this chapter. It also explains the notational conventions
and abbreviations used in these sections.

3.1.1. Instruction Format

The following is an example of the format used for each Intel Architecture instruction descrip-
tion in this chapter:

CMC—Complement Carry Flag

3.1.1.1. OPCODE COLUMN

The “Opcode” column gives the complete object code produced for each form of the instruction.
When possible, the codes are given as hexadecimal bytes, in the same order in which they appear
in memory. Definitions of entries other than hexadecimal bytes are as follows:

• /digit—A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses
only the r/m (register or memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

• /r— Indicates that the ModR/M byte of the instruction contains both a register operand and
an r/m operand.

Opcode Instruction Description

F5 CMC Complement carry flag

ch01.bk : ch03.doc Page 1 Friday, January 17, 1997 12:59 PM

3-2

INSTRUCTION SET REFERENCE

• cb, cw, cd, cp—A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for the code segment
register.

• ib, iw, id—A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if
the operand is a signed value. All words and doublewords are given with the low-order byte
first.

• +rb, +rw, +rd— A register code, from 0 through 7, added to the hexadecimal byte given at
the left of the plus sign to form a single opcode byte. The register codes are given in Table
3-1.

• +i—A number used in floating-point instructions when one of the operands is ST(i) from
the FPU register stack. The number i (which can range from 0 to 7) is added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.

3.1.1.2. INSTRUCTION COLUMN

The “Instruction” column gives the syntax of the instruction statement as it would appear in an
ASM386 program. The following is a list of the symbols used to represent operands in the
instruction statements:

• rel8—A relative address in the range from 128 bytes before the end of the instruction to
127 bytes after the end of the instruction.

• rel16 and rel32—A relative address within the same code segment as the instruction
assembled. The rel16 symbol applies to instructions with an operand-size attribute of 16
bits; the rel32 symbol applies to instructions with an operand-size attribute of 32 bits.

• ptr16:16 and ptr16:32—A far pointer, typically in a code segment different from that of
the instruction. The notation 16:16 indicates that the value of the pointer has two parts. The
value to the left of the colon is a 16-bit selector or value destined for the code segment
register. The value to the right corresponds to the offset within the destination segment.

Table 3-1. Register Encodings Associated with the +rb, +rw, and +rd Nomenclature

rb rw rd

AL = 0 AX = 0 EAX = 0

CL = 1 CX = 1 ECX = 1

DL = 2 DX = 2 EDX = 2

BL = 3 BX = 3 EBX = 3

rb rw rd

AH = 4 SP = 4 ESP = 4

CH = 5 BP = 5 EBP = 5

DH = 6 SI = 6 ESI = 6

BH = 7 DI = 7 EDI = 7

ch01.bk : ch03.doc Page 2 Friday, January 17, 1997 12:59 PM

3-3

INSTRUCTION SET REFERENCE

The ptr16:16 symbol is used when the instruction's operand-size attribute is 16 bits; the
ptr16:32 symbol is used when the operand-size attribute is 32 bits.

• r8—One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.

• r16—One of the word general-purpose registers AX, CX, DX, BX, SP, BP, SI, or DI.

• r32—One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP, EBP,
ESI, or EDI.

• imm8—An immediate byte value. The imm8 symbol is a signed number between –128
and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or doubleword.
The upper byte of the word is filled with the topmost bit of the immediate value.

• imm16—An immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between –32,768 and +32,767 inclusive.

• imm32—An immediate doubleword value used for instructions whose operand-
size attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
–2,147,483,648 inclusive.

• r/m8—A byte operand that is either the contents of a byte general-purpose register (AL,
BL, CL, DL, AH, BH, CH, and DH), or a byte from memory.

• r/m16—A word general-purpose register or memory operand used for instructions whose
operand-size attribute is 16 bits. The word general-purpose registers are: AX, BX, CX,
DX, SP, BP, SI, and DI. The contents of memory are found at the address provided by the
effective address computation.

• r/m32—A doubleword general-purpose register or memory operand used for instructions
whose operand-size attribute is 32 bits. The doubleword general-purpose registers are:
EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The contents of memory are found at the
address provided by the effective address computation.

• m—A 16- or 32-bit operand in memory.

• m8—A byte operand in memory, usually expressed as a variable or array name, but
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions and the XLAT instruction.

• m16—A word operand in memory, usually expressed as a variable or array name, but
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions.

• m32—A doubleword operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with
the string instructions.

• m64—A memory quadword operand in memory. This nomenclature is used only with the
CMPXCHG8B instruction.

ch01.bk : ch03.doc Page 3 Friday, January 17, 1997 12:59 PM

3-4

INSTRUCTION SET REFERENCE

• m16:16, m16:32—A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment selector. The
number to the right corresponds to its offset.

• m16&32, m16&16, m32&32—A memory operand consisting of data item pairs whose
sizes are indicated on the left and the right side of the ampersand. All memory addressing
modes are allowed. The m16&16 and m32&32 operands are used by the BOUND
instruction to provide an operand containing an upper and lower bounds for array indices.
The m16&32 operand is used by LIDT and LGDT to provide a word with which to load
the limit field, and a doubleword with which to load the base field of the corresponding
GDTR and IDTR registers.

• moffs8, moffs16, moffs32—A simple memory variable (memory offset) of type byte,
word, or doubleword used by some variants of the MOV instruction. The actual address is
given by a simple offset relative to the segment base. No ModR/M byte is used in the
instruction. The number shown with moffs indicates its size, which is determined by the
address-size attribute of the instruction.

• Sreg—A segment register. The segment register bit assignments are ES=0, CS=1, SS=2,
DS=3, FS=4, and GS=5.

• m32real, m64real, m80real—A single-, double-, and extended-real (respectively)
floating-point operand in memory.

• m16int, m32int, m64int—A word-, short-, and long-integer (respectively) floating-point
operand in memory.

• ST or ST(0)—The top element of the FPU register stack.

• ST(i)—The ith element from the top of the FPU register stack. (i = 0 through 7)

• mm—An MMX™ register. The 64-bit MMX registers are: MM0 through MM7.

• mm/m32—The low order 32 bits of an MMX register or a 32-bit memory operand. The
64-bit MMX registers are: MM0 through MM7. The contents of memory are found at the
address provided by the effective address computation.

• mm/m64—An MMX register or a 64-bit memory operand. The 64-bit MMX registers are:
MM0 through MM7. The contents of memory are found at the address provided by the
effective address computation.

3.1.1.3. DESCRIPTION COLUMN

The “Description” column following the “Instruction” column briefly explains the various forms
of the instruction. The following “Description” and “Operation” sections contain more details
of the instruction's operation.

3.1.1.4. DESCRIPTION

The “Description” section describes the purpose of the instructions and the required operands.
It also discusses the effect of the instruction on flags.

ch01.bk : ch03.doc Page 4 Friday, January 17, 1997 12:59 PM

3-5

INSTRUCTION SET REFERENCE

3.1.2. Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of the
instruction. The pseudo-code uses a notation similar to the Algol or Pascal language. The algo-
rithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”.

• Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for an if
statement, DO and OD for a do statement, or CASE ... OF and ESAC for a case statement.

• A register name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For
example, ES:[DI] indicates the contents of the location whose ES segment relative address
is in register DI. [SI] indicates the contents of the address contained in register SI relative
to SI’s default segment (DS) or overridden segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates
that an offset is read from the SI register if the current address-size attribute is 16 or is read
from the ESI register if the address-size attribute is 32.

• Brackets are also used for memory operands, where they mean that the contents of the
memory location is a segment-relative offset. For example, [SRC] indicates that the
contents of the source operand is a segment-relative offset.

• A ← B; indicates that the value of B is assigned to A.

• The symbols =, ≠, ≥, and ≤ are relational operators used to compare two values, meaning
equal, not equal, greater or equal, less or equal, respectively. A relational expression such
as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE.

• The expression “<< COUNT” and “>> COUNT” indicates that the destination operand
should be shifted left or right, respectively, by the number of bits indicated by the count
operand.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize—The OperandSize identifier represents the operand-size
attribute of the instruction, which is either 16 or 32 bits. The AddressSize identifier
represents the address-size attribute, which is either 16 or 32 bits. For example, the
following pseudo-code indicates that the operand-size attribute depends on the form of the
CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize ← 16;
ELSE

IF instruction = CMPSD
THEN OperandSize ← 32;

FI;
FI;

ch01.bk : ch03.doc Page 5 Friday, January 17, 1997 12:59 PM

3-6

INSTRUCTION SET REFERENCE

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel Architecture
Software Developer’s Manual, Volume 1, for general guidelines on how these attributes
are determined.

• StackAddrSize—Represents the stack address-size attribute associated with the
instruction, which has a value of 16 or 32 bits (see “Address-Size Attribute for Stack” in
Chapter 4 of the Intel Architecture Software Developer’s Manual, Volume 1).

• SRC—Represents the source operand.

• DEST—Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value)—Returns a value zero-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, zero extending a byte value of
–10 converts the byte from F6H to a doubleword value of 000000F6H. If the value passed
to the ZeroExtend function and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

• SignExtend(value)—Returns a value sign-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, sign extending a byte
containing the value –10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size attribute
are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte—Converts a signed 16-bit value to a signed 8-bit
value. If the signed 16-bit value is less than –128, it is represented by the saturated value –
128 (80H); if it is greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord—Converts a signed 32-bit value to a signed 16-bit
value. If the signed 32-bit value is less than –32768, it is represented by the saturated value
–32768 (8000H); if it is greater than 32767, it is represented by the saturated value 32767
(7FFFH).

• SaturateSignedWordToUnsignedByte—Converts a signed 16-bit value to an unsigned
8-bit value. If the signed 16-bit value is less than zero, it is represented by the saturated
value zero (00H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

• SaturateToSignedByte—Represents the result of an operation as a signed 8-bit value. If
the result is less than –128, it is represented by the saturated value –128 (80H); if it is
greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateToSignedWord—Represents the result of an operation as a signed 16-bit value. If
the result is less than –32768, it is represented by the saturated value –32768 (8000H); if it
is greater than 32767, it is represented by the saturated value 32767 (7FFFH).

• SaturateToUnsignedByte—Represents the result of an operation as a signed 8-bit value.
If the result is less than zero it is represented by the saturated value zero (00H); if it is
greater than 255, it is represented by the saturated value 255 (FFH).

ch01.bk : ch03.doc Page 6 Friday, January 17, 1997 12:59 PM

3-7

INSTRUCTION SET REFERENCE

• SaturateToUnsignedWord—Represents the result of an operation as a signed 16-bit
value. If the result is less than zero it is represented by the saturated value zero (00H); if it
is greater than 65535, it is represented by the saturated value 65535 (FFFFH).

• LowOrderWord(DEST * SRC) —Multiplies a word operand by a word operand and
stores the least significant word of the doubleword result in the destination operand.

• HighOrderWord(DEST * SRC) —Multiplies a word operand by a word operand and
stores the most significant word of the doubleword result in the destination operand.

• Push(value)—Pushes a value onto the stack. The number of bytes pushed is determined by
the operand-size attribute of the instruction. See the “Operation” section in “PUSH—Push
Word or Doubleword Onto the Stack” in this chapter for more information on the push
operation.

• Pop() removes the value from the top of the stack and returns it. The statement EAX ←
Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will return either a
word or a doubleword depending on the operand-size attribute. See the “Operation” section
in Chapter 3, “POP—Pop a Value from the Stack” for more information on the pop
operation.

• PopRegisterStack—Marks the FPU ST(0) register as empty and increments the FPU
register stack pointer (TOP) by 1.

• Switch-Tasks—Performs a standard task switch.

• Bit(BitBase, BitOffset)—Returns the value of a bit within a bit string, which is a sequence
of bits in memory or a register. Bits are numbered from low-order to high-order within
registers and within memory bytes. If the base operand is a register, the offset can be in the
range 0..31. This offset addresses a bit within the indicated register. An example, the
function Bit[EAX, 21] is illustrated in Figure 3-1.

If BitBase is a memory address, BitOffset can range from –2 GBits to 2 GBits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset
DIV 8)), where DIV is signed division with rounding towards negative infinity, and MOD
returns a positive number. This operation is illustrated in Figure 3-2.

Figure 3-1. Bit Offset for BIT[EAX,21]

02131

BitOffset = 21

ch01.bk : ch03.doc Page 7 Friday, January 17, 1997 12:59 PM

3-8

INSTRUCTION SET REFERENCE

3.1.3. Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the
instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic
and logical instructions usually assign values to the status flags in a uniform manner (see
Appendix A, EFLAGS Cross-Reference, in the Intel Architecture Software Developer’s Manual,
Volume 1). Non-conventional assignments are described in the “Operation” section. The values
of flags listed as undefined may be changed by the instruction in an indeterminate manner. Flags
that are not listed are unchanged by the instruction.

3.1.4. FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how each
instruction can affect the four condition code flags of the FPU status word.

3.1.5. Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruc-
tion is executed in protected mode and the reasons for the exceptions. Each exception is given a
mnemonic that consists of a pound sign (#) followed by two letters and an optional error code
in parentheses. For example, #GP(0) denotes a general protection exception with an error code
of 0. Table 3-2 associates each two-letter mnemonic with the corresponding interrupt vector
number and exception name. See Chapter 5, Interrupt and Exception Handling, in the Intel
Architecture Software Developer’s Manual, Volume 3, for a detailed description of the excep-
tions.

Application programmers should consult the documentation provided with their operating
systems to determine the actions taken when exceptions occur.

Figure 3-2. Memory Bit Indexing

BitBase + 1

0777 5 0 0

BitBase − 2

0777 50 0

BitBase BitBase − 1

BitOffset = +13

BitOffset = −

BitBase − 1BitBase

ch01.bk : ch03.doc Page 8 Friday, January 17, 1997 12:59 PM

3-9

INSTRUCTION SET REFERENCE

3.1.6. Real-Address Mode Exceptions

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in real-address mode.

NOTES:

1. The UD2 instruction was introduced in the Pentium® Pro processor.

2. This exception was introduced in the Intel486™ processor.

3. This exception was introduced in the Pentium processor and enhanced in the Pentium Pro processor.

3.1.7. Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in virtual-8086 mode.

Table 3-2. Exception Mnemonics, Names, and Vector Numbers

Vector
No. Mnemonic Name Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (Undefined
Opcode)

UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math
Coprocessor)

Floating-point or WAIT/FWAIT
instruction.

 8 #DF Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other
protection checks.

14 #PF Page Fault Any memory reference.

16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT
instruction.

17 #AC Alignment Check Any data reference in memory.2

18 #MC Machine Check Model dependent.3

ch01.bk : ch03.doc Page 9 Friday, January 17, 1997 12:59 PM

3-10

INSTRUCTION SET REFERENCE

3.1.8. Floating-Point Exceptions

The “Floating-Point Exceptions” section lists additional exceptions that can occur when a
floating-point instruction is executed in any mode. All of these exception conditions result in a
floating-point error exception (#MF, vector number 16) being generated. Table 3-3 associates
each one- or two-letter mnemonic with the corresponding exception name. See “Floating-Point
Exception Conditions” in Chapter 7 of the Intel Architecture Software Developer’s Manual,
Volume 1, for a detailed description of these exceptions.

3.2. INSTRUCTION REFERENCE

The remainder of this chapter provides detailed descriptions of each of the Intel Architecture
instructions.

Table 3-3. Floating-Point Exception Mnemonics and Names

Vector
No. Mnemonic Name Source

16
#IS
#IA

Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation

- FPU stack overflow or underflow
- Invalid FPU arithmetic operation

16 #Z Floating-point divide-by-zero FPU divide-by-zero

16 #D Floating-point denormalized
operation

Attempting to operate on a denormal
number

16 #O Floating-point numeric overflow FPU numeric overflow

16 #U Floating-point numeric underflow FPU numeric underflow

16 #P Floating-point inexact result
(precision)

Inexact result (precision)

ch01.bk : ch03.doc Page 10 Friday, January 17, 1997 12:59 PM

3-11

INSTRUCTION SET REFERENCE

AAA—ASCII Adjust After Addition

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL
register is the implied source and destination operand for this instruction. The AAA instruction
is only useful when it follows an ADD instruction that adds (binary addition) two unpacked
BCD values and stores a byte result in the AL register. The AAA instruction then adjusts the
contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register is incremented by 1, and the CF and
AF flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH
register is unchanged. In either case, bits 4 through 7 of the AL register are cleared to 0.

Operation

IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN

AL ← (AL + 6);
AH ← AH + 1;
AF ← 1;
CF ← 1;

ELSE
AF ← 0;
CF ← 0;

FI;
AL ← AL AND 0FH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

37 AAA ASCII adjust AL after addition

ch01.bk : ch03.doc Page 11 Friday, January 17, 1997 12:59 PM

3-12

INSTRUCTION SET REFERENCE

AAD—ASCII Adjust AX Before Division

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-
significant digit in the AH register) so that a division operation performed on the result will yield
a correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV
instruction that divides (binary division) the adjusted value in the AX register by an unpacked
BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the
AH register to 00H. The value in the AX register is then equal to the binary equivalent of the
original unpacked two-digit (base 10) number in registers AH and AL.

The generalized version of this instruction allows adjustment of two unpacked digits of any
number base (see the “Operation” section below), by setting the imm8 byte to the selected
number base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The
AAD mnemonic is interpreted by all assemblers to mean adjust ASCII (base 10) values. To
adjust values in another number base, the instruction must be hand coded in machine code (D5
imm8).

Operation

tempAL ← AL;
tempAH ← AH;
AL ← (tempAL + (tempAH ∗ imm8)) AND FFH; (* imm8 is set to 0AH for the AAD mnemonic *)
AH ← 0

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

D5 0A AAD ASCII adjust AX before division

D5 ib (No mnemonic) Adjust AX before division to number base imm8

ch01.bk : ch03.doc Page 12 Friday, January 17, 1997 12:59 PM

3-13

INSTRUCTION SET REFERENCE

AAM—ASCII Adjust AX After Multiply

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked
(base 10) BCD values. The AX register is the implied source and destination operand for this
instruction. The AAM instruction is only useful when it follows an MUL instruction that multi-
plies (binary multiplication) two unpacked BCD values and stores a word result in the AX
register. The AAM instruction then adjusts the contents of the AX register to contain the correct
2-digit unpacked (base 10) BCD result.

The generalized version of this instruction allows adjustment of the contents of the AX to create
two unpacked digits of any number base (see the “Operation” section below). Here, the imm8
byte is set to the selected number base (for example, 08H for octal, 0AH for decimal, or 0CH
for base 12 numbers). The AAM mnemonic is interpreted by all assemblers to mean adjust to
ASCII (base 10) values. To adjust to values in another number base, the instruction must be hand
coded in machine code (D4 imm8).

Operation

tempAL ← AL;
AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAD mnemonic *)
AL ← tempAL MOD imm8;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None with the default immediate value of 0AH. If, however, an immediate value of 0 is used, it
will cause a #DE (divide error) exception.

Opcode Instruction Description

D4 0A AAM ASCII adjust AX after multiply

D4 ib (No mnemonic) Adjust AX after multiply to number base imm8

ch01.bk : ch03.doc Page 13 Friday, January 17, 1997 12:59 PM

3-14

INSTRUCTION SET REFERENCE

AAS—ASCII Adjust AL After Subtraction

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD
result. The AL register is the implied source and destination operand for this instruction. The
AAS instruction is only useful when it follows a SUB instruction that subtracts (binary subtrac-
tion) one unpacked BCD value from another and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked
BCD result.

If the subtraction produced a decimal carry, the AH register is decremented by 1, and the CF and
AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH
register is unchanged. In either case, the AL register is left with its top nibble set to 0.

Operation

IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN

AL ← AL – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;

ELSE
CF ← 0;
AF ← 0;

FI;
AL ← AL AND 0FH;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0.
The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

3F AAS ASCII adjust AL after subtraction

ch01.bk : ch03.doc Page 14 Friday, January 17, 1997 12:59 PM

3-15

INSTRUCTION SET REFERENCE

ADC—Add with Carry

Description

Adds the destination operand (first operand), the source operand (second operand), and the carry
(CF) flag and stores the result in the destination operand. The destination operand can be a
register or a memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The state of the
CF flag represents a carry from a previous addition. When an immediate value is used as an
operand, it is sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which
an ADD instruction is followed by an ADC instruction.

Operation

DEST ← DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15 id ADC EAX,imm32 Add with carry imm32 to EAX

80 /2 ib ADC r/m8,imm8 Add with carry imm8 to r/m8

81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16

81 /2 id ADC r/m32,imm32 Add with CF imm32 to r/m32

83 /2 ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16

83 /2 ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32

10 /r ADC r/m8,r8 Add with carry byte register to r/m8

11 /r ADC r/m16,r16 Add with carry r16 to r/m16

11 /r ADC r/m32,r32 Add with CF r32 to r/m32

12 /r ADC r8,r/m8 Add with carry r/m8 to byte register

13 /r ADC r16,r/m16 Add with carry r/m16 to r16

13 /r ADC r32,r/m32 Add with CF r/m32 to r32

ch01.bk : ch03.doc Page 15 Friday, January 17, 1997 12:59 PM

3-16

INSTRUCTION SET REFERENCE

ADC—Add with Carry (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 16 Friday, January 17, 1997 12:59 PM

3-17

INSTRUCTION SET REFERENCE

ADD—Add

Description

Adds the first operand (destination operand) and the second operand (source operand) and stores
the result in the destination operand. The destination operand can be a register or a memory
location; the source operand can be an immediate, a register, or a memory location. (However,
two memory operands cannot be used in one instruction.) When an immediate value is used as
an operand, it is sign-extended to the length of the destination operand format.

The ADD instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05 id ADD EAX,imm32 Add imm32 to EAX

80 /0 ib ADD r/m8,imm8 Add imm8 to r/m8

81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16

81 /0 id ADD r/m32,imm32 Add imm32 to r/m32

83 /0 ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16

83 /0 ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32

00 /r ADD r/m8,r8 Add r8 to r/m8

01 /r ADD r/m16,r16 Add r16 to r/m16

01 /r ADD r/m32,r32 Add r32 to r/m32

02 /r ADD r8,r/m8 Add r/m8 to r8

03 /r ADD r16,r/m16 Add r/m16 to r16

03 /r ADD r32,r/m32 Add r/m32 to r32

ch01.bk : ch03.doc Page 17 Friday, January 17, 1997 12:59 PM

3-18

INSTRUCTION SET REFERENCE

ADD—Add (Continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 18 Friday, January 17, 1997 12:59 PM

3-19

INSTRUCTION SET REFERENCE

AND—Logical AND

Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.
(However, two memory operands cannot be used in one instruction.) Each bit of the result of the
AND instruction is a 1 if both corresponding bits of the operands are 1; otherwise, it becomes a 0.

Operation

DEST ← DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16

25 id AND EAX,imm32 EAX AND imm32

80 /4 ib AND r/m8,imm8 r/m8 AND imm8

81 /4 iw AND r/m16,imm16 r/m16 AND imm16

81 /4 id AND r/m32,imm32 r/m32 AND imm32

83 /4 ib AND r/m16,imm8 r/m16 AND imm8 (sign-extended)

83 /4 ib AND r/m32,imm8 r/m32 AND imm8 (sign-extended)

20 /r AND r/m8,r8 r/m8 AND r8

21 /r AND r/m16,r16 r/m16 AND r16

21 /r AND r/m32,r32 r/m32 AND r32

22 /r AND r8,r/m8 r8 AND r/m8

23 /r AND r16,r/m16 r16 AND r/m16

23 /r AND r32,r/m32 r32 AND r/m32

ch01.bk : ch03.doc Page 19 Friday, January 17, 1997 12:59 PM

3-20

INSTRUCTION SET REFERENCE

AND—Logical AND (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 20 Friday, January 17, 1997 12:59 PM

3-21

INSTRUCTION SET REFERENCE

ARPL—Adjust RPL Field of Segment Selector

Description

Compares the RPL fields of two segment selectors. The first operand (the destination operand)
contains one segment selector and the second operand (source operand) contains the other. (The
RPL field is located in bits 0 and 1 of each operand.) If the RPL field of the destination operand
is less than the RPL field of the source operand, the ZF flag is set and the RPL field of the desti-
nation operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared
and no change is made to the destination operand. (The destination operand can be a word
register or a memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also
be used by applications). It is generally used to adjust the RPL of a segment selector that has
been passed to the operating system by an application program to match the privilege level of
the application program. Here the segment selector passed to the operating system is placed in
the destination operand and segment selector for the application program’s code segment is
placed in the source operand. (The RPL field in the source operand represents the privilege level
of the application program.) Execution of the ARPL instruction then insures that the RPL of the
segment selector received by the operating system is no lower (does not have a higher privilege)
than the privilege level of the application program. (The segment selector for the application
program’s code segment can be read from the stack following a procedure call.)

See “Checking Caller Access Privileges” in Chapter 4 of the Intel Architecture Software Devel-
oper’s Manual, Volume 3, for more information about the use of this instruction.

Operation

IF DEST(RPL) < SRC(RPL)
THEN

ZF ← 1;
DEST(RPL) ← SRC(RPL);

ELSE
ZF ← 0;

FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source
operand; otherwise, is cleared to 0.

Opcode Instruction Description

63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16

ch01.bk : ch03.doc Page 21 Friday, January 17, 1997 12:59 PM

3-22

INSTRUCTION SET REFERENCE

ARPL—Adjust RPL Field of Segment Selector (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD The ARPL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The ARPL instruction is not recognized in virtual-8086 mode.

ch01.bk : ch03.doc Page 22 Friday, January 17, 1997 12:59 PM

3-23

INSTRUCTION SET REFERENCE

BOUND—Check Array Index Against Bounds

Description

Determines if the first operand (array index) is within the bounds of an array specified the second
operand (bounds operand). The array index is a signed integer located in a register. The bounds
operand is a memory location that contains a pair of signed doubleword-integers (when the
operand-size attribute is 32) or a pair of signed word-integers (when the operand-size attribute
is 16). The first doubleword (or word) is the lower bound of the array and the second doubleword
(or word) is the upper bound of the array. The array index must be greater than or equal to the
lower bound and less than or equal to the upper bound plus the operand size in bytes. If the index
is not within bounds, a BOUND range exceeded exception (#BR) is signaled. (When a this
exception is generated, the saved return instruction pointer points to the BOUND instruction.)

The bounds limit data structure (two words or doublewords containing the lower and upper
limits of the array) is usually placed just before the array itself, making the limits addressable
via a constant offset from the beginning of the array. Because the address of the array already
will be present in a register, this practice avoids extra bus cycles to obtain the effective address
of the array bounds.

Operation

IF (ArrayIndex < LowerBound OR ArrayIndex > (UppderBound + OperandSize/8]))
(* Below lower bound or above upper bound *)
THEN

#BR;
FI;

Flags Affected

None.

Protected Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by
m16&16

62 /r BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by
m16&16

ch01.bk : ch03.doc Page 23 Friday, January 17, 1997 12:59 PM

3-24

INSTRUCTION SET REFERENCE

BOUND—Check Array Index Against Bounds (Continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 24 Friday, January 17, 1997 12:59 PM

3-25

INSTRUCTION SET REFERENCE

BSF—Bit Scan Forward

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the contents source operand
are 0, the contents of the destination operand is undefined.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← 0;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
DEST ← temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0F BC BSF r16,r/m16 Bit scan forward on r/m16

0F BC BSF r32,r/m32 Bit scan forward on r/m32

ch01.bk : ch03.doc Page 25 Friday, January 17, 1997 12:59 PM

3-26

INSTRUCTION SET REFERENCE

BSF—Bit Scan Forward (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 26 Friday, January 17, 1997 12:59 PM

3-27

INSTRUCTION SET REFERENCE

BSR—Bit Scan Reverse

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The
source operand can be a register or a memory location; the destination operand is a register. The
bit index is an unsigned offset from bit 0 of the source operand. If the contents source operand
are 0, the contents of the destination operand is undefined.

Operation

IF SRC = 0
THEN

ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← OperandSize – 1;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp − 1;
DEST ← temp;

OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0F BD BSR r16,r/m16 Bit scan reverse on r/m16

0F BD BSR r32,r/m32 Bit scan reverse on r/m32

ch01.bk : ch03.doc Page 27 Friday, January 17, 1997 12:59 PM

3-28

INSTRUCTION SET REFERENCE

BSR—Bit Scan Reverse (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 28 Friday, January 17, 1997 12:59 PM

3-29

INSTRUCTION SET REFERENCE

BSWAP—Byte Swap

Description

Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped with bits
24 through 31, and bits 8 through 15 are swapped with bits 16 through 23. This instruction is
provided for converting little-endian values to big-endian format and vice versa.

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the BSWAP
instruction references a 16-bit register, the result is undefined.

Intel Architecture Compatibility

The BSWAP instruction is not supported on Intel Architecture processors earlier than the
Intel486 processor family. For compatibility with this instruction, include functionally
equivalent code for execution on Intel processors earlier than the Intel486 processor family.

Operation

TEMP ← DEST
DEST(7..0) ← TEMP(31..24)
DEST(15..8) ← TEMP(23..16)
DEST(23..16) ← TEMP(15..8)
DEST(31..24) ← TEMP(7..0)

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

0F C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.

ch01.bk : ch03.doc Page 29 Friday, January 17, 1997 12:59 PM

3-30

INSTRUCTION SET REFERENCE

BT—Bit Test

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand) and stores the value of the bit in
the CF flag. The bit base operand can be a register or a memory location; the bit offset operand
can be a register or an immediate value. If the bit base operand specifies a register, the instruction
takes the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing any
bit position to be selected in a 16- or 32-bit register, respectively (see Figure 3-1). If the bit base
operand specifies a memory location, it represents the address of the byte in memory that
contains the bit base (bit 0 of the specified byte) of the bit string (see Figure 3-2). The offset
operand then selects a bit position within the range −231 to 231 − 1 for a register offset and 0 to
31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. In this case, the low-
order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are
stored in the immediate bit offset field, and the high-order bits are shifted and combined with
the byte displacement in the addressing mode by the assembler. The processor will ignore the
high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory
address for a 32-bit operand size, using by the following relationship:

Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this rela-
tionship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When
using this bit addressing mechanism, software should avoid referencing areas of memory close
to address space holes. In particular, it should avoid references to memory-mapped I/O registers.
Instead, software should use the MOV instructions to load from or store to these addresses, and
use the register form of these instructions to manipulate the data.

Operation

CF ← Bit(BitBase, BitOffset)

Opcode Instruction Description

0F A3 BT r/m16,r16 Store selected bit in CF flag

0F A3 BT r/m32,r32 Store selected bit in CF flag

0F BA /4 ib BT r/m16,imm8 Store selected bit in CF flag

0F BA /4 ib BT r/m32,imm8 Store selected bit in CF flag

ch01.bk : ch03.doc Page 30 Friday, January 17, 1997 12:59 PM

3-31

INSTRUCTION SET REFERENCE

BT—Bit Test (Continued)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 31 Friday, January 17, 1997 12:59 PM

3-32

INSTRUCTION SET REFERENCE

BTC—Bit Test and Complement

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and complements the selected bit in the bit string. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 3-1). If the bit base operand specifies a memory location, it
represents the address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string (see Figure 3-2). The offset operand then selects a bit position within the
range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

Operation

CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF,
AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F BB BTC r/m16,r16 Store selected bit in CF flag and complement

0F BB BTC r/m32,r32 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement

ch01.bk : ch03.doc Page 32 Friday, January 17, 1997 12:59 PM

3-33

INSTRUCTION SET REFERENCE

BTC—Bit Test and Complement (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 33 Friday, January 17, 1997 12:59 PM

3-34

INSTRUCTION SET REFERENCE

BTR—Bit Test and Reset

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and clears the selected bit in the bit string to 0. The bit base operand can be a register
or a memory location; the bit offset operand can be a register or an immediate value. If the bit
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit
register, respectively (see Figure 3-1). If the bit base operand specifies a memory location, it
represents the address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string (see Figure 3-2). The offset operand then selects a bit position within the
range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

Operation

CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and
PF flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F B3 BTR r/m16,r16 Store selected bit in CF flag and clear

0F B3 BTR r/m32,r32 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear

ch01.bk : ch03.doc Page 34 Friday, January 17, 1997 12:59 PM

3-35

INSTRUCTION SET REFERENCE

BTR—Bit Test and Reset (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 35 Friday, January 17, 1997 12:59 PM

3-36

INSTRUCTION SET REFERENCE

BTS—Bit Test and Set

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-
position designated by the bit offset operand (second operand), stores the value of the bit in the
CF flag, and sets the selected bit in the bit string to 1. The bit base operand can be a register or
a memory location; the bit offset operand can be a register or an immediate value. If the bit base
operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the register
size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register,
respectively (see Figure 3-1). If the bit base operand specifies a memory location, it represents
the address of the byte in memory that contains the bit base (bit 0 of the specified byte) of the
bit string (see Figure 3-2). The offset operand then selects a bit position within the range −231 to
231 − 1 for a register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in
this chapter for more information on this addressing mechanism.

Operation

CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF
flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F AB BTS r/m16,r16 Store selected bit in CF flag and set

0F AB BTS r/m32,r32 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m16,imm8 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m32,imm8 Store selected bit in CF flag and set

ch01.bk : ch03.doc Page 36 Friday, January 17, 1997 12:59 PM

3-37

INSTRUCTION SET REFERENCE

BTS—Bit Test and Set (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 37 Friday, January 17, 1997 12:59 PM

3-38

INSTRUCTION SET REFERENCE

CALL—Call Procedure

Description

Saves procedure linking information on the stack and branches to the procedure (called proce-
dure) specified with the destination (target) operand. The target operand specifies the address of
the first instruction in the called procedure. This operand can be an immediate value, a general-
purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

• Near call—A call to a procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment call.

• Far call—A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

• Inter-privilege-level far call—A far call to a procedure in a segment at a different privilege
level than that of the currently executing program or procedure.

• Task switch—A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. See the section titled “Calling Procedures Using Call and RET” in Chapter 4 of
the Intel Architecture Software Developer’s Manual, Volume 1, for additional information on
near, far, and inter-privilege-level calls. See Chapter 6, Task Management, in the Intel Architec-
ture Software Developer’s Manual, Volume 3, for information on performing task switches
with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register (which
contains the offset of the instruction following the CALL instruction) onto the stack (for use later
as a return-instruction pointer). The processor then branches to the address in the current code
segment specified with the target operand. The target operand specifies either an absolute offset
in the code segment (that is an offset from the base of the code segment) or a relative offset (a
signed displacement relative to the current value of the instruction pointer in the EIP register,
which points to the instruction following the CALL instruction). The CS register is not changed
on near calls.

Opcode Instruction Description

E8 cw CALL rel16 Call near, relative, displacement relative to next instruction

E8 cd CALL rel32 Call near, relative, displacement relative to next instruction

FF /2 CALL r/m16 Call near, absolute indirect, address given in r/m16

FF /2 CALL r/m32 Call near, absolute indirect, address given in r/m32

9A cd CALL ptr16:16 Call far, absolute, address given in operand

9A cp CALL ptr16:32 Call far, absolute, address given in operand

FF /3 CALL m16:16 Call far, absolute indirect, address given in m16:16

FF /3 CALL m16:32 Call far, absolute indirect, address given in m16:32

ch01.bk : ch03.doc Page 38 Friday, January 17, 1997 12:59 PM

3-39

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

For a near call, an absolute offset is specified indirectly in a general-purpose register or a
memory location (r/m16 or r/m32). The operand-size attribute determines the size of the target
operand (16 or 32 bits). Absolute offsets are loaded directly into the EIP register. If the operand-
size attribute is 16, the upper two bytes of the EIP register are cleared to 0s, resulting in a
maximum instruction pointer size of 16 bits. (When accessing an absolute offset indirectly using
the stack pointer [ESP] as a base register, the base value used is the value of the ESP before the
instruction executes.)

A relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at the
machine code level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added
to the value in the EIP register. As with absolute offsets, the operand-size attribute determines
the size of the target operand (16 or 32 bits).

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS and EIP
registers onto the stack for use as a return-instruction pointer. The processor then performs a “far
branch” to the code segment and offset specified with the target operand for the called proce-
dure. Here the target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the
pointer method, the segment and offset of the called procedure is encoded in the instruction,
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to 0s.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL
instruction can be used to perform the following three types of far calls:

• Far call to the same privilege level.

• Far call to a different privilege level (inter-privilege level call).

• Task switch (far call to another task).

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from the instruction
is loaded into the EIP register.

ch01.bk : ch03.doc Page 39 Friday, January 17, 1997 12:59 PM

3-40

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

Note that a call gate (described in the next paragraph) can also be used to perform far call to a
code segment at the same privilege level. Using this mechanism provides an extra level of indi-
rection and is the preferred method of making calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called
must be accessed through a call gate. The segment selector specified by the target operand iden-
tifies the call gate. Here again, the target operand can specify the call gate segment selector either
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or
m16:32). The processor obtains the segment selector for the new code segment and the new
instruction pointer (offset) from the call gate descriptor. (The offset from the target operand is
ignored when a call gate is used.) On inter-privilege-level calls, the processor switches to the
stack for the privilege level of the called procedure. The segment selector for the new stack
segment is specified in the TSS for the currently running task. The branch to the new code
segment occurs after the stack switch. (Note that when using a call gate to perform a far call to
a segment at the same privilege level, no stack switch occurs.) On the new stack, the processor
pushes the segment selector and stack pointer for the calling procedure’s stack, an (optional) set
of parameters from the calling procedures stack, and the segment selector and instruction pointer
for the calling procedure’s code segment. (A value in the call gate descriptor determines how
many parameters to copy to the new stack.) Finally, the processor branches to the address of the
procedure being called within the new code segment.

Executing a task switch with the CALL instruction, is somewhat similar to executing a call
through a call gate. Here the target operand specifies the segment selector of the task gate for the
task being switched to (and the offset in the target operand is ignored.) The task gate in turn
points to the TSS for the task, which contains the segment selectors for the task’s code and stack
segments. The TSS also contains the EIP value for the next instruction that was to be executed
before the task was suspended. This instruction pointer value is loaded into EIP register so that
the task begins executing again at this next instruction.

The CALL instruction can also specify the segment selector of the TSS directly, which elimi-
nates the indirection of the task gate. See Chapter 6, Task Management, in the Intel Architecture
Software Developer’s Manual, Volume 3, for detailed information on the mechanics of a task
switch.

Note that when you execute at task switch with a CALL instruction, the nested task flag (NT) is
set in the EFLAGS register and the new TSS’s previous task link field is loaded with the old tasks
TSS selector. Code is expected to suspend this nested task by executing an IRET instruction,
which, because the NT flag is set, will automatically use the previous task link to return to the
calling task. (See “Task Linking” in Chapter 6 of the Intel Architecture Software Developer’s
Manual, Volume 3, for more information on nested tasks.) Switching tasks with the CALL
instruction differs in this regard from the JMP instruction which does not set the NT flag and
therefore does not expect an IRET instruction to suspend the task.

ch01.bk : ch03.doc Page 40 Friday, January 17, 1997 12:59 PM

3-41

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, the calls should be made through a call gate. If the far call is from a 32-bit code
segment to a 16-bit code segment, the call should be made from the first 64 KBytes of the 32-
bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only
a 16-bit return address offset is saved. Also, the call should be made using a 16-bit call gate so
that 16-bit values will be pushed on the stack. See Chapter 16, Mixing 16-Bit and 32-Bit Code,
in the Intel Architecture Software Developer’s Manual, Volume 3, for more information on
making calls between 16-bit and 32-bit code segments.

Operation

IF near call
THEN IF near relative call

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← EIP + DEST; (* DEST is rel32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

FI;
FI;
ELSE (* near absolute call *)

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
Push(EIP);
EIP ← DEST; (* DEST is r/m32 *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)

FI;
FI:

FI;

IF far call AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN

IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;

ch01.bk : ch03.doc Page 41 Friday, January 17, 1997 12:59 PM

3-42

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP ← EIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
FI;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)
THEN

IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits

THEN #GP(new code segment selector);
FI;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF OperandSize = 32

THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST(offset);

ch01.bk : ch03.doc Page 42 Friday, January 17, 1997 12:59 PM

3-43

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)
ELSE (* OperandSize = 16 *)

IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← DEST(offset) AND 0000FFFFH; (* clear upper 16 bits *)

FI;
END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL ≠ CPL) THEN #GP(new code segment selector); FI;
IF segment not present THEN #NP(new code segment selector); FI;
IF stack not large enough for return address THEN #SS(0); FI;
tempEIP ← DEST(offset)
IF OperandSize=16

THEN
tempEIP ← tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

ELSE (* OperandSize = 16 *)
Push(CS);
Push(IP);
CS ← DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) ← CPL;
EIP ← tempEIP;

FI;
END;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;

ch01.bk : ch03.doc Page 43 Friday, January 17, 1997 12:59 PM

3-44

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL

THEN #GP(code segment selector); FI;
IF code segment not present THEN #NP(new code segment selector); FI;
IF code segment is non-conforming AND DPL < CPL

THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;

FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← new code segment (DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
newSS ← TSSstackAddress + 4;
newESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← new code segment (DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
newESP ← TSSstackAddress;
newSS ← TSSstackAddress + 2;

FI;
IF stack segment selector is null THEN #TS(stack segment selector); FI;
IF stack segment selector index is not within its descriptor table limits

THEN #TS(SS selector); FI
Read code segment descriptor;
IF stack segment selector's RPL ≠ DPL of code segment

OR stack segment DPL ≠ DPL of code segment
OR stack segment is not a writable data segment

THEN #TS(SS selector); FI
IF stack segment not present THEN #SS(SS selector); FI;
IF CallGateSize = 32

THEN
IF stack does not have room for parameters plus 16 bytes

THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS ← newSS;
(* segment descriptor information also loaded *)

ch01.bk : ch03.doc Page 44 Friday, January 17, 1997 12:59 PM

3-45

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)
ESP ← newESP;
CS:EIP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes

THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit

THEN #GP(0); FI;
SS ← newSS;
(* segment descriptor information also loaded *)
ESP ← newESP;
CS:IP ← CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp ← parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

FI;
CPL ← CodeSegment(DPL)
CS(RPL) ← CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

THEN
IF stack does not have room for 8 bytes

THEN #SS(0); FI;
IF EIP not within code segment limit then #GP(0); FI;
CS:EIP ← CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 4 bytes

THEN #SS(0); FI;
IF IP not within code segment limit THEN #GP(0); FI;
CS:IP ← CallGate(CS:instruction pointer)
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)

FI;
CS(RPL) ← CPL

END;

ch01.bk : ch03.doc Page 45 Friday, January 17, 1997 12:59 PM

3-46

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)
TASK-GATE:

IF task gate DPL < CPL or RPL
THEN #GP(task gate selector);

FI;
IF task gate not present

THEN #NP(task gate selector);
FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);

FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector);
FI;
IF TSS is not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

ch01.bk : ch03.doc Page 46 Friday, January 17, 1997 12:59 PM

3-47

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

Protected Mode Exceptions

#GP(0) If target offset in destination operand is beyond the new code segment
limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If code segment or gate or TSS selector index is outside descriptor table
limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for a segment selector from a call gate does not
indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor table
limits.

If the DPL for a code-segment obtained from a call gate is greater than the
CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when no stack switch
occurs.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when a stack switch
occurs.

ch01.bk : ch03.doc Page 47 Friday, January 17, 1997 12:59 PM

3-48

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

If the SS register is being loaded as part of a stack switch and the segment
pointed to is marked not present.

If stack segment does not have room for the return address, parameters, or
stack segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or TSS
is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal to the
DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not
equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

ch01.bk : ch03.doc Page 48 Friday, January 17, 1997 12:59 PM

3-49

INSTRUCTION SET REFERENCE

CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Description

Double the size of the source operand by means of sign extension (see Figure 6-5 in the Intel
Architecture Software Developer’s Manual, Volume 1). The CBW (convert byte to word) instruc-
tion copies the sign (bit 7) in the source operand into every bit in the AH register. The CWDE
(convert word to doubleword) instruction copies the sign (bit 15) of the word in the AX register
into the higher 16 bits of the EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is intended
for use when the operand-size attribute is 16 and the CWDE instruction for when the operand-
size attribute is 32. Some assemblers may force the operand size to 16 when CBW is used and
to 32 when CWDE is used. Others may treat these mnemonics as synonyms (CBW/CWDE) and
use the current setting of the operand-size attribute to determine the size of values to be
converted, regardless of the mnemonic used.

The CWDE instruction is different from the CWD (convert word to double) instruction. The
CWD instruction uses the DX:AX register pair as a destination operand; whereas, the CWDE
instruction uses the EAX register as a destination.

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX ← SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)

EAX ← SignExtend(AX);
FI;

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

98 CBW AX ← sign-extend of AL

98 CWDE EAX ← sign-extend of AX

ch01.bk : ch03.doc Page 49 Friday, January 17, 1997 12:59 PM

3-50

INSTRUCTION SET REFERENCE

CDQ—Convert Double to Quad

See entry for CWD/CDQ — Convert Word to Doubleword/Convert Doubleword to Quadword.

ch01.bk : ch03.doc Page 50 Friday, January 17, 1997 12:59 PM

3-51

INSTRUCTION SET REFERENCE

CLC—Clear Carry Flag

Description

Clears the CF flag in the EFLAGS register.

Operation

CF ← 0;

Flags Affected

The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F8 CLC Clear CF flag

ch01.bk : ch03.doc Page 51 Friday, January 17, 1997 12:59 PM

3-52

INSTRUCTION SET REFERENCE

CLD—Clear Direction Flag

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre-
ment the index registers (ESI and/or EDI).

Operation

DF ← 0;

Flags Affected

The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FC CLD Clear DF flag

ch01.bk : ch03.doc Page 52 Friday, January 17, 1997 12:59 PM

3-53

INSTRUCTION SET REFERENCE

CLI—Clear Interrupt Flag

Description

Clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF flag causes
the processor to ignore maskable external interrupts. The IF flag and the CLI and STI instruction
have no affect on the generation of exceptions and NMI interrupts.

The following decision table indicates the action of the CLI instruction (bottom of the table)
depending on the processor’s mode of operating and the CPL and IOPL of the currently running
program or procedure (top of the table).

NOTES:

X Don't care

N Action in column 1 not taken

Y Action in column 1 taken

Operation

IF PE = 0 (* Executing in real-address mode *)
THEN

IF ← 0;
ELSE

IF VM = 0 (* Executing in protected mode *)
THEN

IF CPL ≤ IOPL
THEN

IF ← 0;
ELSE

#GP(0);
FI;

FI;

Opcode Instruction Description

FA CLI Clear interrupt flag; interrupts disabled when interrupt
flag cleared

PE = 0 1 1 1 1

VM = X 0 X 0 1

CPL X ≤ IOPL X > IOPL X

IOPL X X = 3 X < 3

IF ← 0 Y Y Y N N

#GP(0) N N N Y Y

ch01.bk : ch03.doc Page 53 Friday, January 17, 1997 12:59 PM

3-54

INSTRUCTION SET REFERENCE

CLI—Clear Interrupt Flag (Continued)
ELSE (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF ← 0
ELSE

#GP(0);
FI;

FI;
FI;

Flags Affected

The IF is cleared to 0 if the CPL is equal to or less than the IOPL; otherwise, it is not affected.
The other flags in the EFLAGS register are unaffected.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

ch01.bk : ch03.doc Page 54 Friday, January 17, 1997 12:59 PM

3-55

INSTRUCTION SET REFERENCE

CLTS—Clear Task-Switched Flag in CR0

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use in
operating-system procedures. It is a privileged instruction that can only be executed at a CPL of
0. It is allowed to be executed in real-address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize
the saving of FPU context in multitasking applications. See the description of the TS flag in the
section titled “Control Registers” in Chapter 2 of the Intel Architecture Software Developer’s
Manual, Volume 3, for more information about this flag.

Operation

CR0(TS) ← 0;

Flags Affected

The TS flag in CR0 register is cleared.

Protected Mode Exceptions

#GP(0) If the CPL is greater than 0.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater than 0.

Opcode Instruction Description

0F 06 CLTS Clears TS flag in CR0

ch01.bk : ch03.doc Page 55 Friday, January 17, 1997 12:59 PM

3-56

INSTRUCTION SET REFERENCE

CMC—Complement Carry Flag

Description

Complements the CF flag in the EFLAGS register.

Operation

CF ← NOT CF;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are
unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F5 CMC Complement CF flag

ch01.bk : ch03.doc Page 56 Friday, January 17, 1997 12:59 PM

3-57

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move

Opcode Instruction Description

0F 47 /r CMOVA r16, r/m16 Move if above (CF=0 and ZF=0)

0F 47 /r CMOVA r32, r/m32 Move if above (CF=0 and ZF=0)

0F 43 /r CMOVAE r16, r/m16 Move if above or equal (CF=0)

0F 43 /r CMOVAE r32, r/m32 Move if above or equal (CF=0)

0F 42 /r CMOVB r16, r/m16 Move if below (CF=1)

0F 42 /r CMOVB r32, r/m32 Move if below (CF=1)

0F 46 /r CMOVBE r16, r/m16 Move if below or equal (CF=1 or ZF=1)

0F 46 /r CMOVBE r32, r/m32 Move if below or equal (CF=1 or ZF=1)

0F 42 /r CMOVC r16, r/m16 Move if carry (CF=1)

0F 42 /r CMOVC r32, r/m32 Move if carry (CF=1)

0F 44 /r CMOVE r16, r/m16 Move if equal (ZF=1)

0F 44 /r CMOVE r32, r/m32 Move if equal (ZF=1)

0F 4F /r CMOVG r16, r/m16 Move if greater (ZF=0 and SF=OF)

0F 4F /r CMOVG r32, r/m32 Move if greater (ZF=0 and SF=OF)

0F 4D /r CMOVGE r16, r/m16 Move if greater or equal (SF=OF)

0F 4D /r CMOVGE r32, r/m32 Move if greater or equal (SF=OF)

0F 4C /r CMOVL r16, r/m16 Move if less (SF<>OF)

0F 4C /r CMOVL r32, r/m32 Move if less (SF<>OF)

0F 4E /r CMOVLE r16, r/m16 Move if less or equal (ZF=1 or SF<>OF)

0F 4E /r CMOVLE r32, r/m32 Move if less or equal (ZF=1 or SF<>OF)

0F 46 /r CMOVNA r16, r/m16 Move if not above (CF=1 or ZF=1)

0F 46 /r CMOVNA r32, r/m32 Move if not above (CF=1 or ZF=1)

0F 42 /r CMOVNAE r16, r/m16 Move if not above or equal (CF=1)

0F 42 /r CMOVNAE r32, r/m32 Move if not above or equal (CF=1)

0F 43 /r CMOVNB r16, r/m16 Move if not below (CF=0)

0F 43 /r CMOVNB r32, r/m32 Move if not below (CF=0)

0F 47 /r CMOVNBE r16, r/m16 Move if not below or equal (CF=0 and ZF=0)

0F 47 /r CMOVNBE r32, r/m32 Move if not below or equal (CF=0 and ZF=0)

0F 43 /r CMOVNC r16, r/m16 Move if not carry (CF=0)

0F 43 /r CMOVNC r32, r/m32 Move if not carry (CF=0)

0F 45 /r CMOVNE r16, r/m16 Move if not equal (ZF=0)

0F 45 /r CMOVNE r32, r/m32 Move if not equal (ZF=0)

0F 4E /r CMOVNG r16, r/m16 Move if not greater (ZF=1 or SF<>OF)

0F 4E /r CMOVNG r32, r/m32 Move if not greater (ZF=1 or SF<>OF)

0F 4C /r CMOVNGE r16, r/m16 Move if not greater or equal (SF<>OF)

0F 4C /r CMOVNGE r32, r/m32 Move if not greater or equal (SF<>OF)

0F 4D /r CMOVNL r16, r/m16 Move if not less (SF=OF)

0F 4D /r CMOVNL r32, r/m32 Move if not less (SF=OF)

0F 4F /r CMOVNLE r16, r/m16 Move if not less or equal (ZF=0 and SF=OF)

0F 4F /r CMOVNLE r32, r/m32 Move if not less or equal (ZF=0 and SF=OF)

ch01.bk : ch03.doc Page 57 Friday, January 17, 1997 12:59 PM

3-58

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (Continued)

Description

The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS
register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified
state (or condition). A condition code (cc) is associated with each instruction to indicate the
condition being tested for. If the condition is not satisfied, a move is not performed and execution
continues with the instruction following the CMOVcc instruction.

These instructions can move a 16- or 32-bit value from memory to a general-purpose register or
from one general-purpose register to another. Conditional moves of 8-bit register operands are
not supported.

The conditions for each CMOVcc mnemonic is given in the description column of the above
table. The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if
above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are
alternate mnemonics for the opcode 0F 47H.

Opcode Instruction Description

0F 41 /r CMOVNO r16, r/m16 Move if not overflow (OF=0)

0F 41 /r CMOVNO r32, r/m32 Move if not overflow (OF=0)

0F 4B /r CMOVNP r16, r/m16 Move if not parity (PF=0)

0F 4B /r CMOVNP r32, r/m32 Move if not parity (PF=0)

0F 49 /r CMOVNS r16, r/m16 Move if not sign (SF=0)

0F 49 /r CMOVNS r32, r/m32 Move if not sign (SF=0)

0F 45 /r CMOVNZ r16, r/m16 Move if not zero (ZF=0)

0F 45 /r CMOVNZ r32, r/m32 Move if not zero (ZF=0)

0F 40 /r CMOVO r16, r/m16 Move if overflow (OF=0)

0F 40 /r CMOVO r32, r/m32 Move if overflow (OF=0)

0F 4A /r CMOVP r16, r/m16 Move if parity (PF=1)

0F 4A /r CMOVP r32, r/m32 Move if parity (PF=1)

0F 4A /r CMOVPE r16, r/m16 Move if parity even (PF=1)

0F 4A /r CMOVPE r32, r/m32 Move if parity even (PF=1)

0F 4B /r CMOVPO r16, r/m16 Move if parity odd (PF=0)

0F 4B /r CMOVPO r32, r/m32 Move if parity odd (PF=0)

0F 48 /r CMOVS r16, r/m16 Move if sign (SF=1)

0F 48 /r CMOVS r32, r/m32 Move if sign (SF=1)

0F 44 /r CMOVZ r16, r/m16 Move if zero (ZF=1)

0F 44 /r CMOVZ r32, r/m32 Move if zero (ZF=1)

ch01.bk : ch03.doc Page 58 Friday, January 17, 1997 12:59 PM

3-59

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (Continued)

The CMOVcc instructions are new for the Pentium Pro processor family; however, they may not
be supported by all the processors in the family. Software can determine if the CMOVcc instruc-
tions are supported by checking the processor’s feature information with the CPUID instruction
(see “CPUID—CPU Identification” in this chapter).

Operation

temp ← DEST
IF condition TRUE

THEN
DEST ← SRC

ELSE
DEST ← temp

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

ch01.bk : ch03.doc Page 59 Friday, January 17, 1997 12:59 PM

3-60

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 60 Friday, January 17, 1997 12:59 PM

3-61

INSTRUCTION SET REFERENCE

CMP—Compare Two Operands

Description

Compares the first source operand with the second source operand and sets the status flags in
the EFLAGS register according to the results. The comparison is performed by subtracting the
second operand from the first operand and then setting the status flags in the same manner as the
SUB instruction. When an immediate value is used as an operand, it is sign-extended to the
length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc), condition
move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc, CMOVcc, and
SETcc instructions are based on the results of a CMP instruction. Appendix B, EFLAGS Condi-
tion Codes, in the Intel Architecture Software Developer’s Manual, Volume 1, shows the rela-
tionship of the status flags and the condition codes.

Operation

temp ← SRC1 − SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

3C ib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare imm16 with AX

3D id CMP EAX, imm32 Compare imm32 with EAX

80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8

81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16

81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32

83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16

83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32

38 /r CMP r/m8,r8 Compare r8 with r/m8

39 /r CMP r/m16,r16 Compare r16 with r/m16

39 /r CMP r/m32,r32 Compare r32 with r/m32

3A /r CMP r8,r/m8 Compare r/m8 with r8

3B /r CMP r16,r/m16 Compare r/m16 with r16

3B /r CMP r32,r/m32 Compare r/m32 with r32

ch01.bk : ch03.doc Page 61 Friday, January 17, 1997 12:59 PM

3-62

INSTRUCTION SET REFERENCE

CMP—Compare Two Operands (Continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 62 Friday, January 17, 1997 12:59 PM

3-63

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Description

Compares the byte, word, or double word specified with the first source operand with the byte,
word, or double word specified with the second source operand and sets the status flags in the
EFLAGS register according to the results. Both the source operands are located in memory. The
address of the first source operand is read from either the DS:ESI or the DS:SI registers
(depending on the address-size attribute of the instruction, 32 or 16, respectively). The address
of the second source operand is read from either the ES:EDI or the ES:DI registers (again
depending on the address-size attribute of the instruction). The DS segment may be overridden
with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the CMPS
mnemonic) allows the two source operands to be specified explicitly. Here, the source operands
should be symbols that indicate the size and location of the source values. This explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this
form can be misleading. That is, the source operand symbols must specify the correct type (size)
of the operands (bytes, words, or doublewords), but they do not have to specify the correct loca-
tion. The locations of the source operands are always specified by the DS:(E)SI and ES:(E)DI
registers, which must be loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
CMPS instructions. Here also the DS:(E)SI and ES:(E)DI registers are assumed by the processor
to specify the location of the source operands. The size of the source operands is selected with
the mnemonic: CMPSB (byte comparison), CMPSW (word comparison), or CMPSD (double-
word comparison).

Opcode Instruction Description

A6 CMPS m8, m8 Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS m16, m16 Compares word at address DS:(E)SI with word at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS m32, m32 Compares doubleword at address DS:(E)SI with doubleword
at address ES:(E)DI and sets the status flags accordingly

A6 CMPSB Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares word at address DS:(E)SI with word at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSD Compares doubleword at address DS:(E)SI with doubleword
at address ES:(E)DI and sets the status flags accordingly

ch01.bk : ch03.doc Page 63 Friday, January 17, 1997 12:59 PM

3-64

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands
(Continued)

After the comparison, the (E)SI and (E)DI registers are incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
(E)SI and (E)DI register are incremented; if the DF flag is 1, the (E)SI and (E)DI registers are
decremented.) The registers are incremented or decremented by 1 for byte operations, by 2 for
word operations, or by 4 for doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in this chapter for a description of the REP prefix.

Operation

temp ←SRC1 − SRC2;
SetStatusFlags(temp);
IF (byte comparison)

THEN IF DF = 0
THEN

(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (word comparison)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword comparison*)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;

ch01.bk : ch03.doc Page 64 Friday, January 17, 1997 12:59 PM

3-65

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands
(Continued)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 65 Friday, January 17, 1997 12:59 PM

3-66

INSTRUCTION SET REFERENCE

CMPXCHG—Compare and Exchange

Description

Compares the value in the AL, AX, or EAX register (depending on the size of the operand) with
the first operand (destination operand). If the two values are equal, the second operand (source
operand) is loaded into the destination operand. Otherwise, the destination operand is loaded
into the AL, AX, or EAX register.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 processors.

Operation

(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)
IF accumulator = DEST

THEN
ZF ← 1
DEST ← SRC

ELSE
ZF ← 0
accumulator ← DEST

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal;
otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the
comparison operation.

Opcode Instruction Description

0F B0/r CMPXCHG r/m8,r8 Compare AL with r/m8. If equal, ZF is set and r8 is loaded
into r/m8. Else, clear ZF and load r/m8 into AL.

0F B1/r CMPXCHG r/m16,r16 Compare AX with r/m16. If equal, ZF is set and r16 is
loaded into r/m16. Else, clear ZF and load r/m16 into AL

0F B1/r CMPXCHG r/m32,r32 Compare EAX with r/m32. If equal, ZF is set and r32 is
loaded into r/m32. Else, clear ZF and load r/m32 into AL

ch01.bk : ch03.doc Page 66 Friday, January 17, 1997 12:59 PM

3-67

INSTRUCTION SET REFERENCE

CMPXCHG—Compare and Exchange (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 67 Friday, January 17, 1997 12:59 PM

3-68

INSTRUCTION SET REFERENCE

CMPXCHG8B—Compare and Exchange 8 Bytes

Description

Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the values
are equal, the 64-bit value in ECX:EBX is stored in the destination operand. Otherwise, the
value in the destination operand is loaded into EDX:EAX. The destination operand is an 8-byte
memory location. For the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the
high-order 32 bits and EAX and EBX contain the low-order 32 bits of a 64-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Pentium processors.

Operation

IF (EDX:EAX = DEST)
ZF ← 1
DEST ← ECX:EBX

ELSE
ZF ← 0
EDX:EAX ← DEST

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared.
The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

0F C7 /1 m64 CMPXCHG8B m64 Compare EDX:EAX with m64. If equal, set ZF and load
ECX:EBX into m64. Else, clear ZF and load m64 into
EDX:EAX.

ch01.bk : ch03.doc Page 68 Friday, January 17, 1997 12:59 PM

3-69

INSTRUCTION SET REFERENCE

CMPXCHG8B—Compare and Exchange 8 Bytes (Continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD If the destination operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 69 Friday, January 17, 1997 12:59 PM

3-70

INSTRUCTION SET REFERENCE

CPUID—CPU Identification

Description

Provides processor identification information in registers EAX, EBX, ECX, and EDX. This
information identifies Intel as the vendor, gives the family, model, and stepping of processor,
feature information, and cache information. An input value loaded into the EAX register deter-
mines what information is returned, as shown in Table 3-4.

The CPUID instruction can be executed at any privilege level to serialize instruction execution.
Serializing instruction execution guarantees that any modifications to flags, registers, and
memory for previous instructions are completed before the next instruction is fetched and
executed (see “Serializing Instructions” in Chapter 7 of the Intel Architecture Software Devel-
oper’s Manual, Volume 3).

When the input value in register EAX is 0, the processor returns the highest value the CPUID
instruction recognizes in the EAX register (see Table 3-4). A vendor identification string is
returned in the EBX, EDX, and ECX registers. For Intel processors, the vendor identification
string is “GenuineIntel” as follows:

EBX ← 756e6547h (* "Genu", with G in the low nibble of BL *)

EDX ← 49656e69h (* "ineI", with i in the low nibble of DL *)

ECX ← 6c65746eh (* "ntel", with n in the low nibble of CL *)

When the input value is 1, the processor returns version information in the EAX register and
feature information in the EDX register (see Figure 3-3).

Opcode Instruction Description

0F A2 CPUID EAX ← Processor identification information

Table 3-4. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

0 EAX

EBX
ECX
EDX

Maximum CPUID Input Value (2 for the Pentium® Pro processor and 1 for
the Pentium processor and the later versions of Intel486™ processor that
support the CPUID instruction).
“Genu”
“ntel”
“ineI”

1 EAX
EBX
ECX
EDX

Version Information (Type, Family, Model, and Stepping ID)
Reserved
Reserved
Feature Information

2 EAX
EBX
ECX
EDX

Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

ch01.bk : ch03.doc Page 70 Friday, January 17, 1997 12:59 PM

3-71

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

The version information consists of an Intel Architecture family identifier, a model identifier, a
stepping ID, and a processor type. The model, family, and processor type for the first processor
in the Intel Pentium Pro family is as follows:

• Model—0001B

• Family—0110B

• Processor Type—00B

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618),
the Intel Pentium® Pro Processor Specification Update (Order Number 242689), and the Intel
Pentium® Processor Specification Update (Order Number 242480) for more information on
identifying earlier Intel Architecture processors.

Figure 3-3. Version and Feature Information in Registers EAX and EDX

31

APIC—APIC on Chip
CXS—CMPXCHG8B Inst.
MCE—Machine Check Exception
PAE—Physical Address Extensions
MSR—RDMSR and WRMSR Support
TSC—Time Stamp Counter

MTRR—Mem. Type Range Reg.

CMOV—Cond. Move/Cmp. Inst.
MCA—Machine Check Arch.

15 1314 12 9 8 7 6 5 4 3 2 1 0

PGE—PTE Global Bit

PSE—Page Size Extensions
DE—Debugging Extensions
VME—Virtual-8086 Mode Enhancement
FPU—FPU on Chip

Reserved

EDX

31 12 11 8 7 4 3 0

EAX

Family (0110B for the Pentium® Pro Processor Family)
Model (Beginning with 0001B)

11 1016

1314

Processor Type

ModelFamily
Stepping

ID

23

MMX™ Technology

ch01.bk : ch03.doc Page 71 Friday, January 17, 1997 12:59 PM

3-72

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

The available processor types are given in Table 3-5. Intel releases information on stepping IDs
as needed.

NOTE:

* Not applicable to Intel386™ and Intel486™ processors.

Table 3-6 shows the encoding of the feature flags in the EDX register. A feature flag set to 1
indicates the corresponding feature is supported. Software should identify Intel as the vendor to
properly interpret the feature flags.

Table 3-5. Processor Type Field

Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor * 10B

Intel reserved. 11B

Table 3-6. Feature Flags Returned in EDX Register

Bit Feature Description

0 FPU—Floating-Point Unit
on Chip

Processor contains an FPU and executes the Intel 387
instruction set.

1 VME—Virtual-8086
Mode Enhancements

Processor supports the following virtual-8086 mode
enhancements:
• CR4.VME bit enables virtual-8086 mode extensions.
• CR4.PVI bit enables protected-mode virtual interrupts.
• Expansion of the TSS with the software indirection bitmap.
• EFLAGS.VIF bit (virtual interrupt flag).
• EFLAGS.VIP bit (virtual interrupt pending flag).

2 DE—Debugging
Extensions

Processor supports I/O breakpoints, including the CR4.DE bit
for enabling debug extensions and optional trapping of access
to the DR4 and DR5 registers.

3 PSE—Page Size
Extensions

Processor supports 4-Mbyte pages, including the CR4.PSE bit
for enabling page size extensions, the modified bit in page
directory entries (PDEs), page directory entries, and page table
entries (PTEs).

4 TSC—Time Stamp
Counter

Processor supports the RDTSC (read time stamp counter)
instruction, including the CR4.TSD bit that, along with the CPL,
controls whether the time stamp counter can be read.

5 MSR—Model Specific
Registers

Processor supports the RDMSR (read model-specific register)
and WRMSR (write model-specific register) instructions.

ch01.bk : ch03.doc Page 72 Friday, January 17, 1997 12:59 PM

3-73

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

Table 3-6. Feature Flags Returned in EDX Register (Continued)

Bit Feature Description

6 PAE—Physical Address
Extension

Processor supports physical addresses greater than 32 bits, the
extended page-table-entry format, an extra level in the page
translation tables, and 2-MByte pages. The CR4.PAE bit enables
this feature. The number of address bits is implementation specific.
The Pentium® Pro processor supports 36 bits of addressing when
the PAE bit is set.

7 MCE—Machine Check
Exception

Processor supports the CR4.MCE bit, enabling machine check
exceptions. However, this feature does not define the model-
specific implementations of machine-check error logging, reporting,
or processor shutdowns. Machine-check exception handlers might
have to check the processor version to do model-specific
processing of the exception or check for the presence of the
standard machine-check feature.

8 CX8—CMPXCHG8B
Instruction

Processor supports the CMPXCHG8B (compare and exchange 8
bytes) instruction.

9 APIC Processor contains an on-chip Advanced Programmable Interrupt
Controller (APIC) and it has been enabled and is available for use.

10,11 Reserved

12 MTRR—Memory Type
Range Registers

Processor supports machine-specific memory-type range registers
(MTRRs). The MTRRs contains bit fields that indicate the
processor’s MTRR capabilities, including which memory types the
processor supports, the number of variable MTRRs the processor
supports, and whether the processor supports fixed MTRRs.

13 PGE—PTE Global Flag Processor supports the CR4.PGE flag enabling the global bit in
both PTDEs and PTEs. These bits are used to indicate translation
lookaside buffer (TLB) entries that are common to different tasks
and need not be flushed when control register CR3 is written.

14 MCA—Machine Check
Architecture

Processor supports the MCG_CAP (machine check global
capability) MSR. The MCG_CAP register indicates how many
banks of error reporting MSRs the processor supports.

15 CMOV—Conditional
Move and Compare
Instructions

Processor supports the CMOVcc instruction and, if the FPU feature
flag (bit 0) is also set, supports the FCMOVcc and FCOMI
instructions.

16-22 Reserved

23 MMX™ Technology Processor supports the MMX instruction set. These instructions
operate in parallel on multiple data elements (8 bytes, 4 words, or 2
doublewords) packed into quadword registers or memory locations.

24-31 Reserved

ch01.bk : ch03.doc Page 73 Friday, January 17, 1997 12:59 PM

3-74

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

When the input value is 2, the processor returns information about the processor’s internal
caches and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of these registers
is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of times the
CPUID instruction must be executed with an input value of 2 to get a complete description
of the processor’s caches and TLBs. The Pentium® Pro family of processors will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register contains
valid information (cleared to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors.
Table 3-7 shows the encoding of these descriptors.

The first member of the Pentium Pro processor family will return the following information
about caches and TLBs when the CPUID instruction is executed with an input value of 2:

EAX 03 02 01 01H
EBX 0H
ECX 0H
EDX 06 04 0A 42H

These values are interpreted as follows:

• The least-significant byte (byte 0) of register EAX is set to 01H, indicating that the CPUID
instruction needs to be executed only once with an input value of 2 to retrieve complete
information about the processor’s caches and TLBs.

Table 3-7. Encoding of Cache and TLB Descriptors

Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4K-Byte Pages, 4-way set associative, 32 entries

02H Instruction TLB: 4M-Byte Pages, 4-way set associative, 4 entries

03H Data TLB: 4K-Byte Pages, 4-way set associative, 64 entries

04H Data TLB: 4M-Byte Pages, 4-way set associative, 8 entries

06H Instruction cache: 8K Bytes, 4-way set associative, 32 byte line size

08H Instruction cache: 16K Bytes, 4-way set associative, 32 byte line size

0AH Data cache: 8K Bytes, 2-way set associative, 32 byte line size

0CH Data cache: 16K Bytes, 2-way set associative, 32 byte line size

41H Unified cache: 128K Bytes, 4-way set associative, 32 byte line size

42H Unified cache: 256K Bytes, 4-way set associative, 32 byte line size

43H Unified cache: 512K Bytes, 4-way set associative, 32 byte line size

44H Unified cache: 1M Byte, 4-way set associative, 32 byte line size

ch01.bk : ch03.doc Page 74 Friday, January 17, 1997 12:59 PM

3-75

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0,
indicating that each register contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor contains the following:

— 01H—A 32-entry instruction TLB (4-way set associative) for mapping 4-KByte pages.

— 02H—A 4-entry instruction TLB (4-way set associative) for mapping 4-MByte pages.

— 03H—A 64-entry data TLB (4-way set associative) for mapping 4-KByte pages.

• The descriptors in registers EBX and ECX are valid, but contain null descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor contains the following:

— 42H—A 256-KByte unified cache (the L2 cache), 4-way set associative, with a
32-byte cache line size.

— 0AH—An 8-KByte data cache (the L1 data cache), 2-way set associative, with a
32-byte cache line size.

— 04H—An 8-entry data TLB (4-way set associative) for mapping 4M-byte pages.

— 06H—An 8-KByte instruction cache (the L1 instruction cache), 4-way set associative,
with a 32-byte cache line size.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in any Intel
Architecture processor earlier than the Intel486 processor. The ID flag in the EFLAGS register
can be used to determine if this instruction is supported. If a procedure is able to set or clear this
flag, the CPUID is supported by the processor running the procedure.

Operation

CASE (EAX) OF
EAX = 0:

EAX ← highest input value understood by CPUID; (* 2 for Pentium Pro processor *)
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[31:12] ← Reserved;
EBX ← Reserved;

ch01.bk : ch03.doc Page 75 Friday, January 17, 1997 12:59 PM

3-76

INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)
ECX ← Reserved;
EDX ← Feature flags; (* See Figure 3-3 *)

BREAK;
EAX = 2:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX ← reserved, undefined;
EBX ← reserved, undefined;
ECX ← reserved, undefined;
EDX ← reserved, undefined;

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)

None.

ch01.bk : ch03.doc Page 76 Friday, January 17, 1997 12:59 PM

3-77

INSTRUCTION SET REFERENCE

CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
to Quadword

Description

Doubles the size of the operand in register AX or EAX (depending on the operand size) by
means of sign extension and stores the result in registers DX:AX or EDX:EAX, respectively.
The CWD instruction copies the sign (bit 15) of the value in the AX register into every bit posi-
tion in the DX register (see Figure 6-5 in the Intel Architecture Software Developer’s Manual,
Volume 1). The CDQ instruction copies the sign (bit 31) of the value in the EAX register into
every bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before a word
division, and the CDQ instruction can be used to produce a quadword dividend from a double-
word before doubleword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended
for use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size
attribute is 32. Some assemblers may force the operand size to 16 when CWD is used and to 32
when CDQ is used. Others may treat these mnemonics as synonyms (CWD/CDQ) and use the
current setting of the operand-size attribute to determine the size of values to be converted,
regardless of the mnemonic used.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN DX ← SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)

EDX ← SignExtend(EAX);
FI;

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

99 CWD DX:AX ← sign-extend of AX

99 CDQ EDX:EAX ← sign-extend of EAX

ch01.bk : ch03.doc Page 77 Friday, January 17, 1997 12:59 PM

3-78

INSTRUCTION SET REFERENCE

CWDE—Convert Word to Doubleword

See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.

ch01.bk : ch03.doc Page 78 Friday, January 17, 1997 12:59 PM

3-79

INSTRUCTION SET REFERENCE

DAA—Decimal Adjust AL after Addition

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is
the implied source and destination operand. The DAA instruction is only useful when it follows
an ADD instruction that adds (binary addition) two 2-digit, packed BCD values and stores a byte
result in the AL register. The DAA instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the CF and AF
flags are set accordingly.

Operation

IF (((AL AND 0FH) > 9) or AF = 1)
THEN

AL ← AL + 6;
CF ← CF OR CarryFromLastAddition; (* CF OR carry from AL ← AL + 6 *)
AF ← 1;

ELSE
AF ← 0;

FI;
IF ((AL AND F0H) > 90H) or CF = 1)

THEN
AL ← AL + 60H;
CF ← 1;

ELSE
CF ← 0;

FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX

After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000

After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in either
digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according
to the result. The OF flag is undefined.

Opcode Instruction Description

27 DAA Decimal adjust AL after addition

ch01.bk : ch03.doc Page 79 Friday, January 17, 1997 12:59 PM

3-80

INSTRUCTION SET REFERENCE

DAA—Decimal Adjust AL after Addition (Continued)

Exceptions (All Operating Modes)

None.

ch01.bk : ch03.doc Page 80 Friday, January 17, 1997 12:59 PM

3-81

INSTRUCTION SET REFERENCE

DAS—Decimal Adjust AL after Subtraction

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result.
The AL register is the implied source and destination operand. The DAS instruction is only
useful when it follows a SUB instruction that subtracts (binary subtraction) one 2-digit, packed
BCD value from another and stores a byte result in the AL register. The DAS instruction then
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. If a
decimal borrow is detected, the CF and AF flags are set accordingly.

Operation

IF (AL AND 0FH) > 9 OR AF = 1
THEN

AL ← AL − 6;
CF ← CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL ← AL − 6 *)
AF ← 1;

ELSE AF ← 0;
FI;
IF ((AL > 9FH) or CF = 1)

THEN
AL ← AL − 60H;
CF ← 1;

ELSE CF ← 0;
FI;

Example
SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX

After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111

DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111

After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either
digit of the result (see the “Operation” section above). The SF, ZF, and PF flags are set according
to the result. The OF flag is undefined.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

2F DAS Decimal adjust AL after subtraction

ch01.bk : ch03.doc Page 81 Friday, January 17, 1997 12:59 PM

3-82

INSTRUCTION SET REFERENCE

DEC—Decrement by 1

Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destina-
tion operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (To perform a decrement operation that updates the CF
flag, use a SUB instruction with an immediate operand of 1.)

Operation

DEST ← DEST – 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF /1 DEC r/m16 Decrement r/m16 by 1

FF /1 DEC r/m32 Decrement r/m32 by 1

48+rw DEC r16 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1

ch01.bk : ch03.doc Page 82 Friday, January 17, 1997 12:59 PM

3-83

INSTRUCTION SET REFERENCE

DEC—Decrement by 1 (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 83 Friday, January 17, 1997 12:59 PM

3-84

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide

Description

Divides (unsigned) the value in the AX register, DX:AX register pair, or EDX:EAX register pair
(dividend) by the source operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or
EDX:EAX registers. The source operand can be a general-purpose register or a memory loca-
tion. The action of this instruction depends on the operand size, as shown in the following table:

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than
with the CF flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *)

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp ← AX / SRC;
IF temp > FFH

THEN #DE; (* divide error *) ;
ELSE

AL ← temp;
AH ← AX MOD SRC;

FI;

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8; AL ← Quotient,
AH ← Remainder

F7 /6 DIV r/m16 Unsigned divide DX:AX by r/m16; AX ← Quotient,
DX ← Remainder

F7 /6 DIV r/m32 Unsigned divide EDX:EAX by r/m32 doubleword;
EAX ← Quotient, EDX ← Remainder

Operand Size Dividend Divisor Quotient Remainder
Maximum
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1

ch01.bk : ch03.doc Page 84 Friday, January 17, 1997 12:59 PM

3-85

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide (Continued)
ELSE

IF OperandSize = 16 (* doubleword/word operation *)
THEN

temp ← DX:AX / SRC;

IF temp > FFFFH
THEN #DE; (* divide error *) ;
ELSE

AX ← temp;
DX ← DX:AX MOD SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp ← EDX:EAX / SRC;
IF temp > FFFFFFFFH

THEN #DE; (* divide error *) ;
ELSE

EAX ← temp;
EDX ← EDX:EAX MOD SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

ch01.bk : ch03.doc Page 85 Friday, January 17, 1997 12:59 PM

3-86

INSTRUCTION SET REFERENCE

DIV—Unsigned Divide (Continued)

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 86 Friday, January 17, 1997 12:59 PM

3-87

INSTRUCTION SET REFERENCE

EMMS—Empty MMX™ State

Description

Sets the values of all the tags in the FPU tag word to empty (all ones). This operation marks the
MMX registers as available, so they can subsequently be used by floating-point instructions.
(See Figure 7-11 in the Intel Architecture Software Developer’s Manual, Volume 1, for the
format of the FPU tag word.) All other MMX instructions (other than the EMMS instruction)
set all the tags in FPU tag word to valid (all zeros).

The EMMS instruction must be used to clear the MMX state at the end of all MMX routines and
before calling other procedures or subroutines that may execute floating-point instructions. If a
floating-point instruction loads one of the registers in the FPU register stack before the FPU tag
word has been reset by the EMMS instruction, a floating-point stack overflow can occur that will
result in a floating-point exception or incorrect result.

Operation

FPUTagWord ← FFFFH;

Flags Affected

None.

Protected Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Real-Address Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Opcode Instruction Description

0F 77 EMMS Set the FP tag word to empty.

ch01.bk : ch03.doc Page 87 Friday, January 17, 1997 12:59 PM

3-88

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the
stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the proce-
dure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of the
procedure. The nesting level determines the number of stack frame pointers that are copied into
the “display area” of the new stack frame from the preceding frame. Both of these operands are
immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register specifies
the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies the stack pointer.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. The ENTER instruction (when used) is typically the first instruction in a procedure
and is used to set up a new stack frame for a procedure. The LEAVE instruction is then used at
the end of the procedure (just before the RET instruction) to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register onto the
stack, copies the current stack pointer from the ESP register into the EBP register, and loads the
ESP register with the current stack-pointer value minus the value in the size operand. For nesting
levels of 1 or greater, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer. These additional frame pointers provide the called procedure with
access points to other nested frames on the stack. See “Procedure Calls for Block-Structured
Languages” in Chapter 4 of the Intel Architecture Software Developer’s Manual, Volume 1, for
more information about the actions of the ENTER instruction.

Operation

NestingLevel ← NestingLevel MOD 32
IF StackSize = 32

THEN
Push(EBP) ;
FrameTemp ← ESP;

ELSE (* StackSize = 16*)
Push(BP);
FrameTemp ← SP;

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 iw 01 ENTER imm16,1 Create a nested stack frame for a procedure

C8 iw ib ENTER imm16,imm8 Create a nested stack frame for a procedure

ch01.bk : ch03.doc Page 88 Friday, January 17, 1997 12:59 PM

3-89

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters (Continued)
IF (NestingLevel > 0)

FOR i ← 1 TO (NestingLevel − 1)
DO

IF OperandSize = 32
THEN

IF StackSize = 32
EBP ← EBP − 4;
Push([EBP]); (* doubleword push *)

ELSE (* StackSize = 16*)
BP ← BP − 4;
Push([BP]); (* doubleword push *)

FI;
ELSE (* OperandSize = 16 *)

IF StackSize = 32
THEN

EBP ← EBP − 2;
Push([EBP]); (* word push *)

ELSE (* StackSize = 16*)
BP ← BP − 2;
Push([BP]); (* word push *)

FI;
FI;

OD;
IF OperandSize = 32

THEN
Push(FrameTemp); (* doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)

FI;
GOTO CONTINUE;

FI;
CONTINUE:
IF StackSize = 32

THEN
EBP ← FrameTemp
ESP ← EBP − Size;

ELSE (* StackSize = 16*)
BP ← FrameTemp
SP ← BP − Size;

FI;
END;

Flags Affected

None.

ch01.bk : ch03.doc Page 89 Friday, January 17, 1997 12:59 PM

3-90

INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters (Continued)

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.

Virtual-8086 Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 90 Friday, January 17, 1997 12:59 PM

3-91

INSTRUCTION SET REFERENCE

F2XM1—Compute 2 x–1

Description

Calculates the exponential value of 2 to the power of the source operand minus 1. The source
operand is located in register ST(0) and the result is also stored in ST(0). The value of the source
operand must lie in the range –1.0 to +1.0. If the source value is outside this range, the result is
undefined.

The following table shows the results obtained when computing the exponential value of various
classes of numbers, assuming that neither overflow nor underflow occurs.

Values other than 2 can be exponentiated using the following formula:

xy = 2(y ∗ log
2
x)

Operation

ST(0) ← (2ST(0) − 1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Result is a denormal value.

Opcode Instruction Description

D9 F0 F2XM1 Replace ST(0) with (2ST(0) – 1)

ST(0) SRC ST(0) DEST

−1.0 to −0 −0.5 to −0

−0 −0

+0 +0

+0 to +1.0 +0 to 1.0

ch01.bk : ch03.doc Page 91 Friday, January 17, 1997 12:59 PM

3-92

INSTRUCTION SET REFERENCE

F2XM1—Compute 2 x–1 (Continued)

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 92 Friday, January 17, 1997 12:59 PM

3-93

INSTRUCTION SET REFERENCE

FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following table
shows the results obtained when creating the absolute value of various classes of numbers.

NOTE:

F Means finite-real number.

Operation

ST(0) ← |ST(0)|

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E1 FABS Replace ST with its absolute value.

ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 +0

+F +F

+∞ +∞

NaN NaN

ch01.bk : ch03.doc Page 93 Friday, January 17, 1997 12:59 PM

3-94

INSTRUCTION SET REFERENCE

FABS—Absolute Value (Continued)

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 94 Friday, January 17, 1997 12:59 PM

3-95

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination location. The
destination operand is always an FPU register; the source operand can be a register or a memory
location. Source operands in memory can be in single-real, double-real, word-integer, or short-
integer formats.

The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1)
register. The one-operand version adds the contents of a memory location (either a real or an
integer value) to the contents of the ST(0) register. The two-operand version, adds the contents
of the ST(0) register to the ST(i) register or vice versa. The value in ST(0) can be doubled by
coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. (The no-operand version of the floating-point add
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to extended-real format before
performing the addition.

The table on the following page shows the results obtained when adding various classes of
numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. When the source operand is an integer 0, it is
treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected sign. If both
operands are infinities of opposite signs, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /0 FADD m32 real Add m32real to ST(0) and store result in ST(0)

DC /0 FADD m64real Add m64real to ST(0) and store result in ST(0)

D8 C0+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC C0+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i)

DE C0+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the
register stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the
register stack

DA /0 FIADD m32int Add m32int to ST(0) and store result in ST(0)

DE /0 FIADD m16int Add m16int to ST(0) and store result in ST(0)

ch01.bk : ch03.doc Page 95 Friday, January 17, 1997 12:59 PM

3-96

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (Continued)

.

NOTES:

F Means finite-real number.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIADD
THEN

DEST ← DEST + ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST ← DEST + SRC;
FI;
IF instruction = FADDP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

DEST

−∞ −F −0 +0 +F +∞ NaN

-∞ -∞ -∞ -∞ -∞ -∞ * NaN

−F or −I -∞ −F SRC SRC ±F or ±0 +∞ NaN

SRC −0 -∞ DEST −0 ±0 DEST +∞ NaN

+0 -∞ DEST ±0 +0 DEST +∞ NaN

+F or +I -∞ ±F or ±0 SRC SRC +F +∞ NaN

+∞ * +∞ +∞ +∞ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 96 Friday, January 17, 1997 12:59 PM

3-97

INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (Continued)

#D Result is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 97 Friday, January 17, 1997 12:59 PM

3-98

INSTRUCTION SET REFERENCE

FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into extended-real format and pushes the value onto the FPU
stack. The source operand is loaded without rounding errors. The sign of the source operand is
preserved, including that of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not
check for invalid digits (AH through FH). Attempting to load an invalid encoding produces an
undefined result.

Operation

TOP ← TOP − 1;
ST(0) ← ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

DF /4 FBLD m80 dec Convert BCD value to real and push onto the FPU stack.

ch01.bk : ch03.doc Page 98 Friday, January 17, 1997 12:59 PM

3-99

INSTRUCTION SET REFERENCE

FBLD—Load Binary Coded Decimal (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 99 Friday, January 17, 1997 12:59 PM

3-100

INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the result in
the destination operand, and pops the register stack. If the source value is a non-integral value,
it is rounded to an integer value, according to rounding mode specified by the RC field of the
FPU control word. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be
stored. The BCD value (including its sign bit) requires 10 bytes of space in memory.

The following table shows the results obtained when storing various classes of numbers in
packed BCD format.

NOTES:

F Means finite-real number.

D Means packed-BCD number.

* Indicates floating-point invalid-operation (#IA) exception.

** ±0 or ±1, depending on the rounding mode.

If the source value is too large for the destination format and the invalid-operation exception is
not masked, an invalid-operation exception is generated and no value is stored in the destination
operand. If the invalid-operation exception is masked, the packed BCD indefinite value is stored
in memory.

If the source value is a quiet NaN, an invalid-operation exception is generated. Quiet NaNs do
not normally cause this exception to be generated.

Opcode Instruction Description

DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).

ST(0) DEST

-∞ *

−F < −1 −D

−1 < −F < −0 **

−0 −0

+0 +0

+0 < +F < +1 **

+F > +1 +D

+∞ *

NaN *

ch01.bk : ch03.doc Page 100 Friday, January 17, 1997 12:59 PM

3-101

INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop (Continued)

Operation

DEST ← BCD(ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is generated:
0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is empty; contains a NaN, ±∞, or unsupported format; or
contains value that exceeds 18 BCD digits in length.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector that points to
a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 101 Friday, January 17, 1997 12:59 PM

3-102

INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 102 Friday, January 17, 1997 12:59 PM

3-103

INSTRUCTION SET REFERENCE

FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a negative value
of equal magnitude or vice versa. The following table shows the results obtained when changing
the sign of various classes of numbers.

NOTE:

F Means finite-real number.

Operation

SignBit(ST(0)) ← NOT (SignBit(ST(0)))

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E0 FCHS Complements sign of ST(0)

ST(0) SRC ST(0) DEST

−∞ +∞

−F +F

−0 +0

+0 −0

+F −F

+∞ −∞

NaN NaN

ch01.bk : ch03.doc Page 103 Friday, January 17, 1997 12:59 PM

3-104

INSTRUCTION SET REFERENCE

FCHS—Change Sign (Continued)

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 104 Friday, January 17, 1997 12:59 PM

3-105

INSTRUCTION SET REFERENCE

FCLEX/FNCLEX—Clear Exceptions

NOTE:

* See “Intel Architecture Compatibility” below.

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary
status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU status word. The
FCLEX instruction checks for and handles any pending unmasked floating-point exceptions
before clearing the exception flags; the FNCLEX instruction does not.

Intel Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNCLEX instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the Intel Architecture Software Devel-
oper’s Manual, Volume 1, for a description of these circumstances. An FNCLEX instruction
cannot be interrupted in this way on a Pentium Pro processor.

Operation

FPUStatusWord[0..7] ← 0;
FPUStatusWord[15] ← 0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0,
C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for
pending unmasked floating-point exceptions.

DB E2 FNCLEX* Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.

ch01.bk : ch03.doc Page 105 Friday, January 17, 1997 12:59 PM

3-106

INSTRUCTION SET REFERENCE

FCLEX/FNCLEX—Clear Exceptions (Continued)

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 106 Friday, January 17, 1997 12:59 PM

3-107

INSTRUCTION SET REFERENCE

FCMOVcc—Floating-Point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second operand)
to the destination operand (first operand) if the given test condition is true. The conditions for
each mnemonic are given in the Description column above and in Table 6-4 in the Intel Archi-
tecture Software Developer’s Manual, Volume 1. The source operand is always in the ST(i)
register and the destination operand is always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF operations and the possibility of branch mispredictions by
the processor.

A processor may not support the FCMOVcc instructions. Software can check if the FCMOVcc
instructions are supported by checking the processor’s feature information with the CPUID
instruction (see “CPUID—CPU Identification” in this chapter). If both the CMOV and FPU
feature bits are set, the FCMOVcc instructions are supported.

Intel Architecture Compatibility

The FCMOVcc instructions were introduced to the Intel Architecture in the Pentium Pro
processor family and is not available in earlier Intel Architecture processors.

Operation

IF condition TRUE
ST(0) ← ST(i)

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

Opcode Instruction Description

DA C0+i FCMOVB ST(0), ST(i) Move if below (CF=1)

DA C8+i FCMOVE ST(0), ST(i) Move if equal (ZF=1)

DA D0+i FCMOVBE ST(0), ST(i) Move if below or equal (CF=1 or ZF=1)

DA D8+i FCMOVU ST(0), ST(i) Move if unordered (PF=1)

DB C0+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)

DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0)

DB D0+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0)

DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0)

ch01.bk : ch03.doc Page 107 Friday, January 17, 1997 12:59 PM

3-108

INSTRUCTION SET REFERENCE

FCMOVcc—Floating-Point Conditional Move (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

Integer Flags Affected

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 108 Friday, January 17, 1997 12:59 PM

3-109

INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Real

Description

Compares the contents of register ST(0) and source value and sets condition code flags C0, C2,
and C3 in the FPU status word according to the results (see the table below). The source operand
can be a data register or a memory location. If no source operand is given, the value in ST(0) is
compared with the value in ST(1). The sign of zero is ignored, so that –0.0 = +0.0.

NOTE:

* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

This instruction checks the class of the numbers being compared (see “FXAM—Examine” in
this chapter). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-
operand exception (#IA) is raised and, if the exception is masked, the condition flags are set to
“unordered.” If the invalid-arithmetic-operand exception is unmasked, the condition code flags
are not set.

The FCOMP instruction pops the register stack following the comparison operation and the
FCOMPP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

Opcode Instruction Description

D8 /2 FCOM m32real Compare ST(0) with m32real.

DC /2 FCOM m64real Compare ST(0) with m64real.

D8 D0+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32real Compare ST(0) with m32real and pop register stack.

DC /3 FCOMP m64real Compare ST(0) with m64real and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1

ch01.bk : ch03.doc Page 109 Friday, January 17, 1997 12:59 PM

3-110

INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle QNaN operands. The FCOM instructions raise an invalid-arith-
metic-operand exception (#IA) when either or both of the operands is a NaN value or is in an
unsupported format. The FUCOM instructions perform the same operation as the FCOM
instructions, except that they do not generate an invalid-arithmetic-operand exception for
QNaNs.

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF instruction = FCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.

#D One or both operands are denormal values.

ch01.bk : ch03.doc Page 110 Friday, January 17, 1997 12:59 PM

3-111

INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 111 Friday, January 17, 1997 12:59 PM

3-112

INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS

Description

Compares the contents of register ST(0) and ST(i) and sets the status flags ZF, PF, and CF in the
EFLAGS register according to the results (see the table below). The sign of zero is ignored for
comparisons, so that –0.0 = +0.0.

NOTE:

* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

The FCOMI/FCOMIP instructions perform the same operation as the FUCOMI/FUCOMIP
instructions. The only difference is how they handle QNaN operands. The FCOMI/FCOMIP
instructions set the status flags to “unordered” and generate an invalid-arithmetic-operand
exception (#IA) when either or both of the operands is a NaN value (SNaN or QNaN) or is in an
unsupported format.

The FUCOMI/FUCOMIP instructions perform the same operation as the FCOMI/FCOMIP
instructions, except that they do not generate an invalid-arithmetic-operand exception for
QNaNs. See “FXAM—Examine” in this chapter for additional information on unordered
comparisons.

If invalid-operation exception is unmasked, the status flags are not set if the invalid-arithmetic-
operand exception is generated.

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty and incre-
ments the stack pointer (TOP) by 1.

Opcode Instruction Description

DB F0+i FCOMI ST, ST(i) Compare ST(0) with ST(i) and set status flags accordingly

DF F0+i FCOMIP ST, ST(i) Compare ST(0) with ST(i), set status flags accordingly, and
pop register stack

DB E8+i FUCOMI ST, ST(i) Compare ST(0) with ST(i), check for ordered values, and
set status flags accordingly

DF E8+i FUCOMIP ST, ST(i) Compare ST(0) with ST(i), check for ordered values, set
status flags accordingly, and pop register stack

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered* 1 1 1

ch01.bk : ch03.doc Page 112 Friday, January 17, 1997 12:59 PM

3-113

INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS (Continued)

Intel Architecture Compatibility

The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the Intel Architec-
ture in the Pentium Pro processor family and are not available in earlier Intel Architecture
processors.

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF ← 000;
ST(0) < ST(i): ZF, PF, CF ← 001;
ST(0) = ST(i): ZF, PF, CF ← 100;

ESAC;
IF instruction is FCOMI or FCOMIP

THEN
IF ST(0) or ST(i) = NaN or unsupported format

THEN
#IA
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
IF instruction is FUCOMI or FUCOMIP

THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format

THEN
ZF, PF, CF ← 111;

ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
ZF, PF, CF ← 111;

FI;
FI;

FI;
IF instruction is FCOMIP or FUCOMIP

THEN
PopRegisterStack;

FI;

ch01.bk : ch03.doc Page 113 Friday, January 17, 1997 12:59 PM

3-114

INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Not affected.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or
have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN
values (but not QNaNs) or have undefined formats. Detection of a QNaN
value does not raise an invalid-operand exception.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 114 Friday, January 17, 1997 12:59 PM

3-115

INSTRUCTION SET REFERENCE

FCOS—Cosine

Description

Calculates the cosine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The following
table shows the results obtained when taking the cosine of various classes of numbers, assuming
that neither overflow nor underflow occurs.

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 7 of the Intel Architecture Soft-
ware Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

Operation

IF |ST(0)| < 263

THEN
C2 ← 0;
ST(0) ← cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2 ← 1;

FI;

Opcode Instruction Description

D9 FF FCOS Replace ST(0) with its cosine

ST(0) SRC ST(0) DEST

−∞ *

−F −1 to +1

−0 +1

+0 +1

+F −1 to +1

+∞ *

NaN NaN

ch01.bk : ch03.doc Page 115 Friday, January 17, 1997 12:59 PM

3-116

INSTRUCTION SET REFERENCE

FCOS—Cosine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Undefined if C2 is 1.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise,
cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 116 Friday, January 17, 1997 12:59 PM

3-117

INSTRUCTION SET REFERENCE

FDECSTP—Decrement Stack-Top Pointer

Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack pointer).
If the TOP field contains a 0, it is set to 7. The effect of this instruction is to rotate the stack by
one position. The contents of the FPU data registers and tag register are not affected.

Operation

IF TOP = 0
THEN TOP ← 7;
ELSE TOP ← TOP – 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 F6 FDECSTP Decrement TOP field in FPU status word.

ch01.bk : ch03.doc Page 117 Friday, January 17, 1997 12:59 PM

3-118

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide

Description

Divides the destination operand by the source operand and stores the result in the destination
location. The destination operand (dividend) is always in an FPU register; the source operand
(divisor) can be a register or a memory location. Source operands in memory can be in single-
real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction divides the contents of the ST(1) register by the
contents of the ST(0) register. The one-operand version divides the contents of the ST(0) register
by the contents of a memory location (either a real or an integer value). The two-operand
version, divides the contents of the ST(0) register by the contents of the ST(i) register or vice
versa.

The FDIVP instructions perform the additional operation of popping the FPU register stack after
storing the result. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The no-operand version of the floating-point divide
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FDIV rather than FDIVP.

The FIDIV instructions convert an integer source operand to extended-real format before
performing the division. When the source operand is an integer 0, it is treated as a +0.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception
is masked, an ∞ of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /6 FDIV m32real Divide ST(0) by m32real and store result in ST(0)

DC /6 FDIV m64real Divide ST(0) by m64real and store result in ST(0)

D8 F0+i FDIV ST(0), ST(i) Divide ST(0) by ST(i) and store result in ST(0)

DC F8+i FDIV ST(i), ST(0) Divide ST(i) by ST(0) and store result in ST(i)

DE F8+i FDIVP ST(i), ST(0) Divide ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE F9 FDIVP Divide ST(1) by ST(0), store result in ST(1), and pop the
register stack

DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0)

DE /6 FIDIV m16int Divide ST(0) by m64int and store result in ST(0)

ch01.bk : ch03.doc Page 118 Friday, January 17, 1997 12:59 PM

3-119

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide (Continued)

NOTES:

F Means finite-real number.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.

Operation

IF SRC = 0
THEN

#Z
ELSE

IF instruction is FIDIV
THEN

DEST ← DEST / ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST ← DEST / SRC;
FI;

FI;
IF instruction = FDIVP

THEN
PopRegisterStack

FI;

DEST

−∞ −F −0 +0 +F +∞ NaN

-∞ * +0 +0 −0 −0 * NaN

−F +∞ +F +0 −0 −F −∞ NaN

−I +∞ +F +0 −0 −F −∞ NaN

SRC −0 +∞ ** * * ** −∞ NaN

+0 −∞ ** * * ** +∞ NaN

+I −∞ −F −0 +0 +F +∞ NaN

+F −∞ −F −0 +0 +F +∞ NaN

+∞ * −0 −0 +0 +0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 119 Friday, January 17, 1997 12:59 PM

3-120

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Result is a denormal value.

#Z DEST / ±0, where DEST is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 120 Friday, January 17, 1997 12:59 PM

3-121

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 121 Friday, January 17, 1997 12:59 PM

3-122

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description

Divides the source operand by the destination operand and stores the result in the destination
location. The destination operand (divisor) is always in an FPU register; the source operand
(dividend) can be a register or a memory location. Source operands in memory can be in single-
real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions.
They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by the
contents of the ST(1) register. The one-operand version divides the contents of a memory loca-
tion (either a real or an integer value) by the contents of the ST(0) register. The two-operand
version, divides the contents of the ST(i) register by the contents of the ST(0) register or vice
versa.

The FDIVRP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point divide
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FDIVR rather than FDIVRP.

The FIDIVR instructions convert an integer source operand to extended-real format before
performing the division.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception
is masked, an ∞ of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /7 FDIVR m32real Divide m32real by ST(0) and store result in ST(0)

DC /7 FDIVR m64real Divide m64real by ST(0) and store result in ST(0)

D8 F8+i FDIVR ST(0), ST(i) Divide ST(i) by ST(0) and store result in ST(0)

DC F0+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(i)

DE F0+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(i), store result in ST(i), and pop the
register stack

DE F1 FDIVRP Divide ST(0) by ST(1), store result in ST(1), and pop the
register stack

DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)

DE /7 FIDIVR m16int Divide m64int by ST(0) and store result in ST(0)

ch01.bk : ch03.doc Page 122 Friday, January 17, 1997 12:59 PM

3-123

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

NOTES:

F Means finite-real number.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.

When the source operand is an integer 0, it is treated as a +0.

Operation

IF DEST = 0
THEN

#Z
ELSE

IF instruction is FIDIVR
THEN

DEST ← ConvertExtendedReal(SRC) / DEST;
ELSE (* source operand is real number *)

DEST ← SRC / DEST;
FI;

FI;
IF instruction = FDIVRP

THEN
PopRegisterStack

FI;

DEST

−∞ −F −0 +0 +F +∞ NaN

−∞ * +∞ +∞ −∞ −∞ * NaN

SRC −F +0 +F ** ** -F −0 NaN

−I +0 +F ** ** -F −0 NaN

−0 +0 +0 * * −0 −0 NaN

+0 −0 −0 * * +0 +0 NaN

+I −0 -F ** ** +F +0 NaN

+F −0 -F ** ** +F +0 NaN

+∞ * −∞ −∞ +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 123 Friday, January 17, 1997 12:59 PM

3-124

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Result is a denormal value.

#Z SRC / ±0, where SRC is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 124 Friday, January 17, 1997 12:59 PM

3-125

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 125 Friday, January 17, 1997 12:59 PM

3-126

INSTRUCTION SET REFERENCE

FFREE—Free Floating-Point Register

Description

Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The contents
of ST(i) and the FPU stack-top pointer (TOP) are not affected.

Operation

TAG(i) ← 11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

DD C0+i FFREE ST(i) Sets tag for ST(i) to empty

ch01.bk : ch03.doc Page 126 Friday, January 17, 1997 12:59 PM

3-127

INSTRUCTION SET REFERENCE

FICOM/FICOMP—Compare Integer

Description

Compares the value in ST(0) with an integer source operand and sets the condition code flags
C0, C2, and C3 in the FPU status word according to the results (see table below). The integer
value is converted to extended-real format before the comparison is made.

These instructions perform an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (see “FXAM—Examine” in this chapter). If either
operand is a NaN or is in an undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that –0.0 = +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the register
stack, the processor marks the ST(0) register empty and increments the stack pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, C0 ← 000;
ST(0) < SRC: C3, C2, C0 ← 001;
ST(0) = SRC: C3, C2, C0 ← 100;
Unordered: C3, C2, C0 ← 111;

ESAC;
IF instruction = FICOMP

THEN
PopRegisterStack;

FI;

Opcode Instruction Description

DE /2 FICOM m16int Compare ST(0) with m16int

DA /2 FICOM m32int Compare ST(0) with m32int

DE /3 FICOMP m16int Compare ST(0) with m16int and pop stack register

DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1

ch01.bk : ch03.doc Page 127 Friday, January 17, 1997 12:59 PM

3-128

INSTRUCTION SET REFERENCE

FICOM/FICOMP—Compare Integer (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 128 Friday, January 17, 1997 12:59 PM

3-129

INSTRUCTION SET REFERENCE

FILD—Load Integer

Description

Converts the signed-integer source operand into extended-real format and pushes the value onto
the FPU register stack. The source operand can be a word, short, or long integer value. It is
loaded without rounding errors. The sign of the source operand is preserved.

Operation

TOP ← TOP − 1;
ST(0) ← ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; cleared to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

DF /0 FILD m16int Push m16int onto the FPU register stack.

DB /0 FILD m32int Push m32int onto the FPU register stack.

DF /5 FILD m64int Push m64int onto the FPU register stack.

ch01.bk : ch03.doc Page 129 Friday, January 17, 1997 12:59 PM

3-130

INSTRUCTION SET REFERENCE

FILD—Load Integer (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 130 Friday, January 17, 1997 12:59 PM

3-131

INSTRUCTION SET REFERENCE

FINCSTP—Increment Stack-Top Pointer

Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). If the
TOP field contains a 7, it is set to 0. The effect of this instruction is to rotate the stack by one
position. The contents of the FPU data registers and tag register are not affected. This operation
is not equivalent to popping the stack, because the tag for the previous top-of-stack register is
not marked empty.

Operation

IF TOP = 7
THEN TOP ← 0;
ELSE TOP ← TOP + 1;

FI;

FPU Flags Affected

The C1 flag is set to 0; otherwise, cleared to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 F7 FINCSTP Increment the TOP field in the FPU status register

ch01.bk : ch03.doc Page 131 Friday, January 17, 1997 12:59 PM

3-132

INSTRUCTION SET REFERENCE

FINIT/FNINIT—Initialize Floating-Point Unit

NOTE:

* See “Intel Architecture Compatibility” below.

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default
states. The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit
precision). The status word is cleared (no exception flags set, TOP is set to 0). The data registers
in the register stack are left unchanged, but they are all tagged as empty (11B). Both the instruc-
tion and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point exceptions
before performing the initialization; the FNINIT instruction does not.

Intel Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNINIT instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the Intel Architecture Software Devel-
oper’s Manual, Volume 1, for a description of these circumstances. An FNINIT instruction
cannot be interrupted in this way on a Pentium Pro processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the instruction
and data pointers.

Operation

FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected

C0, C1, C2, C3 cleared to 0.

Opcode Instruction Description

9B DB E3 FINIT Initialize FPU after checking for pending unmasked
floating-point exceptions.

DB E3 FNINIT* Initialize FPU without checking for pending unmasked
floating-point exceptions.

ch01.bk : ch03.doc Page 132 Friday, January 17, 1997 12:59 PM

3-133

INSTRUCTION SET REFERENCE

FINIT/FNINIT—Initialize Floating-Point Unit (Continued)

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 133 Friday, January 17, 1997 12:59 PM

3-134

INSTRUCTION SET REFERENCE

FIST/FISTP—Store Integer

Description

The FIST instruction converts the value in the ST(0) register to a signed integer and stores the
result in the destination operand. Values can be stored in word- or short-integer format. The
destination operand specifies the address where the first byte of the destination value is to be
stored.

The FISTP instruction performs the same operation as the FIST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FISTP instruction can also stores values in long-
integer format.

The following table shows the results obtained when storing various classes of numbers in
integer format.

NOTES:

F Means finite-real number.

I Means integer.

* Indicates floating-point invalid-operation (#IA) exception.

** 0 or ±1, depending on the rounding mode.

Opcode Instruction Description

DF /2 FIST m16int Store ST(0) in m16int

DB /2 FIST m32int Store ST(0) in m32int

DF /3 FISTP m16int Store ST(0) in m16int and pop register stack

DB /3 FISTP m32int Store ST(0) in m32int and pop register stack

DF /7 FISTP m64int Store ST(0) in m64int and pop register stack

ST(0) DEST

−∞ *

−F < −1 −I

−1 < −F < −0 **

−0 0

+0 0

+0 < +F < +1 **

+F > +1 +I

+∞ *

NaN *

ch01.bk : ch03.doc Page 134 Friday, January 17, 1997 12:59 PM

3-135

INSTRUCTION SET REFERENCE

FIST/FISTP—Store Integer (Continued)

If the source value is a non-integral value, it is rounded to an integer value, according to the
rounding mode specified by the RC field of the FPU control word.

If the value being stored is too large for the destination format, is an ∞, is a NaN, or is in an
unsupported format and if the invalid-arithmetic-operand exception (#IA) is unmasked, an
invalid-operation exception is generated and no value is stored in the destination operand. If the
invalid-operation exception is masked, the integer indefinite value is stored in the destination
operand.

Operation

DEST ← Integer(ST(0));
IF instruction = FISTP

THEN
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is generated:
0 = not roundup; 1 = roundup.

Cleared to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is too large for the destination format

Source operand is a NaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 135 Friday, January 17, 1997 12:59 PM

3-136

INSTRUCTION SET REFERENCE

FIST/FISTP—Store Integer (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 136 Friday, January 17, 1997 12:59 PM

3-137

INSTRUCTION SET REFERENCE

FLD—Load Real

Description

Pushes the source operand onto the FPU register stack. If the source operand is in single- or
double-real format, it is automatically converted to the extended-real format before being
pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the stack.
Here, pushing register ST(0) duplicates the stack top.

Operation

IF SRC is ST(i)
THEN

temp ← ST(i)
TOP ← TOP − 1;
IF SRC is memory-operand

THEN
ST(0) ← ExtendedReal(SRC);

ELSE (* SRC is ST(i) *)
ST(0) ← temp;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value. Does not occur if the source operand
is in extended-real format.

Opcode Instruction Description

D9 /0 FLD m32real Push m32real onto the FPU register stack.

DD /0 FLD m64real Push m64real onto the FPU register stack.

DB /5 FLD m80real Push m80real onto the FPU register stack.

D9 C0+i FLD ST(i) Push ST(i) onto the FPU register stack.

ch01.bk : ch03.doc Page 137 Friday, January 17, 1997 12:59 PM

3-138

INSTRUCTION SET REFERENCE

FLD—Load Real (Continued)

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 138 Friday, January 17, 1997 12:59 PM

3-139

INSTRUCTION SET REFERENCE

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

Description

Push one of seven commonly used constants (in extended-real format) onto the FPU register
stack. The constants that can be loaded with these instructions include +1.0, +0.0, log210, log2e,
π, log102, and loge2. For each constant, an internal 66-bit constant is rounded (as specified by
the RC field in the FPU control word) to external-real format. The inexact-result exception (#P)
is not generated as a result of the rounding.

See the section titled “Pi” in Chapter 7 of the Intel Architecture Software Developer’s Manual,
Volume 1, for a description of the π constant.

Operation

TOP ← TOP − 1;
ST(0) ← CONSTANT;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 E8 FLD1 Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Push log210 onto the FPU register stack.

D9 EA FLDL2E Push log2e onto the FPU register stack.

D9 EB FLDPI Push π onto the FPU register stack.

D9 EC FLDLG2 Push log102 onto the FPU register stack.

D9 ED FLDLN2 Push loge2 onto the FPU register stack.

D9 EE FLDZ Push +0.0 onto the FPU register stack.

ch01.bk : ch03.doc Page 139 Friday, January 17, 1997 12:59 PM

3-140

INSTRUCTION SET REFERENCE

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant (Continued)

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Intel Architecture Compatibility

When the RC field is set to round-to-nearest, the FPU produces the same constants that is
produced by the Intel 8087 and Intel287 math coprocessors.

ch01.bk : ch03.doc Page 140 Friday, January 17, 1997 12:59 PM

3-141

INSTRUCTION SET REFERENCE

FLDCW—Load Control Word

Description

Loads the 16-bit source operand into the FPU control word. The source operand is a memory
location. This instruction is typically used to establish or change the FPU’s mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU control
word and the new control word unmasks one or more of those exceptions, a floating-point excep-
tion will be generated upon execution of the next floating-point instruction (except for the no-
wait floating-point instructions, see the section titled “Software Exception Handling” in Chapter
7 of the Intel Architecture Software Developer’s Manual, Volume 1). To avoid raising exceptions
when changing FPU operating modes, clear any pending exceptions (using the FCLEX or
FNCLEX instruction) before loading the new control word.

Operation

FPUControlWord ← SRC;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None; however, this operation might unmask a pending exception in the FPU status word. That
exception is then generated upon execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

D9 /5 FLDCW m2byte Load FPU control word from m2byte.

ch01.bk : ch03.doc Page 141 Friday, January 17, 1997 12:59 PM

3-142

INSTRUCTION SET REFERENCE

FLDCW—Load Control Word (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 142 Friday, January 17, 1997 12:59 PM

3-143

INSTRUCTION SET REFERENCE

FLDENV—Load FPU Environment

Description

Loads the complete FPU operating environment from memory into the FPU registers. The
source operand specifies the first byte of the operating-environment data in memory. This data
is typically written to the specified memory location by a FSTENV or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-16 in the Intel Archi-
tecture Software Developer’s Manual, Volume 1, show the layout in memory of the loaded envi-
ronment, depending on the operating mode of the processor (protected or real) and the current
operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the corresponding
FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions, see the section titled “Software Exception Handling” in
Chapter 7 of the Intel Architecture Software Developer’s Manual, Volume 1). To avoid gener-
ating exceptions when loading a new environment, clear all the exception flags in the FPU status
word that is being loaded.

Operation

FPUControlWord ← SRC(FPUControlWord);
FPUStatusWord ← SRC(FPUStatusWord);
FPUTagWord ← SRC(FPUTagWord);
FPUDataPointer ← SRC(FPUDataPointer);
FPUInstructionPointer ← SRC(FPUInstructionPointer);
FPULastInstructionOpcode ← SRC(FPULastInstructionOpcode);

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon
execution of the next “waiting” floating-point instruction.

Opcode Instruction Description

D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.

ch01.bk : ch03.doc Page 143 Friday, January 17, 1997 12:59 PM

3-144

INSTRUCTION SET REFERENCE

FLDENV—Load FPU Environment (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 144 Friday, January 17, 1997 12:59 PM

3-145

INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply

Description

Multiplies the destination and source operands and stores the product in the destination location.
The destination operand is always an FPU data register; the source operand can be an FPU data
register or a memory location. Source operands in memory can be in single-real, double-real,
word-integer, or short-integer formats.

The no-operand version of the instruction multiplies the contents of the ST(1) register by the
contents of the ST(0) register and stores the product in the ST(1) register. The one-operand
version multiplies the contents of the ST(0) register by the contents of a memory location (either
a real or an integer value) and stores the product in the ST(0) register. The two-operand version,
multiplies the contents of the ST(0) register by the contents of the ST(i) register, or vice versa,
with the result being stored in the register specified with the first operand (the destination
operand).

The FMULP instructions perform the additional operation of popping the FPU register stack
after storing the product. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point
multiply instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FMUL rather than FMULP.

The FIMUL instructions convert an integer source operand to extended-real format before
performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or more of the
values being multiplied is 0 or ∞. When the source operand is an integer 0, it is treated as a +0.

The following table shows the results obtained when multiplying various classes of numbers,
assuming that neither overflow nor underflow occurs.

Opcode Instruction Description

D8 /1 FMUL m32real Multiply ST(0) by m32real and store result in ST(0)

DC /1 FMUL m64real Multiply ST(0) by m64real and store result in ST(0)

D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)

DC C8+i FMUL ST(i), ST(0) Multiply ST(i) by ST(0) and store result in ST(i)

DE C8+i FMULP ST(i), ST(0) Multiply ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE C9 FMULP Multiply ST(1) by ST(0), store result in ST(1), and pop the
register stack

DA /1 FIMUL m32int Multiply ST(0) by m32int and store result in ST(0)

DE /1 FIMUL m16int Multiply ST(0) by m16int and store result in ST(0)

ch01.bk : ch03.doc Page 145 Friday, January 17, 1997 12:59 PM

3-146

INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply (Continued)

NOTES:

F Means finite-real number.

I Means Integer.

* Indicates invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIMUL
THEN

DEST ← DEST ∗ ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST ← DEST ∗ SRC;
FI;
IF instruction = FMULP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

DEST

−∞ −F −0 +0 +F +∞ NaN

−∞ +∞ +∞ * * −∞ −∞ NaN

−F +∞ +F +0 −0 −F −∞ NaN

−I +∞ +F +0 −0 −F −∞ NaN

SRC −0 * +0 +0 −0 −0 * NaN

+0 * −0 −0 +0 +0 * NaN

+I −∞ −F −0 +0 +F +∞ NaN

+F −∞ −F −0 +0 +F +∞ NaN

+∞ −∞ −∞ * * +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 146 Friday, January 17, 1997 12:59 PM

3-147

INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply (Continued)

#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 147 Friday, January 17, 1997 12:59 PM

3-148

INSTRUCTION SET REFERENCE

FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream but does
not affect the FPU or machine context, except the EIP register.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 D0 FNOP No operation is performed.

ch01.bk : ch03.doc Page 148 Friday, January 17, 1997 12:59 PM

3-149

INSTRUCTION SET REFERENCE

FPATAN—Partial Arctangent

Description

Computes the arctangent of the source operand in register ST(1) divided by the source operand
in register ST(0), stores the result in ST(1), and pops the FPU register stack. The result in register
ST(0) has the same sign as the source operand ST(1) and a magnitude less than +π.

The FPATAN instruction returns the angle between the X axis and the line from the origin to the
point (X,Y), where Y (the ordinate) is ST(1) and X (the abscissa) is ST(0). The angle depends
on the sign of X and Y independently, not just on the sign of the ratio Y/X. This is because a
point (−X,Y) is in the second quadrant, resulting in an angle between π/2 and π, while a point
(X,−Y) is in the fourth quadrant, resulting in an angle between 0 and −π/2. A point (−X,−Y) is
in the third quadrant, giving an angle between −π/2 and −π.

The following table shows the results obtained when computing the arctangent of various classes
of numbers, assuming that underflow does not occur.

NOTES:

F Means finite-real number.

* Table 7-20 in the Intel Architecture Software Developer’s Manual, Volume 1, specifies that the ratios 0/0
and ∞/∞ generate the floating-point invalid arithmetic-operation exception and, if this exception is
masked, the real indefinite value is returned. With the FPATAN instruction, the 0/0 or ∞/∞ value is actually
not calculated using division. Instead, the arctangent of the two variables is derived from a standard
mathematical formulation that is generalized to allow complex numbers as arguments. In this complex
variable formulation, arctangent(0,0) etc. has well defined values. These values are needed to develop a
library to compute transcendental functions with complex arguments, based on the FPU functions that
only allow real numbers as arguments.

There is no restriction on the range of source operands that FPATAN can accept.

Opcode Instruction Description

D9 F3 FPATAN Replace ST(1) with arctan(ST(1)/ST(0)) and pop the register stack

ST(0)

−∞ −F −0 +0 +F +∞ NaN

−∞ −3π/4* −π/2 −π/2 −π/2 −π/2 −π/4* NaN

ST(1) −F −π −π to −π/2 −π/2 −π/2 −π/2 to −0 -0 NaN

−0 −π −π −π* −0* −0 −0 NaN

+0 +π +π +π* +0* +0 +0 NaN

+F +π +π to +π/2 +π/2 +π/2 +π/2 to +0 +0 NaN

+∞ +3π/4* +π/2 +π/2 +π/2 +π/2 +π/4* NaN

NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 149 Friday, January 17, 1997 12:59 PM

3-150

INSTRUCTION SET REFERENCE

FPATAN—Partial Arctangent (Continued)

Intel Architecture Compatibility

The source operands for this instruction are restricted for the 80287 math coprocessor to the
following range:

0 ≤ |ST(1)| < |ST(0)| < +∞

Operation

ST(1) ← arctan(ST(1) / ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 150 Friday, January 17, 1997 12:59 PM

3-151

INSTRUCTION SET REFERENCE

FPATAN—Partial Arctangent

Description

Computes the remainder obtained from dividing the value in the ST(0) register (the dividend) by
the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0). The
remainder represents the following value:

Remainder = ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by truncating the real-number quotient of [ST(0) /
ST(1)] toward zero. The sign of the remainder is the same as the sign of the dividend. The magni-
tude of the remainder is less than that of the modulus, unless a partial remainder was computed
(as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. The following table shows the results obtained when
computing the remainder of various classes of numbers, assuming that underflow does not occur.

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the
result is equal to the value in ST(0).

The FPREM instruction does not compute the remainder specified in IEEE Std 754. The IEEE
specified remainder can be computed with the FPREM1 instruction. The FPREM instruction is
provided for compatibility with the Intel 8087 and Intel287 math coprocessors.

Opcode Instruction Description

D9 F8 FPREM Replace ST(0) with the remainder obtained from
dividing ST(0) by ST(1)

ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ * * * * * * NaN

ST(0) −F ST(0) −F or −0 ** ** −F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 151 Friday, January 17, 1997 12:59 PM

3-152

INSTRUCTION SET REFERENCE

FPATAN—Partial Arctangent (Continued)

The FPREM instruction gets its name “partial remainder” because of the way it computes the
remainder. This instructions arrives at a remainder through iterative subtraction. It can, however,
reduce the exponent of ST(0) by no more than 63 in one execution of the instruction. If the
instruction succeeds in producing a remainder that is less than the modulus, the operation is
complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, and the result
in ST(0) is called the partial remainder. The exponent of the partial remainder will be less than
the exponent of the original dividend by at least 32. Software can re-execute the instruction
(using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while
executing such a remainder-computation loop, a higher-priority interrupting routine that needs
the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and C0 flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulus of π/4), because it locates the original angle
in the correct one of eight sectors of the unit circle.

Operation

D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← an implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions

#IS Stack underflow occurred.

ch01.bk : ch03.doc Page 152 Friday, January 17, 1997 12:59 PM

3-153

INSTRUCTION SET REFERENCE

FPATAN—Partial Arctangent (Continued)

#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or unsup-
ported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 153 Friday, January 17, 1997 12:59 PM

3-154

INSTRUCTION SET REFERENCE

FPREM1—Partial Remainder

Description

Computes the IEEE remainder obtained from dividing the value in the ST(0) register (the divi-
dend) by the value in the ST(1) register (the divisor or modulus), and stores the result in ST(0).
The remainder represents the following value:

Remainder = ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by rounding the real-number quotient of [ST(0) /
ST(1)] toward the nearest integer value. The magnitude of the remainder is less than half the
magnitude of the modulus, unless a partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. The following table shows the results obtained when
computing the remainder of various classes of numbers, assuming that underflow does not occur.

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the
result is equal to the value in ST(0).

The FPREM1 instruction computes the remainder specified in IEEE Std 754. This instruction
operates differently from the FPREM instruction in the way that it rounds the quotient of ST(0)
divided by ST(1) to an integer (see the “Operation” section below).

Opcode Instruction Description

D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained from
dividing ST(0) by ST(1)

ST(1)

−∞ −F −0 +0 +F +∞ NaN

−∞ * * * * * * NaN

ST(0) −F ST(0) ±F or −0 ** ** ±F or −0 ST(0) NaN

−0 −0 −0 * * −0 −0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) ±F or +0 ** ** ±F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 154 Friday, January 17, 1997 12:59 PM

3-155

INSTRUCTION SET REFERENCE

FPREM1—Partial Remainder (Continued)

Like the FPREM instruction, the FPREM1 computes the remainder through iterative subtrac-
tion, but can reduce the exponent of ST(0) by no more than 63 in one execution of the instruc-
tion. If the instruction succeeds in producing a remainder that is less than one half the modulus,
the operation is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set,
and the result in ST(0) is called the partial remainder. The exponent of the partial remainder
will be less than the exponent of the original dividend by at least 32. Software can re-execute the
instruction (using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that
while executing such a remainder-computation loop, a higher-priority interrupting routine that
needs the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and C0 flags of the FPU status word. This information is important in argument
reduction for the tangent function (using a modulus of π/4), because it locates the original angle
in the correct one of eight sectors of the unit circle.

Operation

D ← exponent(ST(0)) – exponent(ST(1));
IF D < 64

THEN
Q ← Integer(RoundTowardNearestInteger(ST(0) / ST(1)));
ST(0) ← ST(0) – (ST(1) ∗ Q);
C2 ← 0;
C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE
C2 ← 1;
N ← an implementation-dependent number between 32 and 63;
QQ ← Integer(TruncateTowardZero((ST(0) / ST(1)) / 2(D − N)));
ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N));

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions

#IS Stack underflow occurred.

ch01.bk : ch03.doc Page 155 Friday, January 17, 1997 12:59 PM

3-156

INSTRUCTION SET REFERENCE

FPREM1—Partial Remainder (Continued)

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is ∞,
or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 156 Friday, January 17, 1997 12:59 PM

3-157

INSTRUCTION SET REFERENCE

FPTAN—Partial Tangent

Description

Computes the tangent of the source operand in register ST(0), stores the result in ST(0), and
pushes a 1.0 onto the FPU register stack. The source operand must be given in radians and must
be less than ±263. The following table shows the unmasked results obtained when computing the
partial tangent of various classes of numbers, assuming that underflow does not occur.

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 7 of the Intel Architecture Soft-
ware Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain
compatibility with the Intel 8087 and Intel287 math coprocessors. This operation also simplifies
the calculation of other trigonometric functions. For instance, the cotangent (which is the recip-
rocal of the tangent) can be computed by executing a FDIVR instruction after the FPTAN
instruction.

Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST(0) with its tangent and push 1
onto the FPU stack.

ST(0) SRC ST(0) DEST

−∞ *

−F −F to +F

−0 −0

+0 +0

+F −F to +F

+∞ *

NaN NaN

ch01.bk : ch03.doc Page 157 Friday, January 17, 1997 12:59 PM

3-158

INSTRUCTION SET REFERENCE

FPTAN—Partial Tangent (Continued)

Operation

IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← tan(ST(0));
TOP ← TOP − 1;
ST(0) ← 1.0;

ELSE (*source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise,
cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 158 Friday, January 17, 1997 12:59 PM

3-159

INSTRUCTION SET REFERENCE

FRNDINT—Round to Integer

Description

Rounds the source value in the ST(0) register to the nearest integral value, depending on the
current rounding mode (setting of the RC field of the FPU control word), and stores the result
in ST(0).

If the source value is ∞, the value is not changed. If the source value is not an integral value, the
floating-point inexact-result exception (#P) is generated.

Operation

ST(0) ← RoundToIntegralValue(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#P Source operand is not an integral value.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 FC FRNDINT Round ST(0) to an integer.

ch01.bk : ch03.doc Page 159 Friday, January 17, 1997 12:59 PM

3-160

INSTRUCTION SET REFERENCE

FRSTOR—Restore FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory area specified
with the source operand. This state data is typically written to the specified memory location by
a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-16 in the Intel Archi-
tecture Software Developer’s Manual, Volume 1, show the layout in memory of the stored envi-
ronment, depending on the operating mode of the processor (protected or real) and the current
operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are used.
The contents of the FPU register stack are stored in the 80 bytes immediately follow the oper-
ating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding
FSAVE/FNSAVE instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point
exception will be generated. To avoid raising exceptions when loading a new operating environ-
ment, clear all the exception flags in the FPU status word that is being loaded.

Operation

FPUControlWord ← SRC(FPUControlWord);
FPUStatusWord ← SRC(FPUStatusWord);
FPUTagWord ← SRC(FPUTagWord);
FPUDataPointer ← SRC(FPUDataPointer);
FPUInstructionPointer ← SRC(FPUInstructionPointer);
FPULastInstructionOpcode ← SRC(FPULastInstructionOpcode);
ST(0) ← SRC(ST(0));
ST(1) ← SRC(ST(1));
ST(2) ← SRC(ST(2));
ST(3) ← SRC(ST(3));
ST(4) ← SRC(ST(4));
ST(5) ← SRC(ST(5));
ST(6) ← SRC(ST(6));
ST(7) ← SRC(ST(7));

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Opcode Instruction Description

DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.

ch01.bk : ch03.doc Page 160 Friday, January 17, 1997 12:59 PM

3-161

INSTRUCTION SET REFERENCE

FRSTOR—Restore FPU State (Continued)

Floating-Point Exceptions

None; however, this operation might unmask an existing exception that has been detected but
not generated, because it was masked. Here, the exception is generated at the completion of the
instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 161 Friday, January 17, 1997 12:59 PM

3-162

INSTRUCTION SET REFERENCE

FSAVE/FNSAVE—Store FPU State

NOTE:

* See “Intel Architecture Compatibility” below.

Description

Stores the current FPU state (operating environment and register stack) at the specified destina-
tion in memory, and then re-initializes the FPU. The FSAVE instruction checks for and handles
pending unmasked floating-point exceptions before storing the FPU state; the FNSAVE instruc-
tion does not.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-16 in the Intel Archi-
tecture Software Developer’s Manual, Volume 1, show the layout in memory of the stored envi-
ronment, depending on the operating mode of the processor (protected or real) and the current
operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are used.
The contents of the FPU register stack are stored in the 80 bytes immediately follow the oper-
ating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the
FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with
the FINIT/FNINIT instructions (see “FINIT/FNINIT—Initialize Floating-Point Unit” in this
chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to
perform a context switch, an exception handler needs to use the FPU, or an application program
needs to pass a “clean” FPU to a procedure.

Intel Architecture Compatibility

For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruc-
tion should be executed before attempting to read from the memory image stored with a prior
FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that the storage operation
has been completed.

Opcode Instruction Description

9B DD /6 FSAVE m94/108byte Store FPU state to m94byte or m108byte after checking for
pending unmasked floating-point exceptions. Then re-
initialize the FPU.

DD /6 FNSAVE* m94/108byte Store FPU environment to m94byte or m108byte without
checking for pending unmasked floating-point exceptions.
Then re-initialize the FPU.

ch01.bk : ch03.doc Page 162 Friday, January 17, 1997 12:59 PM

3-163

INSTRUCTION SET REFERENCE

FSAVE/FNSAVE—Store FPU State (Continued)

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSAVE instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the Intel Architecture Software Devel-
oper’s Manual, Volume 1, for a description of these circumstances. An FNSAVE instruction
cannot be interrupted in this way on a Pentium Pro processor.

Operation

(* Save FPU State and Registers *)
DEST(FPUControlWord) ← FPUControlWord;
DEST(FPUStatusWord) ← FPUStatusWord;
DEST(FPUTagWord) ← FPUTagWord;
DEST(FPUDataPointer) ← FPUDataPointer;
DEST(FPUInstructionPointer) ← FPUInstructionPointer;
DEST(FPULastInstructionOpcode) ← FPULastInstructionOpcode;
DEST(ST(0)) ← ST(0);
DEST(ST(1)) ← ST(1);
DEST(ST(2)) ← ST(2);
DEST(ST(3)) ← ST(3);
DEST(ST(4)) ← ST(4);
DEST(ST(5)) ← ST(5);
DEST(ST(6)) ← ST(6);
DEST(ST(7)) ← ST(7);
(* Initialize FPU *)
FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

ch01.bk : ch03.doc Page 163 Friday, January 17, 1997 12:59 PM

3-164

INSTRUCTION SET REFERENCE

FSAVE/FNSAVE—Store FPU State (Continued)

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 164 Friday, January 17, 1997 12:59 PM

3-165

INSTRUCTION SET REFERENCE

FSCALE—Scale

Description

Multiplies the destination operand by 2 to the power of the source operand and stores the result
in the destination operand. The destination operand is a real value that is located in register
ST(0). The source operand is the nearest integer value that is smaller than the value in the ST(1)
register (that is, the value in register ST(1) is truncated toward 0 to its nearest integer value to
form the source operand). This instruction provides rapid multiplication or division by integral
powers of 2 because it is implemented by simply adding an integer value (the source operand)
to the exponent of the value in register ST(0). The following table shows the results obtained
when scaling various classes of numbers, assuming that neither overflow nor underflow occurs.

NOTES:

F Means finite-real number.

N Means integer.

In most cases, only the exponent is changed and the mantissa (significand) remains unchanged.
However, when the value being scaled in ST(0) is a denormal value, the mantissa is also changed
and the result may turn out to be a normalized number. Similarly, if overflow or underflow
results from a scale operation, the resulting mantissa will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as
shown in the following example:

FXTRACT;

FSCALE;

FSTP ST(1);

Opcode Instruction Description

D9 FD FSCALE Scale ST(0) by ST(1).

ST(1)

−N 0 +N

−∞ −∞ −∞ −∞

ST(0) −F −F −F −F

−0 −0 −0 −0

+0 +0 +0 +0

+F +F +F +F

+∞ +∞ +∞ +∞

NaN NaN NaN NaN

ch01.bk : ch03.doc Page 165 Friday, January 17, 1997 12:59 PM

3-166

INSTRUCTION SET REFERENCE

FSCALE—Scale (Continued)

In this example, the FXTRACT instruction extracts the significand and exponent from the value
in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then scales the signifi-
cand in ST(0) by the exponent in ST(1), recreating the original value before the FXTRACT oper-
ation was performed. The FSTP ST(1) instruction overwrites the exponent (extracted by the
FXTRACT instruction) with the recreated value, which returns the stack to its original state with
only one register [ST(0)] occupied.

Operation

ST(0) ← ST(0) ∗ 2ST(1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 166 Friday, January 17, 1997 12:59 PM

3-167

INSTRUCTION SET REFERENCE

FSIN—Sine

Description

Calculates the sine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The following
table shows the results obtained when taking the sine of various classes of numbers, assuming
that underflow does not occur.

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 7 of the Intel Architecture Soft-
ware Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

Operation

IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← sin(ST(0));

ELSE (* source operand out of range *)
C2 ← 1;

FI:

Opcode Instruction Description

D9 FE FSIN Replace ST(0) with its sine.

SRC (ST(0)) DEST (ST(0))

−∞ *

−F −1 to +1

−0 −0

+0 +0

+F −1 to +1

+∞ *

NaN NaN

ch01.bk : ch03.doc Page 167 Friday, January 17, 1997 12:59 PM

3-168

INSTRUCTION SET REFERENCE

FSIN—Sine (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise,
cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 168 Friday, January 17, 1997 12:59 PM

3-169

INSTRUCTION SET REFERENCE

FSINCOS—Sine and Cosine

Description

Computes both the sine and the cosine of the source operand in register ST(0), stores the sine in
ST(0), and pushes the cosine onto the top of the FPU register stack. (This instruction is faster
than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range −263 to +263. The
following table shows the results obtained when taking the sine and cosine of various classes of
numbers, assuming that underflow does not occur.

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range −263 to +263 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2π or by using the FPREM instruc-
tion with a divisor of 2π. See the section titled “Pi” in Chapter 7 of the Intel Architecture Soft-
ware Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

Opcode Instruction Description

D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with
the sine, and push the cosine onto the register stack.

SRC DEST

ST(0) ST(1) Cosine ST(0) Sine

−∞ * *

−F −1 to +1 −1 to +1

−0 +1 −0

+0 +1 +0

+F −1 to +1 −1 to +1

+∞ * *

NaN NaN NaN

ch01.bk : ch03.doc Page 169 Friday, January 17, 1997 12:59 PM

3-170

INSTRUCTION SET REFERENCE

FSINCOS—Sine and Cosine (Continued)

Operation

IF ST(0) < 263

THEN
C2 ← 0;
TEMP ← cosine(ST(0));
ST(0) ← sine(ST(0));

TOP ← TOP − 1;
ST(0) ← TEMP;

ELSE (* source operand out of range *)
C2 ← 1;

FI:

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise,
cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 170 Friday, January 17, 1997 12:59 PM

3-171

INSTRUCTION SET REFERENCE

FSQRT—Square Root

Description

Calculates the square root of the source value in the ST(0) register and stores the result in ST(0).

The following table shows the results obtained when taking the square root of various classes of
numbers, assuming that neither overflow nor underflow occurs.

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

ST(0) ← SquareRoot(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is generated:
0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Opcode Instruction Description

D9 FA FSQRT Calculates square root of ST(0) and stores the result in
ST(0)

SRC (ST(0)) DEST (ST(0))

−∞ *

−F *

−0 −0

+0 +0

+F +F

+∞ +∞

NaN NaN

ch01.bk : ch03.doc Page 171 Friday, January 17, 1997 12:59 PM

3-172

INSTRUCTION SET REFERENCE

FSQRT—Square Root (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for −0).

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 172 Friday, January 17, 1997 12:59 PM

3-173

INSTRUCTION SET REFERENCE

FST/FSTP—Store Real

Description

The FST instruction copies the value in the ST(0) register to the destination operand, which can
be a memory location or another register in the FPU register stack. When storing the value in
memory, the value is converted to single- or double-real format.

The FSTP instruction performs the same operation as the FST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FSTP instruction can also store values in memory
in extended-real format.

If the destination operand is a memory location, the operand specifies the address where the first
byte of the destination value is to be stored. If the destination operand is a register, the operand
specifies a register in the register stack relative to the top of the stack.

If the destination size is single- or double-real, the significand of the value being stored is
rounded to the width of the destination (according to rounding mode specified by the RC field
of the FPU control word), and the exponent is converted to the width and bias of the destination
format. If the value being stored is too large for the destination format, a numeric overflow
exception (#O) is generated and, if the exception is unmasked, no value is stored in the destina-
tion operand. If the value being stored is a denormal value, the denormal exception (#D) is not
generated. This condition is simply signaled as a numeric underflow exception (#U) condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the significand and the
exponent are truncated to fit the destination format. This operation preserves the value’s identity
as a 0, ∞, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is not
generated.

Operation

DEST ← ST(0);
IF instruction = FSTP

THEN
PopRegisterStack;

FI;

Opcode Instruction Description

D9 /2 FST m32real Copy ST(0) to m32real

DD /2 FST m64real Copy ST(0) to m64real

DD D0+i FST ST(i) Copy ST(0) to ST(i)

D9 /3 FSTP m32real Copy ST(0) to m32real and pop register stack

DD /3 FSTP m64real Copy ST(0) to m64real and pop register stack

DB /7 FSTP m80real Copy ST(0) to m80real and pop register stack

DD D8+i FSTP ST(i) Copy ST(0) to ST(i) and pop register stack

ch01.bk : ch03.doc Page 173 Friday, January 17, 1997 12:59 PM

3-174

INSTRUCTION SET REFERENCE

FST/FSTP—Store Real (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception (#P)
is generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#U Result is too small for the destination format.

#O Result is too large for the destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 174 Friday, January 17, 1997 12:59 PM

3-175

INSTRUCTION SET REFERENCE

FST/FSTP—Store Real (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 175 Friday, January 17, 1997 12:59 PM

3-176

INSTRUCTION SET REFERENCE

FSTCW/FNSTCW—Store Control Word

NOTE:

* See “Intel Architecture Compatibility” below.

Description

Stores the current value of the FPU control word at the specified destination in memory. The
FSTCW instruction checks for and handles pending unmasked floating-point exceptions before
storing the control word; the FNSTCW instruction does not.

Intel Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTCW instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the Intel Architecture Software Devel-
oper’s Manual, Volume 1, for a description of these circumstances. An FNSTCW instruction
cannot be interrupted in this way on a Pentium Pro processor.

Operation

DEST ← FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for
pending unmasked floating-point exceptions.

D9 /7 FNSTCW* m2byte Store FPU control word to m2byte without checking for
pending unmasked floating-point exceptions.

ch01.bk : ch03.doc Page 176 Friday, January 17, 1997 12:59 PM

3-177

INSTRUCTION SET REFERENCE

FSTCW/FNSTCW—Store Control Word (Continued)

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 177 Friday, January 17, 1997 12:59 PM

3-178

INSTRUCTION SET REFERENCE

FSTENV/FNSTENV—Store FPU Environment

NOTE:

* See “Intel Architecture Compatibility” below.

Description

Saves the current FPU operating environment at the memory location specified with the desti-
nation operand, and then masks all floating-point exceptions. The FPU operating environment
consists of the FPU control word, status word, tag word, instruction pointer, data pointer, and
last opcode. Figures 7-13 through 7-16 in the Intel Architecture Software Developer’s Manual,
Volume 1, show the layout in memory of the stored environment, depending on the operating
mode of the processor (protected or real) and the current operand-size attribute (16-bit or 32-
bit). In virtual-8086 mode, the real mode layouts are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point excep-
tions before storing the FPU environment; the FNSTENV instruction does not.The saved
image reflects the state of the FPU after all floating-point instructions preceding the
FSTENV/FNSTENV instruction in the instruction stream have been executed.

These instructions are often used by exception handlers because they provide access to the FPU
instruction and data pointers. The environment is typically saved in the stack. Masking all excep-
tions after saving the environment prevents floating-point exceptions from interrupting the
exception handler.

Intel Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTENV instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the Intel Architecture Software Devel-
oper’s Manual, Volume 1, for a description of these circumstances. An FNSTENV instruction
cannot be interrupted in this way on a Pentium Pro processor.

Operation

DEST(FPUControlWord) ← FPUControlWord;
DEST(FPUStatusWord) ← FPUStatusWord;
DEST(FPUTagWord) ← FPUTagWord;
DEST(FPUDataPointer) ← FPUDataPointer;

Opcode Instruction Description

9B D9 /6 FSTENV m14/28byte Store FPU environment to m14byte or m28byte after
checking for pending unmasked floating-point exceptions.
Then mask all floating-point exceptions.

D9 /6 FNSTENV* m14/28byte Store FPU environment to m14byte or m28byte without
checking for pending unmasked floating-point exceptions.
Then mask all floating-point exceptions.

ch01.bk : ch03.doc Page 178 Friday, January 17, 1997 12:59 PM

3-179

INSTRUCTION SET REFERENCE

FSTENV/FNSTENV—Store FPU Environment (Continued)
DEST(FPUInstructionPointer) ← FPUInstructionPointer;
DEST(FPULastInstructionOpcode) ← FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 179 Friday, January 17, 1997 12:59 PM

3-180

INSTRUCTION SET REFERENCE

FSTSW/FNSTSW—Store Status Word

NOTE:

* See “Intel Architecture Compatibility” below.

Description

Stores the current value of the FPU status word in the destination location. The destination
operand can be either a two-byte memory location or the AX register. The FSTSW instruction
checks for and handles pending unmasked floating-point exceptions before storing the status
word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM instruction),
where the direction of the branch depends on the state of the FPU condition code flags. (See the
section titled “Branching and Conditional Moves on FPU Condition Codes” in Chapter 7 of the
Intel Architecture Software Developer’s Manual, Volume 1.) This instruction can also be used to
invoke exception handlers (by examining the exception flags) in environments that do not use
interrupts. When the FNSTSW AX instruction is executed, the AX register is updated before the
processor executes any further instructions. The status stored in the AX register is thus guaran-
teed to be from the completion of the prior FPU instruction.

Intel Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible
(under unusual circumstances) for an FNSTSW instruction to be interrupted prior to being
executed to handle a pending FPU exception. See the section titled “No-Wait FPU Instructions
Can Get FPU Interrupt in Window” in Appendix D of the Intel Architecture Software Devel-
oper’s Manual, Volume 1, for a description of these circumstances. An FNSTSW instruction
cannot be interrupted in this way on a Pentium Pro processor.

Operation

DEST ← FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Opcode Instruction Description

9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for
pending unmasked floating-point exceptions.

9B DF E0 FSTSW AX Store FPU status word in AX register after checking for
pending unmasked floating-point exceptions.

DD /7 FNSTSW* m2byte Store FPU status word at m2byte without checking for
pending unmasked floating-point exceptions.

DF E0 FNSTSW* AX Store FPU status word in AX register without checking for
pending unmasked floating-point exceptions.

ch01.bk : ch03.doc Page 180 Friday, January 17, 1997 12:59 PM

3-181

INSTRUCTION SET REFERENCE

FSTSW/FNSTSW—Store Status Word (Continued)

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 181 Friday, January 17, 1997 12:59 PM

3-182

INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract

Description

Subtracts the source operand from the destination operand and stores the difference in the desti-
nation location. The destination operand is always an FPU data register; the source operand can
be a register or a memory location. Source operands in memory can be in single-real, double-
real, word-integer, or short-integer formats.

The no-operand version of the instruction subtracts the contents of the ST(0) register from the
ST(1) register and stores the result in ST(1). The one-operand version subtracts the contents of
a memory location (either a real or an integer value) from the contents of the ST(0) register and
stores the result in ST(0). The two-operand version, subtracts the contents of the ST(0) register
from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point
subtract instructions always results in the register stack being popped. In some assemblers, the
mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the SRC value is
subtracted from the DEST value (DEST − SRC = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0)
= +0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /4 FSUB m32real Subtract m32real from ST(0) and store result in ST(0)

DC /4 FSUB m64real Subtract m64real from ST(0) and store result in ST(0)

D8 E0+i FSUB ST(0), ST(i) Subtract ST(i) from ST(0) and store result in ST(0)

DC E8+i FSUB ST(i), ST(0) Subtract ST(0) from ST(i) and store result in ST(i)

DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop
register stack

DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop
register stack

DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0)

DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0)

ch01.bk : ch03.doc Page 182 Friday, January 17, 1997 12:59 PM

3-183

INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract (Continued)

NOTES:

F Means finite-real number.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUB
THEN

DEST ← DEST − ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)

DEST ← DEST − SRC;
FI;
IF instruction is FSUBP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

SRC

−∞ −F or −I −0 +0 +F or +I +∞ NaN

−∞ * −∞ −∞ −∞ −∞ −∞ NaN

−F +∞ ±F or ±0 DEST DEST −F −∞ NaN

DEST −0 +∞ −SRC ±0 −0 −SRC −∞ NaN

+0 +∞ −SRC +0 ±0 −SRC −∞ NaN

+F +∞ +F DEST DEST ±F or ±0 −∞ NaN

+∞ +∞ +∞ +∞ +∞ +∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 183 Friday, January 17, 1997 12:59 PM

3-184

INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract (Continued)

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 184 Friday, January 17, 1997 12:59 PM

3-185

INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description

Subtracts the destination operand from the source operand and stores the difference in the desti-
nation location. The destination operand is always an FPU register; the source operand can be a
register or a memory location. Source operands in memory can be in single-real, double-real,
word-integer, or short-integer formats.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instruc-
tions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register from the
ST(0) register and stores the result in ST(1). The one-operand version subtracts the contents of
the ST(0) register from the contents of a memory location (either a real or an integer value) and
stores the result in ST(0). The two-operand version, subtracts the contents of the ST(i) register
from the ST(0) register or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point
reverse subtract instructions always results in the register stack being popped. In some assem-
blers, the mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the DEST value
is subtracted from the SRC value (SRC − DEST = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round
toward −∞ mode, in which case the result is −0. This instruction also guarantees that +0 − (−0)
= +0, and that −0 − (+0) = −0. When the source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same
sign, an invalid-operation exception is generated.

Opcode Instruction Description

D8 /5 FSUBR m32real Subtract ST(0) from m32real and store result in ST(0)

DC /5 FSUBR m64real Subtract ST(0) from m64real and store result in ST(0)

D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0)

DC E0+i FSUBR ST(i), ST(0) Subtract ST(i) from ST(0) and store result in ST(i)

DE E0+i FSUBRP ST(i), ST(0) Subtract ST(i) from ST(0), store result in ST(i), and pop
register stack

DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop
register stack

DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0)

DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0)

ch01.bk : ch03.doc Page 185 Friday, January 17, 1997 12:59 PM

3-186

INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

NOTES:

F Means finite-real number.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FISUBR
THEN

DEST ← ConvertExtendedReal(SRC) − DEST;
ELSE (* source operand is real number *)

DEST ← SRC − DEST;
FI;
IF instruction = FSUBRP

THEN
PopRegisterStack

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

SRC

−∞ −F or −I −0 +0 +F or +I +∞ NaN

−∞ * +∞ +∞ +∞ +∞ +∞ NaN

−F −∞ ±F or ±0 −DEST −DEST +F +∞ NaN

DEST −0 −∞ SRC ±0 +0 SRC +∞ NaN

+0 −∞ SRC −0 ±0 SRC +∞ NaN

+F −∞ −F −DEST −DEST ±F or ±0 +∞ NaN

+∞ −∞ −∞ −∞ −∞ −∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 186 Friday, January 17, 1997 12:59 PM

3-187

INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 187 Friday, January 17, 1997 12:59 PM

3-188

INSTRUCTION SET REFERENCE

FTST—TEST

Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0, C2, and
C3 in the FPU status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (see “FXAM—Examine” in this chapter). If the value
in register ST(0) is a NaN or is in an undefined format, the condition flags are set to “unordered”
and the invalid operation exception is generated.

The sign of zero is ignored, so that –0.0 = +0.0.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, C0 ← 111;
ST(0) > 0.0: C3, C2, C0 ← 000;
ST(0) < 0.0: C3, C2, C0 ← 001;
ST(0) = 0.0: C3, C2, C0 ← 100;

ESAC;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See above table.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA The source operand is a NaN value or is in an unsupported format.

#D The source operand is a denormal value.

Opcode Instruction Description

D9 E4 FTST Compare ST(0) with 0.0.

Condition C3 C2 C0

ST(0) > 0.0 0 0 0

ST(0) < 0.0 0 0 1

ST(0) = 0.0 1 0 0

Unordered 1 1 1

ch01.bk : ch03.doc Page 188 Friday, January 17, 1997 12:59 PM

3-189

INSTRUCTION SET REFERENCE

FTST—TEST (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 189 Friday, January 17, 1997 12:59 PM

3-190

INSTRUCTION SET REFERENCE

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real

Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets condition
code flags C0, C2, and C3 in the FPU status word according to the results (see the table below).
If no operand is specified, the contents of registers ST(0) and ST(1) are compared. The sign of
zero is ignored, so that –0.0 = +0.0.

NOTE:

* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

An unordered comparison checks the class of the numbers being compared (see
“FXAM—Examine” in this chapter). The FUCOM instructions perform the same operations as
the FCOM instructions. The only difference is that the FUCOM instructions raise the invalid-
arithmetic-operand exception (#IA) only when either or both operands are an SNaN or are in an
unsupported format; QNaNs cause the condition code flags to be set to unordered, but do not
cause an exception to be generated. The FCOM instructions raise an invalid-operation exception
when either or both of the operands are a NaN value of any kind or are in an unsupported format.

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand excep-
tion being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instruction pops the register stack following the comparison operation and the
FUCOMPP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

Opcode Instruction Description

DD E0+i FUCOM ST(i) Compare ST(0) with ST(i)

DD E1 FUCOM Compare ST(0) with ST(1)

DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack

DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack

DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice

Comparison Results C3 C2 C0

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1

ch01.bk : ch03.doc Page 190 Friday, January 17, 1997 12:59 PM

3-191

INSTRUCTION SET REFERENCE

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real
(Continued)

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, C0 ← 000;
ST < SRC: C3, C2, C0 ← 001;
ST = SRC: C3, C2, C0 ← 100;

ESAC;
IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

THEN
C3, C2, C0 ← 111;

ELSE (* ST(0) or SRC is SNaN or unsupported format *)
 #IA;
IF FPUControlWord.IM = 1

THEN
C3, C2, C0 ← 111;

FI;
FI;
IF instruction = FUCOMP

THEN
PopRegisterStack;

FI;
IF instruction = FUCOMPP

THEN
PopRegisterStack;
PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported formats.
Detection of a QNaN value in and of itself does not raise an invalid-
operand exception.

#D One or both operands are denormal values.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 191 Friday, January 17, 1997 12:59 PM

3-192

INSTRUCTION SET REFERENCE

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real
(Continued)

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 192 Friday, January 17, 1997 12:59 PM

3-193

INSTRUCTION SET REFERENCE

FWAIT—Wait

See entry for WAIT/FWAIT—Wait.

ch01.bk : ch03.doc Page 193 Friday, January 17, 1997 12:59 PM

3-194

INSTRUCTION SET REFERENCE

FXAM—Examine

Description

Examines the contents of the ST(0) register and sets the condition code flags C0, C2, and C3 in
the FPU status word to indicate the class of value or number in the register (see the table below).

.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty
or full.

Operation

C1 ← sign bit of ST; (* 0 for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF

Unsupported:C3, C2, C0 ← 000;
NaN: C3, C2, C0 ← 001;
Normal: C3, C2, C0 ← 010;
Infinity: C3, C2, C0 ← 011;
Zero: C3, C2, C0 ← 100;
Empty: C3, C2, C0 ← 101;
Denormal: C3, C2, C0 ← 110;

ESAC;

FPU Flags Affected

C1 Sign of value in ST(0).

C0, C2, C3 See table above.

Opcode Instruction Description

D9 E5 FXAM Classify value or number in ST(0)

Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0

ch01.bk : ch03.doc Page 194 Friday, January 17, 1997 12:59 PM

3-195

INSTRUCTION SET REFERENCE

FXAM—Examine (Continued)

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 195 Friday, January 17, 1997 12:59 PM

3-196

INSTRUCTION SET REFERENCE

FXCH—Exchange Register Contents

Description

Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, the
contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top
of the stack [ST(0)], so that they can be operated on by those floating-point instructions that can
only operate on values in ST(0). For example, the following instruction sequence takes the
square root of the third register from the top of the register stack:

FXCH ST(3);

FSQRT;

FXCH ST(3);

Operation

IF number-of-operands is 1
THEN

temp ← ST(0);
ST(0) ← SRC;
SRC ← temp;

ELSE
temp ← ST(0);
ST(0) ← ST(1);
ST(1) ← temp;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Opcode Instruction Description

D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(i)

D9 C9 FXCH Exchange the contents of ST(0) and ST(1)

ch01.bk : ch03.doc Page 196 Friday, January 17, 1997 12:59 PM

3-197

INSTRUCTION SET REFERENCE

FXCH—Exchange Register Contents (Continued)

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 197 Friday, January 17, 1997 12:59 PM

3-198

INSTRUCTION SET REFERENCE

FXTRACT—Extract Exponent and Significand

Description

Separates the source value in the ST(0) register into its exponent and significand, stores the
exponent in ST(0), and pushes the significand onto the register stack. Following this operation,
the new top-of-stack register ST(0) contains the value of the original significand expressed as a
real number. The sign and significand of this value are the same as those found in the source
operand, and the exponent is 3FFFH (biased value for a true exponent of zero). The ST(1)
register contains the value of the original operand’s true (unbiased) exponent expressed as a real
number. (The operation performed by this instruction is a superset of the IEEE-recommended
logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range scaling
operations. The FXTRACT instruction is also useful for converting numbers in extended-real
format to decimal representations (e.g., for printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an
exponent value of –∞ is stored in register ST(1) and 0 with the sign of the source operand is
stored in register ST(0).

Operation

TEMP ← Significand(ST(0));
ST(0) ← Exponent(ST(0));
TOP← TOP − 1;
ST(0) ← TEMP;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#Z ST(0) operand is ±0.

#D Source operand is a denormal value.

Opcode Instruction Description

D9 F4 FXTRACT Separate value in ST(0) into exponent and significand,
store exponent in ST(0), and push the significand onto the
register stack.

ch01.bk : ch03.doc Page 198 Friday, January 17, 1997 12:59 PM

3-199

INSTRUCTION SET REFERENCE

FXTRACT—Extract Exponent and Significand (Continued)

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 199 Friday, January 17, 1997 12:59 PM

3-200

INSTRUCTION SET REFERENCE

FYL2X—Compute y ∗ log 2x

Description

Calculates (ST(1) ∗ log2 (ST(0))), stores the result in resister ST(1), and pops the FPU register
stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of
numbers, assuming that neither overflow nor underflow occurs.

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-operation (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruction returns
∞ with a sign that is the opposite of the sign of the source operand in register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of
logarithms with an arbitrary positive base (b):

logbx = (log2b)–1 ∗ log2x

Operation

ST(1) ← ST(1) ∗ log2ST(0);
PopRegisterStack;

Opcode Instruction Description

D9 F1 FYL2X Replace ST(1) with (ST(1) ∗ log2ST(0)) and pop the
register stack

ST(0)

−∞ −F ±0 +0 < +F < +1 +1 +F > +1 +∞ NaN

−∞ * * +∞ +∞ * −∞ −∞ NaN

ST(1) −F * * ** +F −0 −F −∞ NaN

−0 * * * +0 −0 −0 * NaN

+0 * * * −0 +0 +0 * NaN

+F * * ** −F +0 +F +∞ NaN

+∞ * * −∞ −∞ ∗ +∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

ch01.bk : ch03.doc Page 200 Friday, January 17, 1997 12:59 PM

3-201

INSTRUCTION SET REFERENCE

FYL2X—Compute y ∗ log 2x (Continued)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value (not −0).

#Z Source operand in register ST(0) is ±0.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 201 Friday, January 17, 1997 12:59 PM

3-202

INSTRUCTION SET REFERENCE

FYL2XP1—Compute y ∗ log 2(x +1)

Description

Calculates the log epsilon (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and
pops the FPU register stack. The source operand in ST(0) must be in the range:

The source operand in ST(1) can range from −∞ to +∞. If the ST(0) operand is outside of its
acceptable range, the result is undefined and software should not rely on an exception being
generated. Under some circumstances exceptions may be generated when ST(0) is out of range,
but this behavior is implementation specific and not guaranteed.

The following table shows the results obtained when taking the log epsilon of various classes of
numbers, assuming that underflow does not occur.

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-operation (#IA) exception.

This instruction provides optimal accuracy for values of epsilon [the value in register ST(0)] that
are close to 0. When the epsilon value (ε) is small, more significant digits can be retained by
using the FYL2XP1 instruction than by using (ε+1) as an argument to the FYL2X instruction.
The (ε+1) expression is commonly found in compound interest and annuity calculations. The
result can be simply converted into a value in another logarithm base by including a scale factor
in the ST(1) source operand. The following equation is used to calculate the scale factor for a
particular logarithm base, where n is the logarithm base desired for the result of the FYL2XP1
instruction:

scale factor = logn 2

Opcode Instruction Description

D9 F9 FYL2XP1 Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0) and pop the
register stack

ST(0)

−(1 − ()) to −0 −0 +0 +0 to +(1 − ()) NaN

−∞ +∞ * * −∞ NaN

ST(1) −F +F +0 −0 −F NaN

−0 +0 +0 −0 −0 NaN

+0 −0 −0 +0 +0 NaN

+F −F −0 +0 +F NaN

+∞ −∞ * * +∞ NaN

NaN NaN NaN NaN NaN NaN

1 2 2⁄–()) to 1 2 2⁄–()–

2 2⁄ 2 2⁄

ch01.bk : ch03.doc Page 202 Friday, January 17, 1997 12:59 PM

3-203

INSTRUCTION SET REFERENCE

FYL2XP1—Compute y ∗ log 2(x +1) (Continued)

Operation

ST(1) ← ST(1) ∗ log2(ST(0) + 1.0);
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

ch01.bk : ch03.doc Page 203 Friday, January 17, 1997 12:59 PM

3-204

INSTRUCTION SET REFERENCE

HLT—Halt

Description

Stops instruction execution and places the processor in a HALT state. An enabled interrupt,
NMI, or a reset will resume execution. If an interrupt (including NMI) is used to resume execu-
tion after a HLT instruction, the saved instruction pointer (CS:EIP) points to the instruction
following the HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in protected or
virtual-8086 mode, the privilege level of a program or procedure must be 0 to execute the HLT
instruction.

Operation

Enter Halt state;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

Opcode Instruction Description

F4 HLT Halt

ch01.bk : ch03.doc Page 204 Friday, January 17, 1997 12:59 PM

3-205

INSTRUCTION SET REFERENCE

IDIV—Signed Divide

Description

Divides (signed) the value in the AL, AX, or EAX register by the source operand and stores the
result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a general-purpose
register or a memory location. The action of this instruction depends on the operand size, as
shown in the following table:

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is always the
same as the sign of the dividend. The absolute value of the remainder is always less than the
absolute value of the divisor. Overflow is indicated with the #DE (divide error) exception rather
than with the OF (overflow) flag.

Operation

IF SRC = 0
THEN #DE; (* divide error *)

FI;
IF OpernadSize = 8 (* word/byte operation *)

THEN
temp ← AX / SRC; (* signed division *)
IF (temp > 7FH) OR (temp < 80H)
(* if a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* divide error *) ;
ELSE

AL ← temp;
AH ← AX SignedModulus SRC;

FI;

Opcode Instruction Description

F6 /7 IDIV r/m8 Signed divide AX (where AH must contain sign-
extension of AL) by r/m byte. (Results: AL=Quotient,
AH=Remainder)

F7 /7 IDIV r/m16 Signed divide DX:AX (where DX must contain sign-
extension of AX) by r/m word. (Results: AX=Quotient,
DX=Remainder)

F7 /7 IDIV r/m32 Signed divide EDX:EAX (where EDX must contain
sign-extension of EAX) by r/m doubleword. (Results:
EAX=Quotient, EDX=Remainder)

Operand Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX r/m8 AL AH −128 to +127

Doubleword/word DX:AX r/m16 AX DX −32,768 to +32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to 232 − 1

ch01.bk : ch03.doc Page 205 Friday, January 17, 1997 12:59 PM

3-206

INSTRUCTION SET REFERENCE

IDIV—Signed Divide (Continued)
ELSE

IF OpernadSize = 16 (* doubleword/word operation *)
THEN

temp ← DX:AX / SRC; (* signed division *)
IF (temp > 7FFFH) OR (temp < 8000H)
(* if a positive result is greater than 7FFFH *)
(* or a negative result is less than 8000H *)

THEN #DE; (* divide error *) ;
ELSE

AX ← temp;
DX ← DX:AX SignedModulus SRC;

FI;
ELSE (* quadword/doubleword operation *)

temp ← EDX:EAX / SRC; (* signed division *)
IF (temp > 7FFFFFFFH) OR (temp < 80000000H)
(* if a positive result is greater than 7FFFFFFFH *)
(* or a negative result is less than 80000000H *)

THEN #DE; (* divide error *) ;
ELSE

EAX ← temp;
EDX ← EDXE:AX SignedModulus SRC;

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

ch01.bk : ch03.doc Page 206 Friday, January 17, 1997 12:59 PM

3-207

INSTRUCTION SET REFERENCE

IDIV—Signed Divide (Continued)

Real-Address Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 207 Friday, January 17, 1997 12:59 PM

3-208

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending
on the number of operands.

• One-operand form. This form is identical to that used by the MUL instruction. Here, the
source operand (in a general-purpose register or memory location) is multiplied by the
value in the AL, AX, or EAX register (depending on the operand size) and the product is
stored in the AX, DX:AX, or EDX:EAX registers, respectively.

• Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a general-
purpose register and the source operand is an immediate value, a general-purpose register,
or a memory location. The product is then stored in the destination operand location.

• Three-operand form. This form requires a destination operand (the first operand) and two
source operands (the second and the third operands). Here, the first source operand (which
can be a general-purpose register or a memory location) is multiplied by the second source
operand (an immediate value). The product is then stored in the destination operand (a
general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

Opcode Instruction Description

F6 /5 IMUL r/m8 AX← AL ∗ r/m byte

F7 /5 IMUL r/m16 DX:AX ← AX ∗ r/m word

F7 /5 IMUL r/m32 EDX:EAX ← EAX ∗ r/m doubleword

0F AF /r IMUL r16,r/m16 word register ← word register ∗ r/m word

0F AF /r IMUL r32,r/m32 doubleword register ← doubleword register ∗ r/m
doubleword

6B /r ib IMUL r16,r/m16,imm8 word register ← r/m16 ∗ sign-extended immediate byte

6B /r ib IMUL r32,r/m32,imm8 doubleword register ← r/m32 ∗ sign-extended immediate
byte

6B /r ib IMUL r16,imm8 word register ← word register ∗ sign-extended immediate
byte

6B /r ib IMUL r32,imm8 doubleword register ← doubleword register ∗ sign-extended
immediate byte

69 /r iw IMUL r16,r/
m16,imm16

word register ← r/m16 ∗ immediate word

69 /r id IMUL r32,r/
m32,imm32

doubleword register ← r/m32 ∗ immediate doubleword

69 /r iw IMUL r16,imm16 word register ← r/m16 ∗ immediate word

69 /r id IMUL r32,imm32 doubleword register ← r/m32 ∗ immediate doubleword

ch01.bk : ch03.doc Page 208 Friday, January 17, 1997 12:59 PM

3-209

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (Continued)

The CF and OF flags are set when significant bits are carried into the upper half of the result.
The CF and OF flags are cleared when the result fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product is calculated
to twice the length of the operands. With the one-operand form, the product is stored exactly in
the destination. With the two- and three- operand forms, however, result is truncated to the length
of the destination before it is stored in the destination register. Because of this truncation, the CF
or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower
half of the product is the same regardless if the operands are signed or unsigned. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
AX ← AL ∗ SRC (* signed multiplication *)
IF ((AH = 00H) OR (AH = FFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE IF OperandSize = 16

THEN
DX:AX ← AX ∗ SRC (* signed multiplication *)
IF ((DX = 0000H) OR (DX = FFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
ELSE (* OperandSize = 32 *)

EDX:EAX ← EAX ∗ SRC (* signed multiplication *)
IF ((EDX = 00000000H) OR (EDX = FFFFFFFFH))

THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN

temp ← DEST ∗ SRC (* signed multiplication; temp is double DEST size*)
DEST ← DEST ∗ SRC (* signed multiplication *)
IF temp ≠ DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;

ELSE (* NumberOfOperands = 3 *)

ch01.bk : ch03.doc Page 209 Friday, January 17, 1997 12:59 PM

3-210

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (Continued)
DEST ← SRC1 ∗ SRC2 (* signed multiplication *)
temp ← SRC1 ∗ SRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp ≠ DEST

THEN CF = 1; OF = 1;
ELSE CF = 0; OF = 0;

FI;
FI;

FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits
are carried into the upper half of the result and cleared when the result fits exactly in the lower
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags
are set when the result must be truncated to fit in the destination operand size and cleared when
the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 210 Friday, January 17, 1997 12:59 PM

3-211

INSTRUCTION SET REFERENCE

IN—Input from Port

Description

Copies the value from the I/O port specified with the second operand (source operand) to the
destination operand (first operand). The source operand can be a byte-immediate or the DX
register; the destination operand can be register AL, AX, or EAX, depending on the size of the
port being accessed (8, 16, or 32 bits, respectively). Using the DX register as a source operand
allows I/O port addresses from 0 to 65,535 to be accessed; using a byte immediate allows I/O
port addresses 0 to 255 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and
32-bit I/O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 9, Input/Output, in the Intel Architecture Software Developer’s Manual,
Volume 1, for more information on accessing I/O ports in the I/O address space.

Operation

IF ((PE = 1) AND ((CPL > IOPL) OR (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Reads from selected I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Reads from selected I/O port *)

FI;

Flags Affected

None.

Opcode Instruction Description

E4 ib IN AL,imm8 Input byte from imm8 I/O port address into AL

E5 ib IN AX,imm8 Input byte from imm8 I/O port address into AX

E5 ib IN EAX,imm8 Input byte from imm8 I/O port address into EAX

EC IN AL,DX Input byte from I/O port in DX into AL

ED IN AX,DX Input word from I/O port in DX into AX

ED IN EAX,DX Input doubleword from I/O port in DX into EAX

ch01.bk : ch03.doc Page 211 Friday, January 17, 1997 12:59 PM

3-212

INSTRUCTION SET REFERENCE

IN—Input from Port (Continued)

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.

ch01.bk : ch03.doc Page 212 Friday, January 17, 1997 12:59 PM

3-213

INSTRUCTION SET REFERENCE

INC—Increment by 1

Description

Adds 1 to the destination operand, while preserving the state of the CF flag. The destination
operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate operand of
1 to perform an increment operation that does updates the CF flag.)

Operation

DEST ← DEST +1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1

ch01.bk : ch03.doc Page 213 Friday, January 17, 1997 12:59 PM

3-214

INSTRUCTION SET REFERENCE

INC—Increment by 1 (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 214 Friday, January 17, 1997 12:59 PM

3-215

INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String

Description

Copies the data from the I/O port specified with the source operand (second operand) to the
destination operand (first operand). The source operand is an I/O port address (from 0 to 65,535)
that is read from the DX register. The destination operand is a memory location, the address of
which is read from either the ES:EDI or the ES:DI registers (depending on the address-size
attribute of the instruction, 32 or 16, respectively). (The ES segment cannot be overridden with
a segment override prefix.) The size of the I/O port being accessed (that is, the size of the source
and destination operands) is determined by the opcode for an 8-bit I/O port or by the operand-
size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the INS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source operand must be “DX,” and the destination operand should be a symbol that indicates the
size of the I/O port and the destination address. This explicit-operands form is provided to allow
documentation; however, note that the documentation provided by this form can be misleading.
That is, the destination operand symbol must specify the correct type (size) of the operand (byte,
word, or doubleword), but it does not have to specify the correct location. The location is always
specified by the ES:(E)DI registers, which must be loaded correctly before the INS instruction
is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
INS instructions. Here also DX is assumed by the processor to be the source operand and
ES:(E)DI is assumed to be the destination operand. The size of the I/O port is specified with the
choice of mnemonic: INSB (byte), INSW (word), or INSD (doubleword).

After the byte, word, or doubleword is transfer from the I/O port to the memory location, the
(E)DI register is incremented or decremented automatically according to the setting of the DF
flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is incremented; if the DF flag
is 1, the (E)DI register is decremented.) The (E)DI register is incremented or decremented by 1
for byte operations, by 2 for word operations, or by 4 for doubleword operations.

Opcode Instruction Description

6C INS m8, DX Input byte from I/O port specified in DX into memory
location specified in ES:(E)DI

6D INS m16, DX Input word from I/O port specified in DX into memory
location specified in ES:(E)DI

6D INS m32, DX Input doubleword from I/O port specified in DX into
memory location specified in ES:(E)DI

6C INSB Input byte from I/O port specified in DX into memory
location specified with ES:(E)DI

6D INSW Input word from I/O port specified in DX into memory
location specified in ES:(E)DI

6D INSD Input doubleword from I/O port specified in DX into
memory location specified in ES:(E)DI

ch01.bk : ch03.doc Page 215 Friday, January 17, 1997 12:59 PM

3-216

INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String (Continued)

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block input
of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in this chapter for a description of the REP prefix.

These instructions are only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 9, Input/Output, in the Intel Architecture Software Developer’s Manual,
Volume 1, for more information on accessing I/O ports in the I/O address space.

Operation

IF ((PE = 1) AND ((CPL > IOPL) OR (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Reads from I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Reads from I/O port *)

FI;
IF (byte transfer)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (word transfer)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword transfer *)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;

Flags Affected

None.

ch01.bk : ch03.doc Page 216 Friday, January 17, 1997 12:59 PM

3-217

INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String (Continued)

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

If the destination is located in a nonwritable segment.

If an illegal memory operand effective address in the ES segments is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 217 Friday, January 17, 1997 12:59 PM

3-218

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure

Description

The INT n instruction generates a call to the interrupt or exception handler specified with the
destination operand (see the section titled “Interrupts and Exceptions” in Chapter 4 of the Intel
Architecture Software Developer’s Manual, Volume 1). The destination operand specifies an
interrupt vector number from 0 to 255, encoded as an 8-bit unsigned intermediate value. Each
interrupt vector number provides an index to a gate descriptor in the IDT. The first 32 interrupt
vector numbers are reserved by Intel for system use. Some of these interrupts are used for inter-
nally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an
interrupt handler. The INTO instruction is a special mnemonic for calling overflow exception
(#OF), interrupt vector number 4. The overflow interrupt checks the OF flag in the EFLAGS
register and calls the overflow interrupt handler if the OF flag is set to 1.

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the
debug exception handler. (This one byte form is valuable because it can be used to replace the
first byte of any instruction with a breakpoint, including other one byte instructions, without
over-writing other code). To further support its function as a debug breakpoint, the interrupt
generated with the CC opcode also differs from the regular software interrupts as follows:

• Interrupt redirection does not happen when in VME mode; the interrupt is handled by a
protected-mode handler.

• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at
any IOPL level.

Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special features.
Intel and Microsoft assemblers will not generate the CD03 opcode from any mnemonic, but this
opcode can be created by direct numeric code definition or by self-modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is similar to that
of a far call made with the CALL instruction. The primary difference is that with the INT n
instruction, the EFLAGS register is pushed onto the stack before the return address. (The return
address is a far address consisting of the current values of the CS and EIP registers.) Returns
from interrupt procedures are handled with the IRET instruction, which pops the EFLAGS infor-
mation and return address from the stack.

Opcode Instruction Description

CC INT 3 Interrupt 3—trap to debugger

CD ib INT imm8 Interrupt vector number specified by immediate byte

CE INTO Interrupt 4—if overflow flag is 1

ch01.bk : ch03.doc Page 218 Friday, January 17, 1997 12:59 PM

3-219

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

The interrupt vector number specifies an interrupt descriptor in the interrupt descriptor table
(IDT); that is, it provides index into the IDT. The selected interrupt descriptor in turn contains a
pointer to an interrupt or exception handler procedure. In protected mode, the IDT contains
an array of 8-byte descriptors, each of which is an interrupt gate, trap gate, or task gate. In real-
address mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and
a 2-byte instruction pointer), each of which point directly to a procedure in the selected segment.
(Note that in real-address mode, the IDT is called the interrupt vector table , and it’s pointers
are called interrupt vectors.)

The following decision table indicates which action in the lower portion of the table is taken
given the conditions in the upper portion of the table. Each Y in the lower section of the decision
table represents a procedure defined in the “Operation” section for this instruction (except #GP).

NOTES:

− Don't Care.

Y Yes, Action Taken.

Blank Action Not Taken.

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL &
NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

REAL-ADDRESS-
MODE

Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-
INTERRUPT-GATE

Y Y Y Y Y

INTER-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTRA-PRIVILEGE-
LEVEL-INTERRUPT

Y

INTERRUPT-FROM-
VIRTUAL-8086-
MODE

Y

TASK-GATE Y

#GP Y Y Y

ch01.bk : ch03.doc Page 219 Friday, January 17, 1997 12:59 PM

3-220

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the
INT n instruction. If the IOPL is less than 3, the processor generates a general protection excep-
tion (#GP); if the IOPL is 3, the processor executes a protected mode interrupt to privilege level
0. The interrupt gate's DPL must be set to three and the target CPL of the interrupt handler proce-
dure must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the
IDT. The initial base address value of the IDTR after the processor is powered up or reset is 0.

Operation

The following operational description applies not only to the INT n and INTO instructions, but
also to external interrupts and exceptions.

IF PE=0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE (* PE=1 *)

IF (VM=1 AND IOPL < 3 AND INT n)
THEN

#GP(0);
ELSE (* protected mode or virtual-8086 mode interrupt *)

GOTO PROTECTED-MODE;
FI;

FI;

REAL-ADDRESS-MODE:
IF ((DEST ∗ 4) + 3) is not within IDT limit THEN #GP; FI;
IF stack not large enough for a 6-byte return information THEN #SS; FI;
Push (EFLAGS[15:0]);
IF ← 0; (* Clear interrupt flag *)
TF ← 0; (* Clear trap flag *)
AC ← 0; (*Clear AC flag*)
Push(CS);
Push(IP);
(* No error codes are pushed *)
CS ← IDT(Descriptor (vector_number ∗ 4), selector));
EIP ← IDT(Descriptor (vector_number ∗ 4), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:
IF ((DEST ∗ 8) + 7) is not within IDT limits

OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST ∗ 8) + 2 + EXT);
(* EXT is bit 0 in error code *)

FI;

ch01.bk : ch03.doc Page 220 Friday, January 17, 1997 12:59 PM

3-221

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)
IF software interrupt (* generated by INT n, INT 3, or INTO *)

THEN
IF gate descriptor DPL < CPL

THEN #GP((vector_number ∗ 8) + 2);
(* PE=1, DPL<CPL, software interrupt *)

FI;
FI;
IF gate not present THEN #NP((vector_number ∗ 8) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE=1, trap/interrupt gate *)

FI;
END;

TASK-GATE: (* PE=1, task gate *)
Read segment selector in task gate (IDT descriptor);

IF local/global bit is set to local
OR index not within GDT limits

THEN #GP(TSS selector);
FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector);
FI;
IF TSS not present

THEN #NP(TSS selector);
FI;

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(0);
FI;
Push(error code);

FI;
IF EIP not within code segment limit

THEN #GP(0);
FI;

END;
TRAP-OR-INTERRUPT-GATE

Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null

THEN #GP(0H + EXT); (* null selector with EXT flag set *)
FI;

ch01.bk : ch03.doc Page 221 Friday, January 17, 1997 12:59 PM

3-222

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)
IF segment selector is not within its descriptor table limits

THEN #GP(selector + EXT);
FI;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment

OR code segment descriptor DPL > CPL
THEN #GP(selector + EXT);

FI;
IF trap or interrupt gate segment is not present,

THEN #NP(selector + EXT);
FI;
IF code segment is non-conforming AND DPL < CPL

THEN IF VM=0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL<CPL, VM=0 *)

ELSE (* VM=1 *)
IF code segment DPL ≠ 0 THEN #GP(new code segment selector); FI;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE=1, interrupt or trap gate, DPL<CPL, VM=1 *)

FI;
ELSE (* PE=1, interrupt or trap gate, DPL ≥ CPL *)

IF VM=1 THEN #GP(new code segment selector); FI;
IF code segment is conforming OR code segment DPL = CPL

THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;

ELSE
#GP(CodeSegmentSelector + EXT);
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)

FI;
FI;

END;

INTER-PREVILEGE-LEVEL-INTERRUPT
(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← (new code segment DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ch01.bk : ch03.doc Page 222 Friday, January 17, 1997 12:59 PM

3-223

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)
ELSE (* TSS is 16-bit *)

TSSstackAddress ← (new code segment DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL ≠ DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Read segment descriptor for stack segment in GDT or LDT;

IF stack segment DPL ≠ DPL of code segment,
OR stack segment does not indicate writable data segment,

THEN #TS(SS selector + EXT);
FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;
IF 32-bit gate

THEN
IF new stack does not have room for 24 bytes (error code pushed)

OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);

THEN #SS(segment selector + EXT);
FI;

FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
SS:ESP ← TSS(NewSS:NewESP) (* segment descriptor information also loaded *)
IF 32-bit gate

THEN
CS:EIP ← Gate(CS:EIP); (* segment descriptor information also loaded *)

ELSE (* 16-bit gate *)
CS:IP ← Gate(CS:IP); (* segment descriptor information also loaded *)

FI;
IF 32-bit gate

THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);
Push(EFLAGS);
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)

ch01.bk : ch03.doc Page 223 Friday, January 17, 1997 12:59 PM

3-224

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)
ELSE(* 16-bit gate *)

Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS(15..0));
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)

FI;
CPL ← CodeSegmentDescriptor(DPL);
CS(RPL) ← CPL;
IF interrupt gate

THEN IF ← 0 (* interrupt flag to 0 (disabled) *); FI;
TF ← 0;
VM ← 0;
RF ← 0;
NT ← 0;
END;

INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS

THEN
TSSstackAddress ← (new code segment DPL ∗ 8) + 4
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(current TSS selector); FI;
NewSS ← TSSstackAddress + 4;
NewESP ← stack address;

ELSE (* TSS is 16-bit *)
TSSstackAddress ← (new code segment DPL ∗ 4) + 2
IF (TSSstackAddress + 4) > TSS limit

THEN #TS(current TSS selector); FI;
NewESP ← TSSstackAddress;
NewSS ← TSSstackAddress + 2;

FI;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits

OR segment selector's RPL ≠ DPL of code segment,
THEN #TS(SS selector + EXT);

FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL ≠ DPL of code segment,

OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;

ch01.bk : ch03.doc Page 224 Friday, January 17, 1997 12:59 PM

3-225

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)
IF 32-bit gate

THEN
IF new stack does not have room for 40 bytes (error code pushed)

OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT);

FI;
ELSE (* 16-bit gate *)

IF new stack does not have room for 20 bytes (error code pushed)
OR 18 bytes (no error code pushed);

THEN #SS(segment selector + EXT);
FI;

FI;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
tempEFLAGS ← EFLAGS;
VM ← 0;
TF ← 0;
RF ← 0;
IF service through interrupt gate THEN IF ← 0; FI;
TempSS ← SS;
TempESP ← ESP;
SS:ESP ← TSS(SS0:ESP0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ← 0; (*segment registers nullified, invalid in protected mode *)
FS ← 0;
DS ← 0;
ES ← 0;
CS ← Gate(CS);
IF OperandSize=32

THEN
EIP ← Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Starts execution of new routine in Protected Mode *)

END;

ch01.bk : ch03.doc Page 225 Friday, January 17, 1997 12:59 PM

3-226

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)
INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate

THEN
IF current stack does not have room for 16 bytes (error code pushed)

OR 12 bytes (no error code pushed); THEN #SS(0);
FI;

ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)

OR 6 bytes (no error code pushed); THEN #SS(0);
FI;

IF instruction pointer not within code segment limit THEN #GP(0); FI;
IF 32-bit gate

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ← Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ← Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)

FI;
CS(RPL) ← CPL;
IF interrupt gate

THEN
IF ← 0; FI;
TF ← 0;
NT ← 0;
VM ← 0;
RF ← 0;

FI;
END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be
cleared, depending on the mode of operation of the processor when the INT instruction is
executed (see the “Operation” section). If the interrupt uses a task gate, any flags may be set or
cleared, controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions

#GP(0) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate
is beyond the code segment limits.

ch01.bk : ch03.doc Page 226 Friday, January 17, 1997 12:59 PM

3-227

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n, INT 3, or INTO instruction and
the DPL of an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment and no stack switch occurs.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, or stack segment pointer
exceeds the bounds of the new stack segment when a stack switch occurs.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor pointed to by the stack segment
selector in the TSS is not equal to the DPL of the code segment descriptor
for the interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the interrupt vector number is outside the IDT limits.

ch01.bk : ch03.doc Page 227 Friday, January 17, 1997 12:59 PM

3-228

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment.

Virtual-8086 Mode Exceptions

#GP(0) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the
DPL of the interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate
is beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector
index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n instruction and the DPL of an
interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, stack segment pointer, or
data segments exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS’s stack segment is not
equal to the DPL of the code segment descriptor for the interrupt or trap
gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

ch01.bk : ch03.doc Page 228 Friday, January 17, 1997 12:59 PM

3-229

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

#PF(fault-code) If a page fault occurs.

#BP If the INT 3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.

ch01.bk : ch03.doc Page 229 Friday, January 17, 1997 12:59 PM

3-230

INSTRUCTION SET REFERENCE

INVD—Invalidate Internal Caches

Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that
directs external caches to also flush themselves. Data held in internal caches is not written back
to main memory.

After executing this instruction, the processor does not wait for the external caches to complete
their flushing operation before proceeding with instruction execution. It is the responsibility of
hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction.

Use this instruction with care. Data cached internally and not written back to main memory will
be lost. Unless there is a specific requirement or benefit to flushing caches without writing back
modified cache lines (for example, testing or fault recovery where cache coherency with main
memory is not a concern), software should use the WBINVD instruction.

Intel Architecture Compatibility

The INVD instruction is implementation dependent, and its function may be implemented
differently on future Intel Architecture processors. This instruction is not supported on Intel
Architecture processors earlier than the Intel486 processor.

Operation

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions

None.

Opcode Instruction Description

0F 08 INVD Flush internal caches; initiate flushing of external caches.

ch01.bk : ch03.doc Page 230 Friday, January 17, 1997 12:59 PM

3-231

INSTRUCTION SET REFERENCE

INVD—Invalidate Internal Caches (Continued)

Virtual-8086 Mode Exceptions

#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

ch01.bk : ch03.doc Page 231 Friday, January 17, 1997 12:59 PM

3-232

INSTRUCTION SET REFERENCE

INVLPG—Invalidate TLB Entry

Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source
operand. The source operand is a memory address. The processor determines the page that
contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction.

The INVLPG instruction normally flushes the TLB entry only for the specified page; however,
in some cases, it flushes the entire TLB. See “MOV—Move to/from Control Registers” in this
chapter for further information on operations that flush the TLB.

Intel Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be implemented
differently on future Intel Architecture processors. This instruction is not supported on Intel
Architecture processors earlier than the Intel486 processor.

Operation

Flush(RelevantTLBEntries);
Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

Real-Address Mode Exceptions

#UD Operand is a register.

Virtual-8086 Mode Exceptions

#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

Opcode Instruction Description

0F 01/7 INVLPG m Invalidate TLB Entry for page that contains m

ch01.bk : ch03.doc Page 232 Friday, January 17, 1997 12:59 PM

3-233

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return

Description

Returns program control from an exception or interrupt handler to a program or procedure that
was interrupted by an exception, an external interrupt, or a software-generated interrupt. These
instructions are also used to perform a return from a nested task. (A nested task is created when
a CALL instruction is used to initiate a task switch or when an interrupt or exception causes a
task switch to an interrupt or exception handler.) See the section titled “Task Linking” in Chapter
6 of the Intel Architecture Software Developer’s Manual, Volume 1.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return
double) is intended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or
procedure. During this operation, the processor pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers,
respectively, and then resumes execution of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested
task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on
the current stack. Depending on the setting of these flags, the processor performs the following
types of interrupt returns:

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the
interrupt procedure, without a task switch. The code segment being returned to must be equally
or less privileged than the interrupt handler routine (as indicated by the RPL field of the code
segment selector popped from the stack). As with a real-address mode interrupt return, the IRET
instruction pops the return instruction pointer, return code segment selector, and EFLAGS image
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution
of the interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming program execu-
tion. If the return is to virtual-8086 mode, the processor also pops the data segment registers
from the stack.

Opcode Instruction Description

CF IRET Interrupt return (16-bit operand size)

CF IRETD Interrupt return (32-bit operand size)

ch01.bk : ch03.doc Page 233 Friday, January 17, 1997 12:59 PM

3-234

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a
task called with a CALL instruction, an interrupt, or an exception) back to the calling or inter-
rupted task. The updated state of the task executing the IRET instruction is saved in its TSS. If
the task is reentered later, the code that follows the IRET instruction is executed.

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE:;
ELSE

GOTO PROTECTED-MODE;
FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS; FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE=1, VM=1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN;(*PE=1, VM=0, NT=1 *)

FI;
IF OperandSize=32

THEN
IF top 12 bytes of stack not within stack limits

ch01.bk : ch03.doc Page 234 Friday, January 17, 1997 12:59 PM

3-235

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)
THEN #SS(0)

FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0);
FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 AND CPL=0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE=1, VM=1 in EFLAGS image *)

ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE=1, VM=0 in EFLAGS image *)

FI;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
EFLAGS ← Pop();
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS is not modified by pop *)

FI;
ELSE

#GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)
FI;

ch01.bk : ch03.doc Page 235 Friday, January 17, 1997 12:59 PM

3-236

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)
END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)

IF top 24 bytes of stack are not within stack segment limits
THEN #SS(0);

FI;
IF instruction pointer not within code segment limits

THEN #GP(0);
FI;
CS ← tempCS;
EIP ← tempEIP;
EFLAGS ← tempEFLAGS
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* pop 2 words; throw away high-order word *)
DS ← Pop(); (* pop 2 words; throw away high-order word *)
FS ← Pop(); (* pop 2 words; throw away high-order word *)
GS ← Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE=1, VM=1, NT=1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local

OR index not within GDT limits
THEN #GP(TSS selector);

FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #GP(TSS selector);
FI;
IF TSS not present

THEN #NP(TSS selector);
FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0);
FI;

END;

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

ch01.bk : ch03.doc Page 236 Friday, January 17, 1997 12:59 PM

3-237

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)
THEN GP(selector; FI;

Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
IF return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); FI;
EIP ← tempEIP;
CS ← tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID) ← tempEFLAGS;

FI;
IF CPL ≤ IOPL

THEN
EFLAGS(IF) ← tempEFLAGS;

FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS;
FI;

FI;
END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:
IF OperandSize=32

THEN
IF top 8 bytes on stack are not within limits THEN #SS(0); FI;

ELSE (* OperandSize=16 *)
IF top 4 bytes on stack are not within limits THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

ch01.bk : ch03.doc Page 237 Friday, January 17, 1997 12:59 PM

3-238

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)
THEN #GP(SSselector); FI;

Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector

IF stack segment selector RPL ≠ RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;
OR stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector);
FI;
IF stack segment is not present THEN #SS(SS selector); FI;

IF tempEIP is not within code segment limit THEN #GP(0); FI;
EIP ← tempEIP;
CS ← tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize=32

THEN
EFLAGS(RF, AC, ID) ← tempEFLAGS;

FI;
IF CPL ≤ IOPL

THEN
EFLAGS(IF) ← tempEFLAGS;

FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize=32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS;
FI;

FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)

THEN (* segment register invalid *)
SegmentSelector ← 0; (* null segment selector *)

FI;
OD;

END:

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode
of operation of the processor. If performing a return from a nested task to a previous task, the
EFLAGS register will be modified according to the EFLAGS image stored in the previous task’s
TSS.

ch01.bk : ch03.doc Page 238 Friday, January 17, 1997 12:59 PM

3-239

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 239 Friday, January 17, 1997 12:59 PM

3-240

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is
enabled.

ch01.bk : ch03.doc Page 240 Friday, January 17, 1997 12:59 PM

3-241

INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met

Opcode Instruction Description

77 cb JA rel8 Jump short if above (CF=0 and ZF=0)

73 cb JAE rel8 Jump short if above or equal (CF=0)

72 cb JB rel8 Jump short if below (CF=1)

76 cb JBE rel8 Jump short if below or equal (CF=1 or ZF=1)

72 cb JC rel8 Jump short if carry (CF=1)

E3 cb JCXZ rel8 Jump short if CX register is 0

E3 cb JECXZ rel8 Jump short if ECX register is 0

74 cb JE rel8 Jump short if equal (ZF=1)

7F cb JG rel8 Jump short if greater (ZF=0 and SF=OF)

7D cb JGE rel8 Jump short if greater or equal (SF=OF)

7C cb JL rel8 Jump short if less (SF<>OF)

7E cb JLE rel8 Jump short if less or equal (ZF=1 or SF<>OF)

76 cb JNA rel8 Jump short if not above (CF=1 or ZF=1)

72 cb JNAE rel8 Jump short if not above or equal (CF=1)

73 cb JNB rel8 Jump short if not below (CF=0)

77 cb JNBE rel8 Jump short if not below or equal (CF=0 and ZF=0)

73 cb JNC rel8 Jump short if not carry (CF=0)

75 cb JNE rel8 Jump short if not equal (ZF=0)

7E cb JNG rel8 Jump short if not greater (ZF=1 or SF<>OF)

7C cb JNGE rel8 Jump short if not greater or equal (SF<>OF)

7D cb JNL rel8 Jump short if not less (SF=OF)

7F cb JNLE rel8 Jump short if not less or equal (ZF=0 and SF=OF)

71 cb JNO rel8 Jump short if not overflow (OF=0)

7B cb JNP rel8 Jump short if not parity (PF=0)

79 cb JNS rel8 Jump short if not sign (SF=0)

75 cb JNZ rel8 Jump short if not zero (ZF=0)

70 cb JO rel8 Jump short if overflow (OF=1)

7A cb JP rel8 Jump short if parity (PF=1)

7A cb JPE rel8 Jump short if parity even (PF=1)

7B cb JPO rel8 Jump short if parity odd (PF=0)

78 cb JS rel8 Jump short if sign (SF=1)

74 cb JZ rel8 Jump short if zero (ZF = 1)

0F 87 cw/cd JA rel16/32 Jump near if above (CF=0 and ZF=0)

0F 83 cw/cd JAE rel16/32 Jump near if above or equal (CF=0)

0F 82 cw/cd JB rel16/32 Jump near if below (CF=1)

0F 86 cw/cd JBE rel16/32 Jump near if below or equal (CF=1 or ZF=1)

0F 82 cw/cd JC rel16/32 Jump near if carry (CF=1)

0F 84 cw/cd JE rel16/32 Jump near if equal (ZF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

0F 8F cw/cd JG rel16/32 Jump near if greater (ZF=0 and SF=OF)

ch01.bk : ch03.doc Page 241 Friday, January 17, 1997 12:59 PM

3-242

INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met (Continued)

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and
ZF) and, if the flags are in the specified state (condition), performs a jump to the target instruc-
tion specified by the destination operand. A condition code (cc) is associated with each instruc-
tion to indicate the condition being tested for. If the condition is not satisfied, the jump is not
performed and execution continues with the instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). A relative offset (rel8, rel16, or rel32) is
generally specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit or 32-bit immediate value, which is added to the instruction pointer. Instruction
coding is most efficient for offsets of –128 to +127. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared to 0s, resulting in a maximum instruction pointer size
of 16 bits.

Opcode Instruction Description

0F 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=OF)

0F 8C cw/cd JL rel16/32 Jump near if less (SF<>OF)

0F 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)

0F 86 cw/cd JNA rel16/32 Jump near if not above (CF=1 or ZF=1)

0F 82 cw/cd JNAE rel16/32 Jump near if not above or equal (CF=1)

0F 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)

0F 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)

0F 83 cw/cd JNC rel16/32 Jump near if not carry (CF=0)

0F 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0)

0F 8E cw/cd JNG rel16/32 Jump near if not greater (ZF=1 or SF<>OF)

0F 8C cw/cd JNGE rel16/32 Jump near if not greater or equal (SF<>OF)

0F 8D cw/cd JNL rel16/32 Jump near if not less (SF=OF)

0F 8F cw/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=OF)

0F 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)

0F 8B cw/cd JNP rel16/32 Jump near if not parity (PF=0)

0F 89 cw/cd JNS rel16/32 Jump near if not sign (SF=0)

0F 85 cw/cd JNZ rel16/32 Jump near if not zero (ZF=0)

0F 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)

0F 8A cw/cd JP rel16/32 Jump near if parity (PF=1)

0F 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)

0F 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0)

0F 88 cw/cd JS rel16/32 Jump near if sign (SF=1)

0F 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)

ch01.bk : ch03.doc Page 242 Friday, January 17, 1997 12:59 PM

3-243

INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met (Continued)

The conditions for each Jcc mnemonic are given in the “Description” column of the table on the
preceding page. The terms “less” and “greater” are used for comparisons of signed integers and
the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and
the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When the target
for the conditional jump is in a different segment, use the opposite condition from the condition
being tested for the Jcc instruction, and then access the target with an unconditional far jump
(JMP instruction) to the other segment. For example, the following conditional far jump is
illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:

JNZ BEYOND;

JMP FARLABEL;

BEYOND:

The JECXZ and JCXZ instructions differs from the other Jcc instructions because they do not
check the status flags. Instead they check the contents of the ECX and CX registers, respectively,
for 0. Either the CX or ECX register is chosen according to the address-size attribute. These
instructions are useful at the beginning of a conditional loop that terminates with a conditional
loop instruction (such as LOOPNE). They prevent entering the loop when the ECX or CX
register is equal to 0, which would cause the loop to execute 232 or 64K times, respectively,
instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines, regardless
of jump address or cacheability.

Operation

IF condition
THEN

 EIP ← EIP + SignExtend(DEST);
IF OperandSize = 16

THEN
EIP ← EIP AND 0000FFFFH;

FI;
FI;

Flags Affected

None.

ch01.bk : ch03.doc Page 243 Friday, January 17, 1997 12:59 PM

3-244

INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met (Continued)

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if 32-address size override prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if 32-address size override prefix is used.

ch01.bk : ch03.doc Page 244 Friday, January 17, 1997 12:59 PM

3-245

INSTRUCTION SET REFERENCE

JMP—Jump

Description

Transfers program control to a different point in the instruction stream without recording return
information. The destination (target) operand specifies the address of the instruction being
jumped to. This operand can be an immediate value, a general-purpose register, or a memory
location.

This instruction can be used to execute four different types of jumps:

• Near jump—A jump to an instruction within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment jump.

• Short jump—A near jump where the jump range is limited to –128 to +127 from the
current EIP value.

• Far jump—A jump to an instruction located in a different segment than the current code
segment but at the same privilege level, sometimes referred to as an intersegment jump.

• Task switch—A jump to an instruction located in a different task.

A task switch can only be executed in protected mode (see Chapter 6, Task Management, in the
Intel Architecture Software Developer’s Manual, Volume 3, for information on performing
task switches with the JMP instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the address
(within the current code segment) that is specified with the target operand. The target operand
specifies either an absolute offset (that is an offset from the base of the code segment) or a rela-
tive offset (a signed displacement relative to the current value of the instruction pointer in the
EIP register). A near jump to a relative offset of 8-bits (rel8) is referred to as a short jump. The
CS register is not changed on near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory location
(r/m16 or r/m32). The operand-size attribute determines the size of the target operand (16 or 32
bits). Absolute offsets are loaded directly into the EIP register. If the operand-size attribute is 16,
the upper two bytes of the EIP register are cleared to 0s, resulting in a maximum instruction
pointer size of 16 bits.

Opcode Instruction Description

EB cb JMP rel8 Jump short, relative, displacement relative to next instruction

E9 cw JMP rel16 Jump near, relative, displacement relative to next instruction

E9 cd JMP rel32 Jump near, relative, displacement relative to next instruction

FF /4 JMP r/m16 Jump near, absolute indirect, address given in r/m16

FF /4 JMP r/m32 Jump near, absolute indirect, address given in r/m32

EA cd JMP ptr16:16 Jump far, absolute, address given in operand

EA cp JMP ptr16:32 Jump far, absolute, address given in operand

FF /5 JMP m16:16 Jump far, absolute indirect, address given in m16:16

FF /5 JMP m16:32 Jump far, absolute indirect, address given in m16:32

ch01.bk : ch03.doc Page 245 Friday, January 17, 1997 12:59 PM

3-246

INSTRUCTION SET REFERENCE

JMP—Jump (Continued)

A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code, but at
the machine code level, it is encoded as a signed 8-, 16-, or 32-bit immediate value. This value
is added to the value in the EIP register. (Here, the EIP register contains the address of the
instruction following the JMP instruction). When using relative offsets, the opcode (for short vs.
near jumps) and the operand-size attribute (for near relative jumps) determines the size of the
target operand (8, 16, or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-
address or virtual-8086 mode, the processor jumps to the code segment and offset specified with
the target operand. Here the target operand specifies an absolute far address either directly with
a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With
the pointer method, the segment and address of the called procedure is encoded in the instruc-
tion, using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate.
With the indirect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The far address is loaded
directly into the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of
the EIP register are cleared to 0s.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the JMP
instruction can be used to perform the following three types of far jumps:

• A far jump to a conforming or non-conforming code segment.

• A far jump through a call gate.

• A task switch.

(The JMP instruction cannot be used to perform interprivilege level far jumps.)

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the same privi-
lege level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far jump to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from the instruction
is loaded into the EIP register. Note that a call gate (described in the next paragraph) can also be
used to perform far call to a code segment at the same privilege level. Using this mechanism
provides an extra level of indirection and is the preferred method of making jumps between 16-
bit and 32-bit code segments.

ch01.bk : ch03.doc Page 246 Friday, January 17, 1997 12:59 PM

3-247

INSTRUCTION SET REFERENCE

JMP—Jump (Continued)

When executing a far jump through a call gate, the segment selector specified by the target
operand identifies the call gate. (The offset part of the target operand is ignored.) The processor
then jumps to the code segment specified in the call gate descriptor and begins executing the
instruction at the offset specified in the call gate. No stack switch occurs. Here again, the target
operand can specify the far address of the call gate either directly with a pointer (ptr16:16 or
ptr16:32) or indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction, is somewhat similar to executing a jump
through a call gate. Here the target operand specifies the segment selector of the task gate for the
task being switched to (and the offset part of the target operand is ignored). The task gate in turn
points to the TSS for the task, which contains the segment selectors for the task’s code and stack
segments. The TSS also contains the EIP value for the next instruction that was to be executed
before the task was suspended. This instruction pointer value is loaded into EIP register so that
the task begins executing again at this next instruction.

The JMP instruction can also specify the segment selector of the TSS directly, which eliminates
the indirection of the task gate. See Chapter 6, Task Management, in Intel Architecture Software
Developer’s Manual, Volume 3, the for detailed information on the mechanics of a task switch.

Note that when you execute at task switch with a JMP instruction, the nested task flag (NT) is
not set in the EFLAGS register and the new TSS’s previous task link field is not loaded with the
old task’s TSS selector. A return to the previous task can thus not be carried out by executing the
IRET instruction. Switching tasks with the JMP instruction differs in this regard from the CALL
instruction which does set the NT flag and save the previous task link information, allowing a
return to the calling task with an IRET instruction.

Operation

IF near jump
THEN IF near relative jump

THEN
tempEIP ← EIP + DEST; (* EIP is instruction following JMP instruction*)

ELSE (* near absolute jump *)
tempEIP ← DEST;

FI;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← tempEIP;

ELSE (* OperandSize=16 *)
EIP ← tempEIP AND 0000FFFFH;

FI;
FI:

IF far jump AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real-address or virtual-8086 mode *)
THEN

tempEIP ← DEST(offset); (* DEST is ptr16:32 or [m16:32] *)

ch01.bk : ch03.doc Page 247 Friday, January 17, 1997 12:59 PM

3-248

INSTRUCTION SET REFERENCE

JMP—Jump (Continued)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS ← DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32

THEN
EIP ← tempEIP; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)
EIP ← tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

FI;
FI;
IF far jump AND (PE = 1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)

THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal

OR segment selector in target operand null
THEN #GP(0);

FI;
IF segment selector index not within descriptor table limits

THEN #GP(new selector);
FI;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,

task gate, or TSS THEN #GP(segment selector); FI;
Depending on type and access rights

GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;

ELSE
#GP(segment selector);

FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
tempEIP ← DEST(offset);
IF OperandSize=16

THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS ← DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL ≠ CPL) THEN #GP(code segment selector); FI;

ch01.bk : ch03.doc Page 248 Friday, January 17, 1997 12:59 PM

3-249

INSTRUCTION SET REFERENCE

JMP—Jump (Continued)
IF segment not present THEN #NP(segment selector); FI;
IF instruction pointer outside code segment limit THEN #GP(0); FI;
tempEIP ← DEST(offset);
IF OperandSize=16

THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS ← DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

CALL-GATE:
IF call gate DPL < CPL

OR call gate DPL < call gate segment-selector RPL
THEN #GP(call gate selector); FI;

IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment

OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL ≠ CPL

THEN #GP(code segment selector); FI;
IF code segment is not present THEN #NP(code-segment selector); FI;
IF instruction pointer is not within code-segment limit THEN #GP(0); FI;
tempEIP ← DEST(offset);
IF GateSize=16

THEN tempEIP ← tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS ← DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ← CPL
EIP ← tempEIP;

END;

TASK-GATE:
IF task gate DPL < CPL

OR task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); FI;

IF task gate not present THEN #NP(gate selector); FI;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local

OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy

ch01.bk : ch03.doc Page 249 Friday, January 17, 1997 12:59 PM

3-250

INSTRUCTION SET REFERENCE

JMP—Jump (Continued)
THEN #GP(TSS selector); FI;

IF TSS not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL

OR TSS DPL < TSS segment-selector RPL
OR TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;
IF TSS is not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS
IF EIP not within code segment limit THEN #GP(0); FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions

#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment
limits.

If the segment selector in the destination operand, call gate, task gate, or
TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment selector
is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

ch01.bk : ch03.doc Page 250 Friday, January 17, 1997 12:59 PM

3-251

INSTRUCTION SET REFERENCE

JMP—Jump (Continued)

If the segment descriptor for selector in a call gate does not indicate it is a
code segment.

If the segment descriptor for the segment selector in a task gate does not
indicate available TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made. (Only occurs when fetching target from memory.)

ch01.bk : ch03.doc Page 251 Friday, January 17, 1997 12:59 PM

3-252

INSTRUCTION SET REFERENCE

LAHF—Load Status Flags into AH Register

Description

Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF, and CF)
to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in the AH register
as shown in the “Operation” section below.

Operation

AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);

Flags Affected

None (that is, the state of the flags in the EFLAGS register are not affected).

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

9F LAHF Load: AH = EFLAGS(SF:ZF:0:AF:0:PF:1:CF)

ch01.bk : ch03.doc Page 252 Friday, January 17, 1997 12:59 PM

3-253

INSTRUCTION SET REFERENCE

LAR—Load Access Rights Byte

Description

Loads the access rights from the segment descriptor specified by the second operand (source
operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS
register. The source operand (which can be a register or a memory location) contains the
segment selector for the segment descriptor being accessed. The destination operand is a
general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can perform additional checks on the access rights information.

When the operand size is 32 bits, the access rights for a segment descriptor include the type and
DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in the second double-
word (bytes 4 through 7) of the segment descriptor. The doubleword is masked by 00FXFF00H
before it is loaded into the destination operand. When the operand size is 16 bits, the access
rights include the type and DPL fields. Here, the two lower-order bytes of the doubleword are
masked by FF00H before being loaded into the destination operand.

This instruction performs the following checks before it loads the access rights in the destination
register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LAR instruction. The valid system
segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, it checks that the specified segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment selector are
less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no access rights are loaded in the destination operand.

The LAR instruction can only be executed in protected mode.

Opcode Instruction Description

0F 02 /r LAR r16,r/m16 r16 ← r/m16 masked by FF00H

0F 02 /r LAR r32,r/m32 r32 ← r/m32 masked by 00FxFF00H

ch01.bk : ch03.doc Page 253 Friday, January 17, 1997 12:59 PM

3-254

INSTRUCTION SET REFERENCE

LAR—Load Access Rights Byte (Continued)

Operation
IF SRC(Offset) > descriptor table limit THEN ZF ← 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF ← 0

ELSE
IF OperandSize = 32

THEN
DEST ← [SRC] AND 00FxFF00H;

ELSE (*OperandSize = 16*)
DEST ← [SRC] AND FF00H;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is cleared to 0.

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate Yes

5 16-bit/32-bit task gate Yes

6 16-bit interrupt gate No

7 16-bit trap gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate Yes

D Reserved No

E 32-bit interrupt gate No

F 32-bit trap gate No

ch01.bk : ch03.doc Page 254 Friday, January 17, 1997 12:59 PM

3-255

INSTRUCTION SET REFERENCE

LAR—Load Access Rights Byte (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real-Address Mode Exceptions

#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The LAR instruction cannot be executed in virtual-8086 mode.

ch01.bk : ch03.doc Page 255 Friday, January 17, 1997 12:59 PM

3-256

INSTRUCTION SET REFERENCE

LDS/LES/LFS/LGS/LSS—Load Far Pointer

Description

Loads a far pointer (segment selector and offset) from the second operand (source operand) into
a segment register and the first operand (destination operand). The source operand specifies a
48-bit or a 32-bit pointer in memory depending on the current setting of the operand-size
attribute (32 bits or 16 bits, respectively). The instruction opcode and the destination operand
specify a segment register/general-purpose register pair. The 16-bit segment selector from the
source operand is loaded into the segment register specified with the opcode (DS, SS, ES, FS,
or GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination
operand.

If one of these instructions is executed in protected mode, additional information from the
segment descriptor pointed to by the segment selector in the source operand is loaded in the
hidden part of the selected segment register.

Also in protected mode, a null selector (values 0000 through 0003) can be loaded into DS, ES,
FS, or GS registers without causing a protection exception. (Any subsequent reference to a
segment whose corresponding segment register is loaded with a null selector, causes a general-
protection exception (#GP) and no memory reference to the segment occurs.)

Operation

IF ProtectedMode
THEN IF SS is loaded

THEN IF SegementSelector = null
THEN #GP(0);

FI;
ELSE IF Segment selector index is not within descriptor table limits
OR Segment selector RPL ≠ CPL
OR Access rights indicate nonwritable data segment
OR DPL ≠ CPL

Opcode Instruction Description

C5 /r LDS r16,m16:16 Load DS:r16 with far pointer from memory

C5 /r LDS r32,m16:32 Load DS:r32 with far pointer from memory

0F B2 /r LSS r16,m16:16 Load SS:r16 with far pointer from memory

0F B2 /r LSS r32,m16:32 Load SS:r32 with far pointer from memory

C4 /r LES r16,m16:16 Load ES:r16 with far pointer from memory

C4 /r LES r32,m16:32 Load ES:r32 with far pointer from memory

0F B4 /r LFS r16,m16:16 Load FS:r16 with far pointer from memory

0F B4 /r LFS r32,m16:32 Load FS:r32 with far pointer from memory

0F B5 /r LGS r16,m16:16 Load GS:r16 with far pointer from memory

0F B5 /r LGS r32,m16:32 Load GS:r32 with far pointer from memory

ch01.bk : ch03.doc Page 256 Friday, January 17, 1997 12:59 PM

3-257

INSTRUCTION SET REFERENCE

LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)
THEN #GP(selector);

FI;
ELSE IF Segment marked not present

THEN #SS(selector);
FI;
SS ← SegmentSelector(SRC);
SS ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector
THEN IF Segment selector index is not within descriptor table limits
OR Access rights indicate segment neither data nor readable code segment
OR (Segment is data or nonconforming-code segment

AND both RPL and CPL > DPL)
THEN #GP(selector);

FI;
ELSE IF Segment marked not present

THEN #NP(selector);
FI;
SegmentRegister ← SegmentSelector(SRC) AND RPL;
SegmentRegister ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS or GS is loaded with a null selector:
SegmentRegister ← NullSelector;
SegmentRegister(DescriptorValidBit) ← 0; (*hidden flag; not accessible by software*)

FI;
FI;
IF (Real-Address or Virtual-8086 Mode)

THEN
SegmentRegister ← SegmentSelector(SRC);

FI;
DEST ← Offset(SRC);

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

ch01.bk : ch03.doc Page 257 Friday, January 17, 1997 12:59 PM

3-258

INSTRUCTION SET REFERENCE

LDS/LES/LFS/LGS/LSS—Load Far Pointer (Continued)

#GP(selector) If the SS register is being loaded and any of the following is true: the
segment selector index is not within the descriptor table limits, the
segment selector RPL is not equal to CPL, the segment is a nonwritable
data segment, or DPL is not equal to CPL.

If the DS, ES, FS, or GS register is being loaded with a non-null segment
selector and any of the following is true: the segment selector index is not
within descriptor table limits, the segment is neither a data nor a readable
code segment, or the segment is a data or nonconforming-code segment
and both RPL and CPL are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment is marked not present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment
selector and the segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 258 Friday, January 17, 1997 12:59 PM

3-259

INSTRUCTION SET REFERENCE

LEA—Load Effective Address

Description

Computes the effective address of the second operand (the source operand) and stores it in the
first operand (destination operand). The source operand is a memory address (offset part) spec-
ified with one of the processors addressing modes; the destination operand is a general-purpose
register. The address-size and operand-size attributes affect the action performed by this instruc-
tion, as shown in the following table. The operand-size attribute of the instruction is determined
by the chosen register; the address-size attribute is determined by the attribute of the code
segment.

Different assemblers may use different algorithms based on the size attribute and symbolic refer-
ence of the source operand.

Operation

IF OperandSize = 16 AND AddressSize = 16
THEN

DEST ← EffectiveAddress(SRC); (* 16-bit address *)
ELSE IF OperandSize = 16 AND AddressSize = 32

THEN
temp ← EffectiveAddress(SRC); (* 32-bit address *)
DEST ← temp[0..15]; (* 16-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 16
THEN

temp ← EffectiveAddress(SRC); (* 16-bit address *)
DEST ← ZeroExtend(temp); (* 32-bit address *)

ELSE IF OperandSize = 32 AND AddressSize = 32
THEN

Opcode Instruction Description

8D /r LEA r16,m Store effective address for m in register r16

8D /r LEA r32,m Store effective address for m in register r32

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested
16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the
address are stored in the requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested
32-bit register destination.

ch01.bk : ch03.doc Page 259 Friday, January 17, 1997 12:59 PM

3-260

INSTRUCTION SET REFERENCE

LEA—Load Effective Address (Continued)

DEST ← EffectiveAddress(SRC); (* 32-bit address *)
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.

Real-Address Mode Exceptions

#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions

#UD If source operand is not a memory location.

ch01.bk : ch03.doc Page 260 Friday, January 17, 1997 12:59 PM

3-261

INSTRUCTION SET REFERENCE

LEAVE—High Level Procedure Exit

Description

Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruction copies
the frame pointer (in the EBP register) into the stack pointer register (ESP), which releases the
stack space allocated to the stack frame. The old frame pointer (the frame pointer for the calling
procedure that was saved by the ENTER instruction) is then popped from the stack into the EBP
register, restoring the calling procedure’s stack frame.

A RET instruction is commonly executed following a LEAVE instruction to return program
control to the calling procedure.

See “Procedure Calls for Block-Structured Languages” in Chapter 6 of the Intel Architecture
Software Developer’s Manual, Volume 1, for detailed information on the use of the ENTER and
LEAVE instructions.

Operation

IF StackAddressSize = 32
THEN

ESP ← EBP;
ELSE (* StackAddressSize = 16*)

SP ← BP;
FI;
IF OperandSize = 32

THEN
EBP ← Pop();

ELSE (* OperandSize = 16*)
BP ← Pop();

FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the EBP register points to a location that is not within the limits of the
current stack segment.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

C9 LEAVE Set SP to BP, then pop BP

C9 LEAVE Set ESP to EBP, then pop EBP

ch01.bk : ch03.doc Page 261 Friday, January 17, 1997 12:59 PM

3-262

INSTRUCTION SET REFERENCE

LEAVE—High Level Procedure Exit (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If the EBP register points to a location outside of the effective address
space from 0 to 0FFFFH.

Virtual-8086 Mode Exceptions

#GP(0) If the EBP register points to a location outside of the effective address
space from 0 to 0FFFFH.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 262 Friday, January 17, 1997 12:59 PM

3-263

INSTRUCTION SET REFERENCE

LES—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.

ch01.bk : ch03.doc Page 263 Friday, January 17, 1997 12:59 PM

3-264

INSTRUCTION SET REFERENCE

LFS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.

ch01.bk : ch03.doc Page 264 Friday, January 17, 1997 12:59 PM

3-265

INSTRUCTION SET REFERENCE

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Description

Loads the values in the source operand into the global descriptor table register (GDTR) or the
interrupt descriptor table register (IDTR). The source operand specifies a 6-byte memory loca-
tion that contains the base address (a linear address) and the limit (size of table in bytes) of the
global descriptor table (GDT) or the interrupt descriptor table (IDT). If operand-size attribute is
32 bits, a 16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-bit base address (upper
4 bytes of the data operand) are loaded into the register. If the operand-size attribute is 16
bits, a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are
loaded. Here, the high-order byte of the operand is not used and the high-order byte of the base
address in the GDTR or IDTR is filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are not used
in application programs. They are the only instructions that directly load a linear address (that
is, not a segment-relative address) and a limit in protected mode. They are commonly executed
in real-address mode to allow processor initialization prior to switching to protected mode.

See “SGDT/SIDT—Store Global/Interrupt Descriptor Table Register” in this chapter for infor-
mation on storing the contents of the GDTR and IDTR.

Operation

IF instruction is LIDT
THEN

IF OperandSize = 16
THEN

IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
IDTR(Limit) ← SRC[0:15];
IDTR(Base) ← SRC[16:47];

FI;
ELSE (* instruction is LGDT *)

IF OperandSize = 16
THEN

GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47] AND 00FFFFFFH;

ELSE (* 32-bit Operand Size *)
GDTR(Limit) ← SRC[0:15];
GDTR(Base) ← SRC[16:47];

FI; FI;

Opcode Instruction Description

0F 01 /2 LGDT m16&32 Load m into GDTR

0F 01 /3 LIDT m16&32 Load m into IDTR

ch01.bk : ch03.doc Page 265 Friday, January 17, 1997 12:59 PM

3-266

INSTRUCTION SET REFERENCE

LGDT/LIDT—Load Global/Interrupt Descriptor Table Register
(Continued)

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

ch01.bk : ch03.doc Page 266 Friday, January 17, 1997 12:59 PM

3-267

INSTRUCTION SET REFERENCE

LGS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.

ch01.bk : ch03.doc Page 267 Friday, January 17, 1997 12:59 PM

3-268

INSTRUCTION SET REFERENCE

LLDT—Load Local Descriptor Table Register

Description

Loads the source operand into the segment selector field of the local descriptor table register
(LDTR). The source operand (a general-purpose register or a memory location) contains a
segment selector that points to a local descriptor table (LDT). After the segment selector is
loaded in the LDTR, the processor uses to segment selector to locate the segment descriptor for
the LDT in the global descriptor table (GDT). It then loads the segment limit and base address
for the LDT from the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS,
GS, and CS are not affected by this instruction, nor is the LDTR field in the task state segment
(TSS) for the current task.

If the source operand is 0, the LDTR is marked invalid and all references to descriptors in the
LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general protection excep-
tion (#GP).

The operand-size attribute has no effect on this instruction.

The LLDT instruction is provided for use in operating-system software; it should not be used in
application programs. Also, this instruction can only be executed in protected mode.

Operation
IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ LDT THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
LDTR(SegmentSelector) ← SRC;
LDTR(SegmentDescriptor) ← GDTSegmentDescriptor;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or
if the entry in the GDT is not a Local Descriptor Table.

Opcode Instruction Description

0F 00 /2 LLDT r/m16 Load segment selector r/m16 into LDTR

ch01.bk : ch03.doc Page 268 Friday, January 17, 1997 12:59 PM

3-269

INSTRUCTION SET REFERENCE

LLDT—Load Local Descriptor Table Register (Continued)

Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD The LLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The LLDT instruction is recognized in virtual-8086 mode.

ch01.bk : ch03.doc Page 269 Friday, January 17, 1997 12:59 PM

3-270

INSTRUCTION SET REFERENCE

LIDT—Load Interrupt Descriptor Table Register

See entry for LGDT/LIDT—Load Global/Interrupt Descriptor Table Register.

ch01.bk : ch03.doc Page 270 Friday, January 17, 1997 12:59 PM

3-271

INSTRUCTION SET REFERENCE

LMSW—Load Machine Status Word

Description

Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The
source operand can be a 16-bit general-purpose register or a memory location. Only the low-
order 4 bits of the source operand (which contains the PE, MP, EM, and TS flags) are loaded
into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0 are not affected. The operand-
size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to
switch to protected mode. While in protected mode, the LMSW instruction cannot be used clear
the PE flag and force a switch back to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used
in application programs. In protected or virtual-8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and proce-
dures intended to run on the Pentium Pro, Pentium, Intel486, and Intel386 processors should use
the MOV (control registers) instruction to load the whole CR0 register. The MOV CR0 instruc-
tion can be used to set and clear the PE flag in CR0, allowing a procedure or program to switch
between protected and real-address modes.

This instruction is a serializing instruction.

Operation

CR0[0:3] ← SRC[0:3];

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F 01 /6 LMSW r/m16 Loads r/m16 in machine status word of CR0

ch01.bk : ch03.doc Page 271 Friday, January 17, 1997 12:59 PM

3-272

INSTRUCTION SET REFERENCE

LMSW—Load Machine Status Word (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 272 Friday, January 17, 1997 12:59 PM

3-273

INSTRUCTION SET REFERENCE

LOCK—Assert LOCK# Signal Prefix

Description

Causes the processor’s LOCK# signal to be asserted during execution of the accompanying
instruction (turns the instruction into an atomic instruction). In a multiprocessor environment,
the LOCK# signal insures that the processor has exclusive use of any shared memory while the
signal is asserted.

Note that in later Intel Architecture processors (such as the Pentium Pro processor), locking may
occur without the LOCK# signal being asserted. See Intel Architecture Compatibility below.

The LOCK prefix can be prepended only to the following instructions and to those forms of the
instructions that use a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG,
DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. An undefined opcode
exception will be generated if the LOCK prefix is used with any other instruction. The XCHG
instruction always asserts the LOCK# signal regardless of the presence or absence of the LOCK
prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write
operation on a memory location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory
locking is observed for arbitrarily misaligned fields.

Intel Architecture Compatibility

Beginning with the Pentium Pro processor, when the LOCK prefix is prefixed to an instruction
and the memory area being accessed is cached internally in the processor, the LOCK# signal is
generally not asserted. Instead, only the processor’s cache is locked. Here, the processor’s cache
coherency mechanism insures that the operation is carried out atomically with regards to
memory. See “Effects of a Locked Operation on Internal Processor Caches” in Chapter 7 of Intel
Architecture Software Developer’s Manual, Volume 3, the for more information on locking of
caches.

Operation

AssertLOCK#(DurationOfAccompaningInstruction)

Flags Affected

None.

Opcode Instruction Description

F0 LOCK Asserts LOCK# signal for duration of the accompanying
instruction

ch01.bk : ch03.doc Page 273 Friday, January 17, 1997 12:59 PM

3-274

INSTRUCTION SET REFERENCE

LOCK—Assert LOCK# Signal Prefix (Continued)

Protected Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-
tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-
tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Descrip-
tion” section above. Other exceptions can be generated by the instruction
that the LOCK prefix is being applied to.

ch01.bk : ch03.doc Page 274 Friday, January 17, 1997 12:59 PM

3-275

INSTRUCTION SET REFERENCE

LODS/LODSB/LODSW/LODSD—Load String

Description

Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX register,
respectively. The source operand is a memory location, the address of which is read from the
DS:EDI or the DS:SI registers (depending on the address-size attribute of the instruction, 32 or
16, respectively). The DS segment may be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the LODS
mnemonic) allows the source operand to be specified explicitly. Here, the source operand should
be a symbol that indicates the size and location of the source value. The destination operand is
then automatically selected to match the size of the source operand (the AL register for byte
operands, AX for word operands, and EAX for doubleword operands). This explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this
form can be misleading. That is, the source operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword), but it does not have to specify the correct location.
The location is always specified by the DS:(E)SI registers, which must be loaded correctly
before the load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
LODS instructions. Here also DS:(E)SI is assumed to be the source operand and the AL, AX, or
EAX register is assumed to be the destination operand. The size of the source and destination
operands is selected with the mnemonic: LODSB (byte loaded into register AL), LODSW (word
loaded into AX), or LODSD (doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the AL, AX,
or EAX register, the (E)SI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incre-
mented; if the DF flag is 1, the ESI register is decremented.) The (E)SI register is incremented
or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword oper-
ations.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct because further processing of the data moved into the register
is usually necessary before the next transfer can be made. See “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

Opcode Instruction Description

AC LODS m8 Load byte at address DS:(E)SI into AL

AD LODS m16 Load word at address DS:(E)SI into AX

AD LODS m32 Load doubleword at address DS:(E)SI into EAX

AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:(E)SI into AX

AD LODSD Load doubleword at address DS:(E)SI into EAX

ch01.bk : ch03.doc Page 275 Friday, January 17, 1997 12:59 PM

3-276

INSTRUCTION SET REFERENCE

LODS/LODSB/LODSW/LODSD—Load String (Continued)

Operation

IF (byte load)
THEN

AL ← SRC; (* byte load *)
THEN IF DF = 0

THEN (E)SI ← (E)SI + 1;
ELSE (E)SI ← (E)SI – 1;

FI;
ELSE IF (word load)

THEN
AX ← SRC; (* word load *)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

FI;
ELSE (* doubleword transfer *)

EAX ← SRC; (* doubleword load *)
THEN IF DF = 0

THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

ch01.bk : ch03.doc Page 276 Friday, January 17, 1997 12:59 PM

3-277

INSTRUCTION SET REFERENCE

LODS/LODSB/LODSW/LODSD—Load String (Continued)
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 277 Friday, January 17, 1997 12:59 PM

3-278

INSTRUCTION SET REFERENCE

LOOP/LOOPcc—Loop According to ECX Counter

Description

Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP
instruction is executed, the count register is decremented, then checked for 0. If the count is 0,
the loop is terminated and program execution continues with the instruction following the LOOP
instruction. If the count is not zero, a near jump is performed to the destination (target) operand,
which is presumably the instruction at the beginning of the loop. If the address-size attribute is
32 bits, the ECX register is used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of –128 to +127 are allowed with this
instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for termi-
nating the loop before the count reaches zero. With these forms of the instruction, a condition
code (cc) is associated with each instruction to indicate the condition being tested for. Here, the
LOOPcc instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other
instructions in the loop.

Operation

IF AddressSize = 32
THEN

Count is ECX;
ELSE (* AddressSize = 16 *)

Count is CX;
FI;
Count ← Count – 1;

IF instruction is not LOOP
THEN

IF (instruction = LOOPE) OR (instruction = LOOPZ)
THEN

IF (ZF =1) AND (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count ≠ 0

E1 cb LOOPE rel8 Decrement count; jump short if count ≠ 0 and ZF=1

E1 cb LOOPZ rel8 Decrement count; jump short if count ≠ 0 and ZF=1

E0 cb LOOPNE rel8 Decrement count; jump short if count ≠ 0 and ZF=0

E0 cb LOOPNZ rel8 Decrement count; jump short if count ≠ 0 and ZF=0

ch01.bk : ch03.doc Page 278 Friday, January 17, 1997 12:59 PM

3-279

INSTRUCTION SET REFERENCE

LOOP/LOOPcc—Loop According to ECX Counter (Continued)
FI;

FI;
IF (instruction = LOOPNE) OR (instruction = LOOPNZ)

THEN
IF (ZF =0) AND (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;
IF BranchCond = 1

THEN
 EIP ← EIP + SignExtend(DEST);

IF OperandSize = 16
THEN

EIP ← EIP AND 0000FFFFH;
FI;

ELSE
Terminate loop and continue program execution at EIP;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the offset jumped to is beyond the limits of the code segment.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

ch01.bk : ch03.doc Page 279 Friday, January 17, 1997 12:59 PM

3-280

INSTRUCTION SET REFERENCE

LSL—Load Segment Limit

Description

Loads the unscrambled segment limit from the segment descriptor specified with the second
operand (source operand) into the first operand (destination operand) and sets the ZF flag in the
EFLAGS register. The source operand (which can be a register or a memory location) contains
the segment selector for the segment descriptor being accessed. The destination operand is a
general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the desti-
nation register, software can compare the segment limit with the offset of a pointer.

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of
the segment descriptor. If the descriptor has a byte granular segment limit (the granularity flag
is set to 0), the destination operand is loaded with a byte granular value (byte limit). If the
descriptor has a page granular segment limit (the granularity flag is set to 1), the LSL instruction
will translate the page granular limit (page limit) into a byte limit before loading it into the desti-
nation operand. The translation is performed by shifting the 20-bit “raw” limit left 12 bits and
filling the low-order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When
the operand size is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are trun-
cated and only the low-order 16 bits are loaded into the destination operand.

This instruction performs the following checks before it loads the segment limit into the desti-
nation register:

• Checks that the segment selector is not null.

• Checks that the segment selector points to a descriptor that is within the limits of the GDT
or LDT being accessed

• Checks that the descriptor type is valid for this instruction. All code and data segment
descriptors are valid for (can be accessed with) the LSL instruction. The valid special
segment and gate descriptor types are given in the following table.

• If the segment is not a conforming code segment, the instruction checks that the specified
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL of the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag
is cleared and no value is loaded in the destination operand.

Opcode Instruction Description

0F 03 /r LSL r16,r/m16 Load: r16 ← segment limit, selector r/m16

0F 03 /r LSL r32,r/m32 Load: r32 ← segment limit, selector r/m32)

ch01.bk : ch03.doc Page 280 Friday, January 17, 1997 12:59 PM

3-281

INSTRUCTION SET REFERENCE

LSL—Load Segment Limit (Continued)

Operation
IF SRC(Offset) > descriptor table limit

THEN ZF ← 0; FI;
Read segment descriptor;
IF SegmentDescriptor(Type) ≠ conforming code segment

AND (CPL > DPL) OR (RPL > DPL)
OR Segment type is not valid for instruction

THEN
ZF ← 0

ELSE
temp ← SegmentLimit([SRC]);
IF (G = 1)

THEN
temp ← ShiftLeft(12, temp) OR 00000FFFH;

FI;
IF OperandSize = 32

THEN
DEST ← temp;

ELSE (*OperandSize = 16*)

Type Name Valid

0 Reserved No

1 Available 16-bit TSS Yes

2 LDT Yes

3 Busy 16-bit TSS Yes

4 16-bit call gate No

5 16-bit/32-bit task gate No

6 16-bit interrupt gate No

7 16-bit trap gate No

8 Reserved No

9 Available 32-bit TSS Yes

A Reserved No

B Busy 32-bit TSS Yes

C 32-bit call gate No

D Reserved No

E 32-bit interrupt gate No

F 32-bit trap gate No

ch01.bk : ch03.doc Page 281 Friday, January 17, 1997 12:59 PM

3-282

INSTRUCTION SET REFERENCE

LSL—Load Segment Limit (Continued)

DEST ← temp AND FFFFH;
FI;

FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared to 0.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD The LSL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The LSL instruction is not recognized in virtual-8086 mode.

ch01.bk : ch03.doc Page 282 Friday, January 17, 1997 12:59 PM

3-283

INSTRUCTION SET REFERENCE

LSS—Load Full Pointer

See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.

ch01.bk : ch03.doc Page 283 Friday, January 17, 1997 12:59 PM

3-284

INSTRUCTION SET REFERENCE

LTR—Load Task Register

Description

Loads the source operand into the segment selector field of the task register. The source operand
(a general-purpose register or a memory location) contains a segment selector that points to a
task state segment (TSS). After the segment selector is loaded in the task register, the processor
uses the segment selector to locate the segment descriptor for the TSS in the global descriptor
table (GDT). It then loads the segment limit and base address for the TSS from the segment
descriptor into the task register. The task pointed to by the task register is marked busy, but a
switch to the task does not occur.

The LTR instruction is provided for use in operating-system software; it should not be used in
application programs. It can only be executed in protected mode when the CPL is 0. It is
commonly used in initialization code to establish the first task to be executed.

The operand-size attribute has no effect on this instruction.

Operation
IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global

THEN #GP(segment selector);
FI;
Read segment descriptor;
IF segment descriptor is not for an available TSS THEN #GP(segment selector); FI;
IF segment descriptor is not present THEN #NP(segment selector);
TSSsegmentDescriptor(busy) ← 1;
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)
TaskRegister(SegmentSelector) ← SRC;
TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

Opcode Instruction Description

0F 00 /3 LTR r/m16 Load r/m16 into task register

ch01.bk : ch03.doc Page 284 Friday, January 17, 1997 12:59 PM

3-285

INSTRUCTION SET REFERENCE

LTR—Load Task Register (Continued)

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a
task that is already busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The LTR instruction is not recognized in virtual-8086 mode.

ch01.bk : ch03.doc Page 285 Friday, January 17, 1997 12:59 PM

3-286

INSTRUCTION SET REFERENCE

MOV—Move

NOTES:

* The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where
8, 16, and 32 refer to the size of the data. The address-size attribute of the instruction determines the size
of the offset, either 16 or 32 bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the fol-
lowing “Description” section for further information).

Description

Copies the second operand (source operand) to the first operand (destination operand). The
source operand can be an immediate value, general-purpose register, segment register, or
memory location; the destination register can be a general-purpose register, segment register, or
memory location. Both operands must be the same size, which can be a byte, a word, or a
doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an
invalid opcode exception (#UD). To load the CS register, use the far JMP, CALL, or RET
instruction.

Opcode Instruction Description

88 /r MOV r/m8,r8 Move r8 to r/m8

89 /r MOV r/m16,r16 Move r16 to r/m16

89 /r MOV r/m32,r32 Move r32 to r/m32

8A /r MOV r8,r/m8 Move r/m8 to r8

8B /r MOV r16,r/m16 Move r/m16 to r16

8B /r MOV r32,r/m32 Move r/m32 to r32

8C /r MOV r/m16,Sreg** Move segment register to r/m16

8E /r MOV Sreg,r/m16** Move r/m16 to segment register

A0 MOV AL,moffs8* Move byte at (seg:offset) to AL

A1 MOV AX,moffs16* Move word at (seg:offset) to AX

A1 MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX

A2 MOV moffs8*,AL Move AL to (seg:offset)

A3 MOV moffs16*,AX Move AX to (seg:offset)

A3 MOV moffs32*,EAX Move EAX to (seg:offset)

B0+ rb MOV r8,imm8 Move imm8 to r8

B8+ rw MOV r16,imm16 Move imm16 to r16

B8+ rd MOV r32,imm32 Move imm32 to r32

C6 /0 MOV r/m8,imm8 Move imm8 to r/m8

C7 /0 MOV r/m16,imm16 Move imm16 to r/m16

C7 /0 MOV r/m32,imm32 Move imm32 to r/m32

ch01.bk : ch03.doc Page 286 Friday, January 17, 1997 12:59 PM

3-287

INSTRUCTION SET REFERENCE

MOV—Move (Continued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must
be a valid segment selector. In protected mode, moving a segment selector into a segment
register automatically causes the segment descriptor information associated with that segment
selector to be loaded into the hidden (shadow) part of the segment register. While loading this
information, the segment selector and segment descriptor information is validated (see the
“Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers
without causing a protection exception. However, any subsequent attempt to reference a segment
whose corresponding segment register is loaded with a null value causes a general protection
exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution
of the next instruction. This operation allows a stack pointer to be loaded into the ESP register
with the next instruction (MOV ESP, stack-pointer value) before an interrupt occurs1. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a general-
purpose register, the Intel Architecture 32-bit processors do not require the use of the 16-bit
operand-size prefix (a byte with the value 66H) with this instruction, but most assemblers will
insert it if the standard form of the instruction is used (for example, MOV DS, AX). The
processor will execute this instruction correctly, but it will usually require an extra clock. With
most assemblers, using the instruction form MOV DS, EAX will avoid this unneeded 66H
prefix. When the processor executes the instruction with a 32-bit general-purpose register, it
assumes that the 16 least-significant bits of the general-purpose register are the destination or
source operand. If the register is a destination operand, the resulting value in the two high-order
bytes of the register is implementation dependent. For the Pentium Pro processor, the two high-
order bytes are filled with zeros; for earlier 32-bit Intel Architecture processors, the two high
order bytes are undefined.

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SS is loaded;

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:
STI
MOV SS, EAX
MOV ESP, EBP
interrupts may be recognized before MOV ESP, EBP executes, because STI also delays interrupts for one
instruction.

ch01.bk : ch03.doc Page 287 Friday, January 17, 1997 12:59 PM

3-288

INSTRUCTION SET REFERENCE

MOV—Move (Continued)
THEN

IF segment selector is null
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL ≠ CPL
OR segment is not a writable data segment
OR DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

ch01.bk : ch03.doc Page 288 Friday, January 17, 1997 12:59 PM

3-289

INSTRUCTION SET REFERENCE

MOV—Move (Continued)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a nonwrit-
able data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

#UD If attempt is made to load the CS register.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If attempt is made to load the CS register.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 289 Friday, January 17, 1997 12:59 PM

3-290

INSTRUCTION SET REFERENCE

MOV—Move (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

#UD If attempt is made to load the CS register.

ch01.bk : ch03.doc Page 290 Friday, January 17, 1997 12:59 PM

3-291

INSTRUCTION SET REFERENCE

MOV—Move to/from Control Registers

Description

Moves the contents of a control register (CR0, CR2, CR3, or CR4) to a general-purpose register
or vice versa. The operand size for these instructions is always 32 bits, regardless of the operand-
size attribute. (See “Control Registers” in Chapter 2 of the Intel Architecture Software Devel-
oper’s Manual, Volume 3, for a detailed description of the flags and fields in the control regis-
ters.)

When loading a control register, a program should not attempt to change any of the reserved bits;
that is, always set reserved bits to the value previously read.

At the opcode level, the reg field within the ModR/M byte specifies which of the control registers
is loaded or read. The 2 bits in the mod field are always 11B. The r/m field specifies the general-
purpose register loaded or read.

These instructions have the following side effects:

• When writing to control register CR3, all non-global TLB entries are flushed (see “Trans-
lation Lookaside Buffers (TLBs)” in Chapter 3 of the Intel Architecture Software
Developer’s Manual, Volume 3).

The following side effects are implementation specific for the Pentium Pro processors. Software
should not depend on this functionality in future and previous Intel Architecture processors.:

• When modifying any of the paging flags in the control registers (PE and PG in register
CR0 and PGE, PSE, and PAE in register CR4), all TLB entries are flushed, including
global entries.

• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1 (to
enable the physical address extension mode), the pointers (PDPTRs) in the page-directory
pointers table will be loaded into the processor (into internal, non-architectural registers).

• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3 will
cause the PDPTRs to be reloaded into the processor.

• If the PAE flag is set to 1 and control register CR0 is written to set the PG flag, the
PDPTRs are reloaded into the processor.

Opcode Instruction Description

0F 22 /r MOV CR0,r32 Move r32 to CR0

0F 22 /r MOV CR2,r32 Move r32 to CR2

0F 22 /r MOV CR3,r32 Move r32 to CR3

0F 22 /r MOV CR4,r32 Move r32 to CR4

0F 20 /r MOV r32,CR0 Move CR0 to r32

0F 20 /r MOV r32,CR2 Move CR2 to r32

0F 20 /r MOV r32,CR3 Move CR3 to r32

0F 20 /r MOV r32,CR4 Move CR4 to r32

ch01.bk : ch03.doc Page 291 Friday, January 17, 1997 12:59 PM

3-292

INSTRUCTION SET REFERENCE

MOV—Move to/from Control Registers (Continued)

Operation

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0 (such as
setting the PG flag to 1 when the PE flag is set to 0, or setting the CD flag
to 0 when the NE flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write reserved bits in the page-directory pointers
table (used in the extended physical addressing mode) when the PAE flag
in control register CR4 and the PG flag in control register CR0 are set to 1.

Real-Address Mode Exceptions

#GP If an attempt is made to write a 1 to any reserved bit in CR4.

Virtual-8086 Mode Exceptions

#GP(0) These instructions cannot be executed in virtual-8086 mode.

ch01.bk : ch03.doc Page 292 Friday, January 17, 1997 12:59 PM

3-293

INSTRUCTION SET REFERENCE

MOV—Move to/from Debug Registers

Description

Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or DR7) to a
general-purpose register or vice versa. The operand size for these instructions is always 32 bits,
regardless of the operand-size attribute. (See Chapter 14, Debugging and Performance Moni-
toring, of the Intel Architecture Software Developer’s Manual, Volume 3, for a detailed descrip-
tion of the flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate on debug
registers in a manner that is compatible with Intel386 and Intel486 processors. In this mode,
references to DR4 and DR5 refer to DR6 and DR7, respectively. When the DE set in CR4 is set,
attempts to reference DR4 and DR5 result in an undefined opcode (#UD) exception. (The CR4
register was added to the Intel Architecture beginning with the Pentium processor.)

At the opcode level, the reg field within the ModR/M byte specifies which of the debug registers
is loaded or read. The two bits in the mod field are always 11. The r/m field specifies the general-
purpose register loaded or read.

Operation

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is
executed involving DR4 or DR5.

#DB If any debug register is accessed while the GD flag in debug register DR7
is set.

Opcode Instruction Description

0F 21/r MOV r32, DR0-DR7 Move debug register to r32

0F 23 /r MOV DR0-DR7,r32 Move r32 to debug register

ch01.bk : ch03.doc Page 293 Friday, January 17, 1997 12:59 PM

3-294

INSTRUCTION SET REFERENCE

MOV—Move to/from Debug Registers (Continued)

Real-Address Mode Exceptions

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is
executed involving DR4 or DR5.

#DB If any debug register is accessed while the GD flag in debug register DR7
is set.

Virtual-8086 Mode Exceptions

#GP(0) The debug registers cannot be loaded or read when in virtual-8086 mode.

ch01.bk : ch03.doc Page 294 Friday, January 17, 1997 12:59 PM

3-295

INSTRUCTION SET REFERENCE

MOVD—Move 32 Bits

Description

Copies doubleword from the source operand (second operand) to the destination operand (first
operand). Source and destination operands can be MMX registers, memory locations, or 32-bit
general-purpose registers; however, data cannot be transferred from an MMX register to an
MMX register, from one memory location to another memory location, or from one general-
purpose register to another general-purpose register.

When the destination operand is an MMX register, the 32-bit source value is written to the low-
order 32 bits of the 64-bit MMX register and zero-extended to 64 bits (see Figure 3-4). When
the source operand is an MMX register, the low-order 32 bits of the MMX register are written
to the 32-bit general-purpose register or 32-bit memory location selected with the destination
operand.

Operation

IF DEST is MMX register
THEN

DEST ← ZeroExtend(SRC);
ELSE (* SRC is MMX register *)

DEST ← LowOrderDoubleword(SRC);

Opcode Instruction Description

0F 6E /r MOVD mm, r/m32 Move doubleword from r/m32 to mm.

0F 7E /r MOVD r/m32, mm Move doubleword from mm to r/m32.

Figure 3-4. Operation of MOVD Instruction

MOVD m32, mm

MOVD mm, r32
63

31 0

32 31

mm

m32

15 0

0
00000000

b b b b r32

b b b b

63

mm

0
xxxxxxxx b b b

b b

b b

W

W

3006010

32 31

3 2 1 0

3

01

2 N+1

N+1

3 2 1 0

b3 2 1 0

ch01.bk : ch03.doc Page 295 Friday, January 17, 1997 12:59 PM

3-296

INSTRUCTION SET REFERENCE

MOVD—Move 32 Bits (Continued)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 296 Friday, January 17, 1997 12:59 PM

3-297

INSTRUCTION SET REFERENCE

MOVQ—Move 64 Bits

Description

Copies quadword from the source operand (second operand) to the destination operand (first
operand). (See Figure 3-5.) A source or destination operand can be either an MMX register or a
memory location; however, data cannot be transferred from one memory location to another
memory location. Data can be transferred from one MMX register to another MMX register.

Operation

DEST ← SRC;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Opcode Instruction Description

0F 6F /r MOVQ mm, mm/m64 Move quadword from mm/m64 to mm.

0F 7F /r MOVQ mm/m64, mm Move quadword from mm to mm/m64.

Figure 3-5. Operation of the MOVQ Instructions

MOVQ mm, m64
63 48 47 32 31

mm

m64

15 0

1615 0
b7 b6 b5 b4 b3 b2 b1 b0

b7 b6

b5 b4

b3 b2

b1

W

W

W

Wb0

3006013

N+1

N+2

N+3

N+0

ch01.bk : ch03.doc Page 297 Friday, January 17, 1997 12:59 PM

3-298

INSTRUCTION SET REFERENCE

MOVQ—Move 64 Bits (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 298 Friday, January 17, 1997 12:59 PM

3-299

INSTRUCTION SET REFERENCE

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String

Description

Moves the byte, word, or doubleword specified with the second operand (source operand) to the
location specified with the first operand (destination operand). Both the source and destination
operands are located in memory. The address of the source operand is read from the DS:ESI or
the DS:SI registers (depending on the address-size attribute of the instruction, 32 or 16, respec-
tively). The address of the destination operand is read from the ES:EDI or the ES:DI registers
(again depending on the address-size attribute of the instruction). The DS segment may be over-
ridden with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the MOVS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source and destination operands should be symbols that indicate the size and location of the
source value and the destination, respectively. This explicit-operands form is provided to allow
documentation; however, note that the documentation provided by this form can be misleading.
That is, the source and destination operand symbols must specify the correct type (size) of the
operands (bytes, words, or doublewords), but they do not have to specify the correct location.
The locations of the source and destination operands are always specified by the DS:(E)SI and
ES:(E)DI registers, which must be loaded correctly before the move string instruction is
executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to be the source and desti-
nation operands, respectively. The size of the source and destination operands is selected with
the mnemonic: MOVSB (byte move), MOVSW (word move), or MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decremented auto-
matically according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
(E)SI and (E)DI register are incremented; if the DF flag is 1, the (E)SI and (E)DI registers are
decremented.) The registers are incremented or decremented by 1 for byte operations, by 2 for
word operations, or by 4 for doubleword operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix
(see “REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” in this chapter) for
block moves of ECX bytes, words, or doublewords.

Opcode Instruction Description

A4 MOVS m8, m8 Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVS m16, m16 Move word at address DS:(E)SI to address ES:(E)DI

A5 MOVS m32, m32 Move doubleword at address DS:(E)SI to address
ES:(E)DI

A4 MOVSB Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVSW Move word at address DS:(E)SI to address ES:(E)DI

A5 MOVSD Move doubleword at address DS:(E)SI to address
ES:(E)DI

ch01.bk : ch03.doc Page 299 Friday, January 17, 1997 12:59 PM

3-300

INSTRUCTION SET REFERENCE

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String
(Continued)

Operation

DEST ←SRC;
IF (byte move)

THEN IF DF = 0
THEN

(E)SI ← (E)SI + 1;
(E)DI ← (E)DI + 1;

ELSE
(E)SI ← (E)SI – 1;
(E)DI ← (E)DI – 1;

FI;
ELSE IF (word move)

THEN IF DF = 0
(E)SI ← (E)SI + 2;
(E)DI ← (E)DI + 2;

ELSE
(E)SI ← (E)SI – 2;
(E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword move*)

THEN IF DF = 0
(E)SI ← (E)SI + 4;
(E)DI ← (E)DI + 4;

ELSE
(E)SI ← (E)SI – 4;
(E)DI ← (E)DI – 4;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 300 Friday, January 17, 1997 12:59 PM

3-301

INSTRUCTION SET REFERENCE

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String
(Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 301 Friday, January 17, 1997 12:59 PM

3-302

INSTRUCTION SET REFERENCE

MOVSX—Move with Sign-Extension

Description

Copies the contents of the source operand (register or memory location) to the destination
operand (register) and sign extends the value to 16 or 32 bits (see Figure 6-5 in the Intel Archi-
tecture Software Developer’s Manual, Volume 1). The size of the converted value depends on the
operand-size attribute.

Operation

DEST ← SignExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

0F BE /r MOVSX r16,r/m8 Move byte to word with sign-extension

0F BE /r MOVSX r32,r/m8 Move byte to doubleword, sign-extension

0F BF /r MOVSX r32,r/m16 Move word to doubleword, sign-extension

ch01.bk : ch03.doc Page 302 Friday, January 17, 1997 12:59 PM

3-303

INSTRUCTION SET REFERENCE

MOVSX—Move with Sign-Extension (Continued)

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 303 Friday, January 17, 1997 12:59 PM

3-304

INSTRUCTION SET REFERENCE

MOVZX—Move with Zero-Extend

Description

Copies the contents of the source operand (register or memory location) to the destination
operand (register) and zero extends the value to 16 or 32 bits. The size of the converted value
depends on the operand-size attribute.

Operation

DEST ← ZeroExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F B6 /r MOVZX r16,r/m8 Move byte to word with zero-extension

0F B6 /r MOVZX r32,r/m8 Move byte to doubleword, zero-extension

0F B7 /r MOVZX r32,r/m16 Move word to doubleword, zero-extension

ch01.bk : ch03.doc Page 304 Friday, January 17, 1997 12:59 PM

3-305

INSTRUCTION SET REFERENCE

MOVZX—Move with Zero-Extend (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 305 Friday, January 17, 1997 12:59 PM

3-306

INSTRUCTION SET REFERENCE

MUL—Unsigned Multiply

Description

Performs an unsigned multiplication of the first operand (destination operand) and the second
operand (source operand) and stores the result in the destination operand. The destination
operand is an implied operand located in register AL, AX or EAX (depending on the size of the
operand); the source operand is located in a general-purpose register or a memory location. The
action of this instruction and the location of the result depends on the opcode and the operand
size as shown in the following table.

:

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX (depending
on the operand size), with the high-order bits of the product contained in register AH, DX, or
EDX, respectively. If the high-order bits of the product are 0, the CF and OF flags are cleared;
otherwise, the flags are set.

Operation

IF byte operation
THEN

AX ← AL ∗ SRC
ELSE (* word or doubleword operation *)

IF OperandSize = 16
THEN

DX:AX ← AX ∗ SRC
ELSE (* OperandSize = 32 *)

EDX:EAX ← EAX ∗ SRC
FI;

FI;

Flags Affected

The OF and CF flags are cleared to 0 if the upper half of the result is 0; otherwise, they are set
to 1. The SF, ZF, AF, and PF flags are undefined.

Opcode Instruction Description

F6 /4 MUL r/m8 Unsigned multiply (AX ← AL ∗ r/m8)

F7 /4 MUL r/m16 Unsigned multiply (DX:AX ← AX ∗ r/m16)

F7 /4 MUL r/m32 Unsigned multiply (EDX:EAX ← EAX ∗ r/m32)

Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

ch01.bk : ch03.doc Page 306 Friday, January 17, 1997 12:59 PM

3-307

INSTRUCTION SET REFERENCE

MUL—Unsigned Multiply (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 307 Friday, January 17, 1997 12:59 PM

3-308

INSTRUCTION SET REFERENCE

NEG—Two's Complement Negation

Description

Replaces the value of operand (the destination operand) with its two's complement. (This oper-
ation is equivalent to subtracting the operand from 0.) The destination operand is located in a
general-purpose register or a memory location.

Operation

IF DEST = 0
THEN CF ← 0
ELSE CF ← 1;

FI;
DEST ← – (DEST)

Flags Affected

The CF flag cleared to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF,
and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

F6 /3 NEG r/m8 Two's complement negate r/m8

F7 /3 NEG r/m16 Two's complement negate r/m16

F7 /3 NEG r/m32 Two's complement negate r/m32

ch01.bk : ch03.doc Page 308 Friday, January 17, 1997 12:59 PM

3-309

INSTRUCTION SET REFERENCE

NEG—Two's Complement Negation (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 309 Friday, January 17, 1997 12:59 PM

3-310

INSTRUCTION SET REFERENCE

NOP—No Operation

Description

Performs no operation. This instruction is a one-byte instruction that takes up space in the
instruction stream but does not affect the machine context, except the EIP register.

The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Flags Affected

None.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

90 NOP No operation

ch01.bk : ch03.doc Page 310 Friday, January 17, 1997 12:59 PM

3-311

INSTRUCTION SET REFERENCE

NOT—One's Complement Negation

Description

Performs a bitwise NOT operation (each 1 is cleared to 0, and each 0 is set to 1) on the destina-
tion operand and stores the result in the destination operand location. The destination operand
can be a register or a memory location.

Operation

DEST ← NOT DEST;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

F6 /2 NOT r/m8 Reverse each bit of r/m8

F7 /2 NOT r/m16 Reverse each bit of r/m16

F7 /2 NOT r/m32 Reverse each bit of r/m32

ch01.bk : ch03.doc Page 311 Friday, January 17, 1997 12:59 PM

3-312

INSTRUCTION SET REFERENCE

NOT—One's Complement Negation (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 312 Friday, January 17, 1997 12:59 PM

3-313

INSTRUCTION SET REFERENCE

OR—Logical Inclusive OR

Description

Performs a bitwise inclusive OR operation between the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location. (However, two memory operands cannot be used in one instruction.) Each bit
of the result of the OR instruction is 0 if both corresponding bits of the operands are 0; otherwise,
each bit is 1.

Operation

DEST ← DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0C ib OR AL,imm8 AL OR imm8

0D iw OR AX,imm16 AX OR imm16

0D id OR EAX,imm32 EAX OR imm32

80 /1 ib OR r/m8,imm8 r/m8 OR imm8

81 /1 iw OR r/m16,imm16 r/m16 OR imm16

81 /1 id OR r/m32,imm32 r/m32 OR imm32

83 /1 ib OR r/m16,imm8 r/m16 OR imm8 (sign-extended)

83 /1 ib OR r/m32,imm8 r/m32 OR imm8 (sign-extended)

08 /r OR r/m8,r8 r/m8 OR r8

09 /r OR r/m16,r16 r/m16 OR r16

09 /r OR r/m32,r32 r/m32 OR r32

0A /r OR r8,r/m8 r8 OR r/m8

0B /r OR r16,r/m16 r16 OR r/m16

0B /r OR r32,r/m32 r32 OR r/m32

ch01.bk : ch03.doc Page 313 Friday, January 17, 1997 12:59 PM

3-314

INSTRUCTION SET REFERENCE

OR—Logical Inclusive OR (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 314 Friday, January 17, 1997 12:59 PM

3-315

INSTRUCTION SET REFERENCE

OUT—Output to Port

Description

Copies the value from the second operand (source operand) to the I/O port specified with the
destination operand (first operand). The source operand can be register AL, AX, or EAX,
depending on the size of the port being accessed (8, 16, or 32 bits, respectively); the destination
operand can be a byte-immediate or the DX register. Using a byte immediate allows I/O port
addresses 0 to 255 to be accessed; using the DX register as a source operand allows I/O ports
from 0 to 65,535 to be accessed.

The size of the I/O port being accessed is determined by the opcode for an 8-bit I/O port or by
the operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 9, Input/Output, in the Intel Architecture Software Developer’s Manual,
Volume 1, for more information on accessing I/O ports in the I/O address space.

Intel Architecture Compatibility

After executing an OUT instruction, the Pentium processor insures that the EWBE# pin has been
sampled active before it begins to execute the next instruction. (Note that the instruction can be
prefetched if EWBE# is not active, but it will not be executed until the EWBE# pin is sampled
active.) Only the Pentium processor family has the EWBE# pin; the other Intel Architecture
processors do not.

Operation

IF ((PE = 1) AND ((CPL > IOPL) OR (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Writes to selected I/O port *)
FI;

Opcode Instruction Description

E6 ib OUT imm8, AL Output byte in AL to I/O port address imm8

E7 ib OUT imm8, AX Output word in AX to I/O port address imm8

E7 ib OUT imm8, EAX Output doubleword in EAX to I/O port address imm8

EE OUT DX, AL Output byte in AL to I/O port address in DX

EF OUT DX, AX Output word in AX to I/O port address in DX

EF OUT DX, EAX Output doubleword in EAX to I/O port address in DX

ch01.bk : ch03.doc Page 315 Friday, January 17, 1997 12:59 PM

3-316

INSTRUCTION SET REFERENCE

OUT—Output to Port (Continued)

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to selected I/O port *)

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.

ch01.bk : ch03.doc Page 316 Friday, January 17, 1997 12:59 PM

3-317

INSTRUCTION SET REFERENCE

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Description

Copies data from the source operand (second operand) to the I/O port specified with the desti-
nation operand (first operand). The source operand is a memory location, the address of which
is read from either the DS:EDI or the DS:DI registers (depending on the address-size attribute
of the instruction, 32 or 16, respectively). (The DS segment may be overridden with a segment
override prefix.) The destination operand is an I/O port address (from 0 to 65,535) that is read
from the DX register. The size of the I/O port being accessed (that is, the size of the source and
destination operands) is determined by the opcode for an 8-bit I/O port or by the operand-size
attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the OUTS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source operand should be a symbol that indicates the size of the I/O port and the source address,
and the destination operand must be DX. This explicit-operands form is provided to allow docu-
mentation; however, note that the documentation provided by this form can be misleading. That
is, the source operand symbol must specify the correct type (size) of the operand (byte, word,
or doubleword), but it does not have to specify the correct location. The location is always spec-
ified by the DS:(E)SI registers, which must be loaded correctly before the OUTS instruction is
executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
OUTS instructions. Here also DS:(E)SI is assumed to be the source operand and DX is assumed
to be the destination operand. The size of the I/O port is specified with the choice of mnemonic:
OUTSB (byte), OUTSW (word), or OUTSD (doubleword).

After the byte, word, or doubleword is transferred from the memory location to the I/O port, the
(E)SI register is incremented or decremented automatically according to the setting of the DF
flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incremented; if the DF flag
is 1, the (E)SI register is decremented.) The (E)SI register is incremented or decremented by 1
for byte operations, by 2 for word operations, or by 4 for doubleword operations.

Opcode Instruction Description

6E OUTS DX, m8 Output byte from memory location specified in DS:(E)SI to
I/O port specified in DX

6F OUTS DX, m16 Output word from memory location specified in DS:(E)SI
to I/O port specified in DX

6F OUTS DX, m32 Output doubleword from memory location specified in
DS:(E)SI to I/O port specified in DX

6E OUTSB Output byte from memory location specified in DS:(E)SI to
I/O port specified in DX

6F OUTSW Output word from memory location specified in DS:(E)SI
to I/O port specified in DX

6F OUTSD Output doubleword from memory location specified in
DS:(E)SI to I/O port specified in DX

ch01.bk : ch03.doc Page 317 Friday, January 17, 1997 12:59 PM

3-318

INSTRUCTION SET REFERENCE

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (Continued)

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 9, Input/Output, in the Intel Architecture Software Developer’s Manual,
Volume 1, for more information on accessing I/O ports in the I/O address space.

Intel Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium processor
insures that the EWBE# pin has been sampled active before it begins to execute the next instruc-
tion. (Note that the instruction can be prefetched if EWBE# is not active, but it will not be
executed until the EWBE# pin is sampled active.) Only the Pentium processor family has the
EWBE# pin; the other Intel Architecture processors do not.

Operation

IF ((PE = 1) AND ((CPL > IOPL) OR (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Writes to I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to I/O port *)

FI;
IF (byte transfer)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 1;
ELSE (E)SI ← (E)SI – 1;

FI;
ELSE IF (word transfer)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

FI;
ELSE (* doubleword transfer *)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

FI;

ch01.bk : ch03.doc Page 318 Friday, January 17, 1997 12:59 PM

3-319

INSTRUCTION SET REFERENCE

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port (Continued)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

If a memory operand effective address is outside the limit of the CS, DS,
ES, FS, or GS segment.

If the segment register contains a null segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 319 Friday, January 17, 1997 12:59 PM

3-320

INSTRUCTION SET REFERENCE

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Description

Packs and saturates signed words into bytes (PACKSSWB) or signed doublewords into words
(PACKSSDW). The PACKSSWB instruction packs 4 signed words from the destination operand
(first operand) and 4 signed words from the source operand (second operand) into 8 signed bytes
in the destination operand. If the signed value of a word is beyond the range of a signed byte
(that is, greater than 7FH or less than 80H), the saturated byte value of 7FH or 80H, respectively,
is stored into the destination.

The PACKSSDW instruction packs 2 signed doublewords from the destination operand (first
operand) and 2 signed doublewords from the source operand (second operand) into 4 signed
words in the destination operand (see Figure 3-6). If the signed value of a doubleword is beyond
the range of a signed word (that is, greater than 7FFFH or less than 8000H), the saturated word
value of 7FFFH or 8000H, respectively, is stored into the destination.

The destination operand for either the PACKSSWB or PACKSSDW instruction must be an
MMX register; the source operand may be either an MMX register or a quadword memory loca-
tion.

Operation

IF instruction is PACKSSWB
THEN

DEST(7..0) ← SaturateSignedWordToSignedByte DEST(15..0);
DEST(15..8) ← SaturateSignedWordToSignedByte DEST(31..16);
DEST(23..16) ← SaturateSignedWordToSignedByte DEST(47..32);
DEST(31..24) ← SaturateSignedWordToSignedByte DEST(63..48);

Opcode Instruction Description

0F 63 /r PACKSSWB mm,
mm/m64

Packs and saturate pack 4 signed words from mm and 4
signed words from mm/m64 into 8 signed bytes in mm.

0F 6B /r PACKSSDW mm,
mm/m64

Pack and saturate 2 signed doublewords from mm and 2
signed doublewords from mm/m64 into 4 signed words
in mm.

Figure 3-6. Operation of the PACKSSDW Instruction

mm/m64

mm

D C B A

D’ C’ B’ A’

mm

PACKSSDW mm, mm/m64

ch01.bk : ch03.doc Page 320 Friday, January 17, 1997 12:59 PM

3-321

INSTRUCTION SET REFERENCE

PACKSSWB/PACKSSDW—Pack with Signed Saturation
(Continued)

DEST(39..32) ← SaturateSignedWordToSignedByte SRC(15..0);
DEST(47..40) ← SaturateSignedWordToSignedByte SRC(31..16);
DEST(55..48) ← SaturateSignedWordToSignedByte SRC(47..32);
DEST(63..56) ← SaturateSignedWordToSignedByte SRC(63..48);

ELSE (* instruction is PACKSSDW *)
DEST(15..0) ← SaturateSignedDoublewordToSignedWord DEST(31..0);
DEST(31..16) ← SaturateSignedDoublewordToSignedWord DEST(63..32);
DEST(47..32) ← SaturateSignedDoublewordToSignedWord SRC(31..0);
DEST(63..48) ← SaturateSignedDoublewordToSignedWord SRC(63..32);

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

ch01.bk : ch03.doc Page 321 Friday, January 17, 1997 12:59 PM

3-322

INSTRUCTION SET REFERENCE

PACKSSWB/PACKSSDW—Pack with Signed Saturation
(Continued)

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 322 Friday, January 17, 1997 12:59 PM

3-323

INSTRUCTION SET REFERENCE

PACKUSWB—Pack with Unsigned Saturation

Description

Packs and saturates 4 signed words from the destination operand (first operand) and 4 signed
words from the source operand (second operand) into 8 unsigned bytes in the destination
operand (see Figure 3-7). If the signed value of a word is beyond the range of an unsigned byte
(that is, greater than FFH or less than 00H), the saturated byte value of FFH or 00H, respectively,
is stored into the destination.

The destination operand must be an MMX register; the source operand may be either an MMX
register or a quadword memory location.

Operation

DEST(7..0) ← SaturateSignedWordToUnsignedByte DEST(15..0);
DEST(15..8) ← SaturateSignedWordToUnsignedByte DEST(31..16);
DEST(23..16) ← SaturateSignedWordToUnsignedByte DEST(47..32);
DEST(31..24) ← SaturateSignedWordToUnsignedByte DEST(63..48);
DEST(39..32) ← SaturateSignedWordToUnsignedByte SRC(15..0);
DEST(47..40) ← SaturateSignedWordToUnsignedByte SRC(31..16);
DEST(55..48) ← SaturateSignedWordToUnsignedByte SRC(47..32);
DEST(63..56) ← SaturateSignedWordToUnsignedByte SRC(63..48);

Flags Affected

None.

Opcode Instruction Description

0F 67 /r PACKUSWB mm,
mm/m64

Pack and saturate 4 signed words from mm and 4
signed words from mm/m64 into 8 unsigned bytes in
mm.

Figure 3-7. Operation of the PACKUSWB Instruction

PACKUSWB mm, mm/m64
mm/m64 mm

mm

3006014

H

G

F

E

H'

G'

F'

E'

D'

C'

B'

A'

D

C

B

A

ch01.bk : ch03.doc Page 323 Friday, January 17, 1997 12:59 PM

3-324

INSTRUCTION SET REFERENCE

PACKUSWB—Pack with Unsigned Saturation (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 324 Friday, January 17, 1997 12:59 PM

3-325

INSTRUCTION SET REFERENCE

PADDB/PADDW/PADDD—Packed Add

Description

Adds the individual data elements (bytes, words, or doublewords) of the source operand (second
operand) to the individual data elements of the destination operand (first operand). (See Figure
3-8.) If the result of an individual addition exceeds the range for the specified data type (over-
flows), the result is wrapped around, meaning that the result is truncated so that only the lower
(least significant) bits of the result are returned (that is, the carry is ignored).

The destination operand must be an MMX register; the source operand can be either an MMX
register or a quadword memory location.

The PADDB instruction adds the bytes of the source operand to the bytes of the destination
operand and stores the results to the destination operand. When an individual result is too large
to be represented in 8 bits, the lower 8 bits of the result are written to the destination operand
and therefore the result wraps around.

The PADDW instruction adds the words of the source operand to the words of the destination
operand and stores the results to the destination operand. When an individual result is too large
to be represented in 16 bits, the lower 16 bits of the result are written to the destination operand
and therefore the result wraps around.

Opcode Instruction Description

0F FC /r PADDB mm, mm/m64 Add packed bytes from mm/m64 to packed bytes in mm.

0F FD /r PADDW mm,
mm/m64

Add packed words from mm/m64 to packed words in mm.

0F FE /r PADDD mm,
mm/m64

Add packed doublewords from mm/m64 to packed
doublewords in mm.

Figure 3-8. Operation of the PADDW Instruction

PADDW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

0111111111111111 1001011000111111

 3006015

ch01.bk : ch03.doc Page 325 Friday, January 17, 1997 12:59 PM

3-326

INSTRUCTION SET REFERENCE

PADDB/PADDW/PADDD—Packed Add (Continued)
The PADDD instruction adds the doublewords of the source operand to the doublewords of the
destination operand and stores the results to the destination operand. When an individual result
is too large to be represented in 32 bits, the lower 32 bits of the result are written to the destina-
tion operand and therefore the result wraps around.

Note that like the integer ADD instruction, the PADDB, PADDW, and PADDD instructions can
operate on either unsigned or signed (two's complement notation) packed integers. Unlike the
integer instructions, none of the MMX instructions affect the EFLAGS register. With MMX
instructions, there are no carry or overflow flags to indicate when overflow has occurred, so the
software must control the range of values or else use the “with saturation” MMX instructions.

Operation

IF instruction is PADDB
THEN

DEST(7..0) ← DEST(7..0) + SRC(7..0);
DEST(15..8) ← DEST(15..8) + SRC(15..8);
DEST(23..16) ← DEST(23..16)+ SRC(23..16);
DEST(31..24) ← DEST(31..24) + SRC(31..24);
DEST(39..32) ← DEST(39..32) + SRC(39..32);
DEST(47..40) ← DEST(47..40)+ SRC(47..40);
DEST(55..48) ← DEST(55..48) + SRC(55..48);
DEST(63..56) ← DEST(63..56) + SRC(63..56);

ELSEIF instruction is PADDW
THEN

DEST(15..0) ← DEST(15..0) + SRC(15..0);
DEST(31..16) ← DEST(31..16) + SRC(31..16);
DEST(47..32) ← DEST(47..32) + SRC(47..32);
DEST(63..48) ← DEST(63..48) + SRC(63..48);

ELSE (* instruction is PADDD *)
DEST(31..0) ← DEST(31..0) + SRC(31..0);
DEST(63..32) ← DEST(63..32) + SRC(63..32);

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

ch01.bk : ch03.doc Page 326 Friday, January 17, 1997 12:59 PM

3-327

INSTRUCTION SET REFERENCE

PADDB/PADDW/PADDD—Packed Add (Continued)

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 327 Friday, January 17, 1997 12:59 PM

3-328

INSTRUCTION SET REFERENCE

PADDSB/PADDSW—Packed Add with Saturation

Description

Adds the individual signed data elements (bytes or words) of the source operand (second
operand) to the individual signed data elements of the destination operand (first operand). (See
Figure 3-9.) If the result of an individual addition exceeds the range for the specified data type,
the result is saturated. The destination operand must be an MMX register; the source operand
can be either an MMX register or a quadword memory location.

The PADDSB instruction adds the signed bytes of the source operand to the signed bytes of the
destination operand and stores the results to the destination operand. When an individual result
is beyond the range of a signed byte (that is, greater than 7FH or less than 80H), the saturated
byte value of 7FH or 80H, respectively, is written to the destination operand.

The PADDSW instruction adds the signed words of the source operand to the signed words of
the destination operand and stores the results to the destination operand. When an individual
result is beyond the range of a signed word (that is, greater than 7FFFH or less than 8000H), the
saturated word value of 7FFFH or 8000H, respectively, is written to the destination operand.

Operation

IF instruction is PADDSB
THEN

DEST(7..0) ← SaturateToSignedByte(DEST(7..0) + SRC (7..0)) ;
DEST(15..8) ← SaturateToSignedByte(DEST(15..8) + SRC(15..8));

Opcode Instruction Description

0F EC /r PADDSB mm,
mm/m64

Add signed packed bytes from mm/m64 to signed
packed bytes in mm and saturate.

0F ED /r PADDSW mm,
mm/m64

Add signed packed words from mm/m64 to signed
packed words in mm and saturate.

Figure 3-9. Operation of the PADDSW Instruction

PADDSW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

1000000000000000 0111111111111111

3006016

ch01.bk : ch03.doc Page 328 Friday, January 17, 1997 12:59 PM

3-329

INSTRUCTION SET REFERENCE

PADDSB/PADDSW—Packed Add with Saturation (Continued)

DEST(23..16) ← SaturateToSignedByte(DEST(23..16)+ SRC(23..16));
DEST(31..24) ← SaturateToSignedByte(DEST(31..24) + SRC(31..24));
DEST(39..32) ← SaturateToSignedByte(DEST(39..32) + SRC(39..32));
DEST(47..40) ← SaturateToSignedByte(DEST(47..40)+ SRC(47..40));
DEST(55..48) ← SaturateToSignedByte(DEST(55..48) + SRC(55..48));
DEST(63..56) ← SaturateToSignedByte(DEST(63..56) + SRC(63..56));

ELSE { (* instruction is PADDSW *)
DEST(15..0) ← SaturateToSignedWord(DEST(15..0) + SRC(15..0));
DEST(31..16) ← SaturateToSignedWord(DEST(31..16) + SRC(31..16));
DEST(47..32) ← SaturateToSignedWord(DEST(47..32) + SRC(47..32));
DEST(63..48) ← SaturateToSignedWord(DEST(63..48) + SRC(63..48));

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

ch01.bk : ch03.doc Page 329 Friday, January 17, 1997 12:59 PM

3-330

INSTRUCTION SET REFERENCE

PADDSB/PADDSW—Packed Add with Saturation (Continued)

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 330 Friday, January 17, 1997 12:59 PM

3-331

INSTRUCTION SET REFERENCE

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation

Description

Adds the individual unsigned data elements (bytes or words) of the packed source operand
(second operand) to the individual unsigned data elements of the packed destination operand
(first operand). (See Figure 3-10.) If the result of an individual addition exceeds the range for
the specified unsigned data type, the result is saturated. The destination operand must be an
MMX register; the source operand can be either an MMX register or a quadword memory loca-
tion.

The PADDUSB instruction adds the unsigned bytes of the source operand to the unsigned bytes
of the destination operand and stores the results to the destination operand. When an individual
result is beyond the range of an unsigned byte (that is, greater than FFH), the saturated unsigned
byte value of FFH is written to the destination operand.

The PADDUSW instruction adds the unsigned words of the source operand to the unsigned
words of the destination operand and stores the results to the destination operand. When an indi-
vidual result is beyond the range of an unsigned word (that is, greater than FFFFH), the saturated
unsigned word value of FFFFH is written to the destination operand.

Opcode Instruction Description

0F DC /r PADDUSB mm,
mm/m64

Add unsigned packed bytes from mm/m64 to
unsigned packed bytes in mm and saturate.

0F DD /r PADDUSW mm,
mm/m64

Add unsigned packed words from mm/m64 to
unsigned packed words in mm and saturate.

Figure 3-10. Operation of the PADDUSB Instruction

PADDUSB mm, mm/m64

mm

mm/m64

mm

10000000 01111111 00111000

11111111 00010111 00000111

11111111 10010110 00111111

+ ++ +

3006017

+ ++ +

ch01.bk : ch03.doc Page 331 Friday, January 17, 1997 12:59 PM

3-332

INSTRUCTION SET REFERENCE

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation
(Continued)

Operation

IF instruction is PADDUSB
THEN

DEST(7..0) ← SaturateToUnsignedByte(DEST(7..0) + SRC (7..0));
DEST(15..8) ← SaturateToUnsignedByte(DEST(15..8) + SRC(15..8));
DEST(23..16) ← SaturateToUnsignedByte(DEST(23..16)+ SRC(23..16));
DEST(31..24) ← SaturateToUnsignedByte(DEST(31..24) + SRC(31..24));
DEST(39..32) ← SaturateToUnsignedByte(DEST(39..32) + SRC(39..32));
DEST(47..40) ← SaturateToUnsignedByte(DEST(47..40)+ SRC(47..40));
DEST(55..48) ← SaturateToUnsignedByte(DEST(55..48) + SRC(55..48));
DEST(63..56) ← SaturateToUnsignedByte(DEST(63..56) + SRC(63..56));

ELSE { (* instruction is PADDUSW *)
DEST(15..0) ← SaturateToUnsignedWord(DEST(15..0) + SRC(15..0));
DEST(31..16) ← SaturateToUnsignedWord(DEST(31..16) + SRC(31..16));
DEST(47..32) ← SaturateToUnsignedWord(DEST(47..32) + SRC(47..32));
DEST(63..48) ← SaturateToUnsignedWord(DEST(63..48) + SRC(63..48));

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

ch01.bk : ch03.doc Page 332 Friday, January 17, 1997 12:59 PM

3-333

INSTRUCTION SET REFERENCE

PADDUSB/PADDUSW—Packed Add Unsigned with Saturation
(Continued)

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 333 Friday, January 17, 1997 12:59 PM

3-334

INSTRUCTION SET REFERENCE

PAND—Logical AND

Description

Performs a bitwise logical AND operation on the quadword source (second) and destination
(first) operands and stores the result in the destination operand location (see Figure 3-11). The
source operand can be an MMX register or a quadword memory location; the destination
operand must be an MMX register. Each bit of the result of the PAND instruction is set to 1 if
the corresponding bits of the operands are both 1; otherwise it is made zero

Operation

DEST ← DEST AND SRC;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F DB /r PAND mm, mm/m64 AND quadword from mm/m64 to quadword in mm.

Figure 3-11. Operation of the PAND Instruction

PAND mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

0001000011011000000000000000000100010100100010000001010100010101

3006019

&

ch01.bk : ch03.doc Page 334 Friday, January 17, 1997 12:59 PM

3-335

INSTRUCTION SET REFERENCE

PAND—Logical AND (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 335 Friday, January 17, 1997 12:59 PM

3-336

INSTRUCTION SET REFERENCE

PANDN—Logical AND NOT

Description

Performs a bitwise logical NOT on the quadword destination operand (first operand). Then, the
instruction performs a bitwise logical AND operation on the inverted destination operand and
the quadword source operand (second operand). (See Figure 3-12.) Each bit of the result of the
AND operation is set to one if the corresponding bits of the source and inverted destination bits
are one; otherwise it is set to zero. The result is stored in the destination operand location.

The source operand can be an MMX register or a quadword memory location; the destination
operand must be an MMX register.

Operation

DEST ← (NOT DEST) AND SRC;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

Opcode Instruction Description

0F DF /r PANDN mm, mm/m64 AND quadword from mm/m64 to NOT quadword in mm.

Figure 3-12. Operation of the PANDN Instruction

~

&
mm/m64

mm

mm 11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

PANDN mm, mm/m64

ch01.bk : ch03.doc Page 336 Friday, January 17, 1997 12:59 PM

3-337

INSTRUCTION SET REFERENCE

PANDN—Logical AND NOT (Continued)

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 337 Friday, January 17, 1997 12:59 PM

3-338

INSTRUCTION SET REFERENCE

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal

Description

Compares the individual data elements (bytes, words, or doublewords) in the destination
operand (first operand) to the corresponding data elements in the source operand (second
operand). (See Figure 3-13.) If a pair of data elements are equal, the corresponding data element
in the destination operand is set to all ones; otherwise, it is set to all zeros. The destination
operand must be an MMX register; the source operand may be either an MMX register or a 64-
bit memory location.

The PCMPEQB instruction compares the bytes in the destination operand to the corresponding
bytes in the source operand, with the bytes in the destination operand being set according to the
results.

The PCMPEQW instruction compares the words in the destination operand to the corresponding
words in the source operand, with the words in the destination operand being set according to
the results.

The PCMPEQD instruction compares the doublewords in the destination operand to the corre-
sponding doublewords in the source operand, with the doublewords in the destination operand
being set according to the results.

Opcode Instruction Description

0F 74 /r PCMPEQB mm, mm/m64 Compare packed bytes in mm/m64 with packed bytes in mm
for equality.

0F 75 /r PCMPEQW mm, mm/m64 Compare packed words in mm/m64 with packed words in
mm for equality.

0F 76 /r PCMPEQD mm, mm/m64 Compare packed doublewords in mm/m64 with packed
doublewords in mm for equality.

Figure 3-13. Operation of the PCMPEQW Instruction

PCMPEQW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

1111111111111111

0000000000000001

0000000000000000

0000000000000000

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

1111111111111111

True TrueFalse False

3006020

== ==== ==

ch01.bk : ch03.doc Page 338 Friday, January 17, 1997 12:59 PM

3-339

INSTRUCTION SET REFERENCE

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal
(Continued)

Operation

IF instruction is PCMPEQB
THEN

IF DEST(7..0) = SRC(7..0)
THEN DEST(7 0) ← FFH;
ELSE DEST(7..0) ← 0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) = SRC(63..56)

THEN DEST(63..56) ← FFH;
ELSE DEST(63..56) ← 0;

ELSE IF instruction is PCMPEQW
THEN

IF DEST(15..0) = SRC(15..0)
THEN DEST(15..0) ← FFFFH;
ELSE DEST(15..0) ← 0;

* Continue comparison of second and third words in DEST and SRC *
IF DEST(63..48) = SRC(63..48)

THEN DEST(63..48) ← FFFFH;
ELSE DEST(63..48) ← 0;

ELSE (* instruction is PCMPEQD *)
IF DEST(31..0) = SRC(31..0)

THEN DEST(31..0) ← FFFFFFFFH;
ELSE DEST(31..0) ← 0;

IF DEST(63..32) = SRC(63..32)
THEN DEST(63..32) ← FFFFFFFFH;
ELSE DEST(63..32) ← 0;

FI;

Flags Affected

None:

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 339 Friday, January 17, 1997 12:59 PM

3-340

INSTRUCTION SET REFERENCE

PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal
(Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 340 Friday, January 17, 1997 12:59 PM

3-341

INSTRUCTION SET REFERENCE

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater
Than

Description

Compare the individual signed data elements (bytes, words, or doublewords) in the destination
operand (first operand) to the corresponding signed data elements in the source operand (second
operand). (See Figure 3-14.) If a data element in the destination operand is greater than its corre-
sponding data element in the source operand, the data element in the destination operand is set
to all ones; otherwise, it is set to all zeros. The destination operand must be an MMX register;
the source operand may be either an MMX register or a 64-bit memory location.

The PCMPGTB instruction compares the signed bytes in the destination operand to the corre-
sponding signed bytes in the source operand, with the bytes in the destination operand being set
according to the results.

The PCMPGTW instruction compares the signed words in the destination operand to the corre-
sponding signed words in the source operand, with the words in the destination operand being
set according to the results.

The PCMPGTD instruction compares the signed doublewords in the destination operand to the
corresponding signed doublewords in the source operand, with the doublewords in the destina-
tion operand being set according to the results.

Opcode Instruction Description

0F 64 /r PCMPGTB mm,
mm/m64

Compare packed bytes in mm with packed bytes in
mm/m64 for greater value.

0F 65 /r PCMPGTW mm,
mm/m64

Compare packed words in mm with packed words in
mm/m64 for greater value.

0F 66 /r PCMPGTD mm,
mm/m64

Compare packed doublewords in mm with packed
doublewords in mm/m64 for greater value.

Figure 3-14. Operation of the PCMPGTW Instruction

PCMPGTW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

0000000000000000

0000000000000001

0000000000000000

1111111111111111

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

0000000000000000

False FalseTrue False

3006021

> >> >

ch01.bk : ch03.doc Page 341 Friday, January 17, 1997 12:59 PM

3-342

INSTRUCTION SET REFERENCE

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater
Than (Continued)

Operation

IF instruction is PCMPGTB
THEN

IF DEST(7..0) > SRC(7..0)
THEN DEST(7 0) ← FFH;
ELSE DEST(7..0) ← 0;

* Continue comparison of second through seventh bytes in DEST and SRC *
IF DEST(63..56) > SRC(63..56)

THEN DEST(63..56) ← FFH;
ELSE DEST(63..56) ← 0;

ELSE IF instruction is PCMPGTW
THEN

IF DEST(15..0) > SRC(15..0)
THEN DEST(15..0) ← FFFFH;
ELSE DEST(15..0) ←0;

* Continue comparison of second and third bytes in DEST and SRC *
IF DEST(63..48) > SRC(63..48)

THEN DEST(63..48) ← FFFFH;
ELSE DEST(63..48) ← 0;

ELSE { (* instruction is PCMPGTD *)
IF DEST(31..0) > SRC(31..0)

THEN DEST(31..0) ← FFFFFFFFH;
ELSE DEST(31..0) ← 0;

IF DEST(63..32) > SRC(63..32)
THEN DEST(63..32) ← FFFFFFFFH;
ELSE DEST(63..32) ← 0;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 342 Friday, January 17, 1997 12:59 PM

3-343

INSTRUCTION SET REFERENCE

PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater
Than (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 343 Friday, January 17, 1997 12:59 PM

3-344

INSTRUCTION SET REFERENCE

PMADDWD—Packed Multiply and Add

Description

Multiplies the individual signed words of the destination operand by the corresponding signed
words of the source operand, producing four signed, doubleword results (see Figure 3-15). The
two doubleword results from the multiplication of the high-order words are added together and
stored in the upper doubleword of the destination operand; the two doubleword results from the
multiplication of the low-order words are added together and stored in the lower doubleword of
the destination operand. The destination operand must be an MMX register; the source operand
may be either an MMX register or a 64-bit memory location.

The PMADDWD instruction wraps around to 80000000H only when all four words of both the
source and destination operands are 8000H.

Operation

DEST(31..0) ← (DEST(15..0) ∗ SRC(15..0)) + (DEST(31..16) ∗ SRC(31..16));
DEST(63..32) ← (DEST(47..32) ∗ SRC(47..32)) + (DEST(63..48) ∗ SRC(63..48));

Flags Affected

None.

Opcode Instruction Description

0F F5 /r PMADDWD mm,
mm/m64

Multiply the packed words in mm by the packed
words in mm/m64. Add the 32-bit pairs of results
and store in mm as doubleword

Figure 3-15. Operation of the PMADDWD Instruction

∗ ∗ ∗∗
01110001110001110111000111000111

1000000000000000 0000010000000000

1100100011100011 1001110000000000

+ +
mm

PMADDWD mm, mm/m64

mm/m64

mm

ch01.bk : ch03.doc Page 344 Friday, January 17, 1997 12:59 PM

3-345

INSTRUCTION SET REFERENCE

PMADDWD—Packed Multiply and Add (Continued)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 345 Friday, January 17, 1997 12:59 PM

3-346

INSTRUCTION SET REFERENCE

PMULHW—Packed Multiply High

Description

Multiplies the four signed words of the source operand (second operand) by the four signed
words of the destination operand (first operand), producing four signed, doubleword, interme-
diate results (see Figure 3-16). The high-order word of each intermediate result is then written
to its corresponding word location in the destination operand. The destination operand must be
an MMX register; the source operand may be either an MMX register or a 64-bit memory loca-
tion.

Operation

DEST(15..0) ← HighOrderWord(DEST(15..0) ∗ SRC(15..0));
DEST(31..16) ← HighOrderWord(DEST(31..16) ∗ SRC(31..16));
DEST(47..32) ← HighOrderWord(DEST(47..32) ∗ SRC(47..32));
DEST(63..48) ← HighOrderWord(DEST(63..48) ∗ SRC(63..48));

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

0F E5 /r PMULHW mm,
mm/m64

Multiply the signed packed words in mm by the
signed packed words in mm/m64, then store the
high-order word of each doubleword result in mm.

Figure 3-16. Operation of the PMULHW Instruction

PMULHW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1100011100011100

0111000111000111

0000010000000000

0000000111000111

High Order High OrderHigh Order High Order

3006022

* ** *

ch01.bk : ch03.doc Page 346 Friday, January 17, 1997 12:59 PM

3-347

INSTRUCTION SET REFERENCE

PMULHW—Packed Multiply High (Continued)

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 347 Friday, January 17, 1997 12:59 PM

3-348

INSTRUCTION SET REFERENCE

PMULLW—Packed Multiply Low

Description

Multiplies the four signed or unsigned words of the source operand (second operand) with the
four signed or unsigned words of the destination operand (first operand), producing four double-
word, intermediate results (see Figure 3-17). The low-order word of each intermediate result is
then written to its corresponding word location in the destination operand. The destination
operand must be an MMX register; the source operand may be either an MMX register or a 64-
bit memory location.

Operation

DEST(15..0) ← LowOrderWord(DEST(15..0) ∗ SRC(15..0));
DEST(31..16) ← LowOrderWord(DEST(31..16) ∗ SRC(31..16));
DEST(47..32) ← LowOrderWord(DEST(47..32) ∗ SRC(47..32));
DEST(63..48) ← LowOrderWord(DEST(63..48) ∗ SRC(63..48));

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

Opcode Instruction Description

0F D5 /r PMULLW mm,
mm/m64

Multiply the packed words in mm with the packed words in
mm/m64, then store the low-order word of each
doubleword result in mm.

Figure 3-17. Operation of the PMULLW Instruction

PMULLW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1000000000000000

0111000111000111

0000010000000000

0001110000000000

Low Order Low OrderLow Order Low Order

3006025

* ** *

ch01.bk : ch03.doc Page 348 Friday, January 17, 1997 12:59 PM

3-349

INSTRUCTION SET REFERENCE

PMULLW—Packed Multiply Low (Continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 349 Friday, January 17, 1997 12:59 PM

3-350

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack

Description

Loads the value from the top of the stack to the location specified with the destination operand
and then increments the stack pointer. The destination operand can be a general-purpose register,
memory location, or segment register.

The address-size attribute of the stack segment determines the stack pointer size (16 bits or 32
bits—the source address size), and the operand-size attribute of the current code segment deter-
mines the amount the stack pointer is incremented (2 bytes or 4 bytes). For example, if these
address- and operand-size attributes are 32, the 32-bit ESP register (stack pointer) is incre-
mented by 4 and, if they are 16, the 16-bit SP register is incremented by 2. (The B flag in the
stack segment’s segment descriptor determines the stack’s address-size attribute, and the D flag
in the current code segment’s segment descriptor, along with prefixes, determines the operand-
size attribute and also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded
into the register must be a valid segment selector. In protected mode, popping a segment selector
into a segment register automatically causes the descriptor information associated with that
segment selector to be loaded into the hidden (shadow) part of the segment register and causes
the selector and the descriptor information to be validated (see the “Operation” section below).

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a
general protection fault. However, any subsequent attempt to reference a segment whose corre-
sponding segment register is loaded with a null value causes a general protection exception
(#GP). In this situation, no memory reference occurs and the saved value of the segment register
is null.

The POP instruction cannot pop a value into the CS register. To load the CS register from the
stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the
POP instruction computes the effective address of the operand after it increments the ESP
register.

Opcode Instruction Description

8F /0 POP m16 Pop top of stack into m16; increment stack pointer

8F /0 POP m32 Pop top of stack into m32; increment stack pointer

58+ rw POP r16 Pop top of stack into r16; increment stack pointer

58+ rd POP r32 Pop top of stack into r32; increment stack pointer

1F POP DS Pop top of stack into DS; increment stack pointer

07 POP ES Pop top of stack into ES; increment stack pointer

17 POP SS Pop top of stack into SS; increment stack pointer

0F A1 POP FS Pop top of stack into FS; increment stack pointer

0F A9 POP GS Pop top of stack into GS; increment stack pointer

ch01.bk : ch03.doc Page 350 Friday, January 17, 1997 12:59 PM

3-351

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack (Continued)

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack
is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution
of the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP
instructions without the danger of having an invalid stack during an interrupt1. However, use of
the LSS instruction is the preferred method of loading the SS and ESP registers.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST ← SS:ESP; (* copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* copy a word *)

ESP ← ESP + 2;
FI;

ELSE (* StackAddrSize = 16*)
IF OperandSize = 16

THEN
DEST ← SS:SP; (* copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* copy a doubleword *)
SP ← SP + 4;

FI;
FI;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SS is loaded;
THEN

IF segment selector is null
THEN #GP(0);

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:

STI
POP SS
POP ESP

interrupts may be recognized before the POP ESP executes, because STI also delays interrupts for one
instruction.

ch01.bk : ch03.doc Page 351 Friday, January 17, 1997 12:59 PM

3-352

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack (Continued)
FI;
IF segment selector index is outside descriptor table limits

OR segment selector's RPL ≠ CPL
OR segment is not a writable data segment
OR DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with non-null selector;
THEN

IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
FI;
IF DS, ES, FS or GS is loaded with a null selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with null segment selector.

If the destination operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

ch01.bk : ch03.doc Page 352 Friday, January 17, 1997 12:59 PM

3-353

INSTRUCTION SET REFERENCE

POP—Pop a Value from the Stack (Continued)

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a nonwrit-
able data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

ch01.bk : ch03.doc Page 353 Friday, January 17, 1997 12:59 PM

3-354

INSTRUCTION SET REFERENCE

POPA/POPAD—Pop All General-Purpose Registers

Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose registers.
The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX, ECX, and EAX (if
the operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX (if the operand-size
attribute is 16). (These instructions reverse the operation of the PUSHA/PUSHAD instructions.)
The value on the stack for the ESP or SP register is ignored. Instead, the ESP or SP register is
incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode. The
POPA instruction is intended for use when the operand-size attribute is 16 and the POPAD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand
size to 16 when POPA is used and to 32 when POPAD is used (using the operand-size override
prefix [66H] if necessary). Others may treat these mnemonics as synonyms (POPA/POPAD) and
use the current setting of the operand-size attribute to determine the size of values to be popped
from the stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

Operation

IF OperandSize = 32 (* instruction = POPAD *)
THEN

EDI ← Pop();
ESI ← Pop();
EBP ← Pop();
increment ESP by 4 (* skip next 4 bytes of stack *)
EBX ← Pop();
EDX ← Pop();
ECX ← Pop();
EAX ← Pop();

ELSE (* OperandSize = 16, instruction = POPA *)
DI ← Pop();
SI ← Pop();
BP ← Pop();
increment ESP by 2 (* skip next 2 bytes of stack *)
BX ← Pop();
DX ← Pop();
CX ← Pop();
AX ← Pop();

FI;

Opcode Instruction Description

61 POPA Pop DI, SI, BP, BX, DX, CX, and AX

61 POPAD Pop EDI, ESI, EBP, EBX, EDX, ECX, and EAX

ch01.bk : ch03.doc Page 354 Friday, January 17, 1997 12:59 PM

3-355

INSTRUCTION SET REFERENCE

POPA/POPAD—Pop All General-Purpose Registers (Continued)

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real-Address Mode Exceptions

#SS If the starting or ending stack address is not within the stack segment.

Virtual-8086 Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

ch01.bk : ch03.doc Page 355 Friday, January 17, 1997 12:59 PM

3-356

INSTRUCTION SET REFERENCE

POPF/POPFD—Pop Stack into EFLAGS Register

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is
32) and stores the value in the EFLAGS register or pops a word from the top of the stack (if the
operand-size attribute is 16) and stores it in the lower 16 bits of the EFLAGS register (that is,
the FLAGS register). (These instructions reverse the operation of the PUSHF/PUSHFD instruc-
tions.)

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode.
The POPF instruction is intended for use when the operand-size attribute is 16 and the POPFD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand
size to 16 when POPF is used and to 32 when POPFD is used. Others may treat these mnemonics
as synonyms (POPF/POPFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be popped from the stack, regardless of the mnemonic used.

The effect of the POPF/POPFD instructions on the EFLAGS register changes slightly,
depending on the mode of operation of the processor. When the processor is operating in
protected mode at privilege level 0 (or in real-address mode, which is equivalent to privilege
level 0), all the non-reserved flags in the EFLAGS register except the VIP, VIF, and VM flags
can be modified. The VIP and VIF flags are cleared, and the VM flag is unaffected.

When operating in protected mode, with a privilege level greater than 0, but less than or equal
to IOPL, all the flags can be modified except the IOPL field and the VIP, VIF, and VM flags.
Here, the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM flag is unaf-
fected. The interrupt flag (IF) is altered only when executing at a level at least as privileged as
the IOPL. If a POPF/POPFD instruction is executed with insufficient privilege, an exception
does not occur, but the privileged bits do not change.

When operating in virtual-8086 mode, the I/O privilege level (IOPL) must be equal to 3 to use
POPF/POPFD instructions and the VM, RF, IOPL, VIP, and VIF flags are unaffected. If the
IOPL is less than 3, the POPF/POPFD instructions cause a general-protection exception (#GP).

See the section titled “EFLAGS Register” in Chapter 3 of the Intel Architecture Software Devel-
oper’s Manual, Volume 1, for information about the EFLAGS registers.

Operation

IF VM=0 (* Not in Virtual-8086 Mode *)
THEN IF CPL=0

THEN
IF OperandSize = 32;

THEN

Opcode Instruction Description

9D POPF Pop top of stack into lower 16 bits of EFLAGS

9D POPFD Pop top of stack into EFLAGS

ch01.bk : ch03.doc Page 356 Friday, January 17, 1997 12:59 PM

3-357

INSTRUCTION SET REFERENCE

POPF/POPFD—Pop Stack into EFLAGS Register (Continued)
EFLAGS ← Pop();
(* All non-reserved flags except VIP, VIF, and VM can be modified; *)
(* VIP and VIF are cleared; VM is unaffected*)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* All non-reserved flags can be modified; *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32;
THEN

EFLAGS ← Pop()
(* All non-reserved bits except IOPL, VIP, and VIF can be modified; *)
(* IOPL is unaffected; VIP and VIF are cleared; VM is unaffected *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop();
(* All non-reserved bits except IOPL can be modified *)
(* IOPL is unaffected *)

FI;
FI;
ELSE (* In Virtual-8086 Mode *)

IF IOPL=3
THEN IF OperandSize=32

THEN
EFLAGS ← Pop()
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF *)
(* can be modified; VM, RF, IOPL, VIP, and VIF are unaffected *)

ELSE
EFLAGS[15:0] ← Pop()
(* All non-reserved bits except IOPL can be modified *)
(* IOPL is unaffected *)

FI;
ELSE (* IOPL < 3 *)

#GP(0); (* trap to virtual-8086 monitor *)
FI;

FI;
FI;

Flags Affected

All flags except the reserved bits and the VM bit.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 357 Friday, January 17, 1997 12:59 PM

3-358

INSTRUCTION SET REFERENCE

POPF/POPFD—Pop Stack into EFLAGS Register (Continued)

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real-Address Mode Exceptions

#SS If the top of stack is not within the stack segment.

Virtual-8086 Mode Exceptions

#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with an
operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

ch01.bk : ch03.doc Page 358 Friday, January 17, 1997 12:59 PM

3-359

INSTRUCTION SET REFERENCE

POR—Bitwise Logical OR

Description

Performs a bitwise logical OR operation on the quadword source (second) and destination (first)
operands and stores the result in the destination operand location (see Figure 3-18). The source
operand can be an MMX register or a quadword memory location; the destination operand must
be an MMX register. Each bit of the result is made 0 if the corresponding bits of both operands
are 0; otherwise the bit is set to 1.

Operation

DEST ← DEST OR SRC;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

0F EB /r POR mm, mm/m64 OR quadword from mm/m64 to quadword in mm.

Figure 3-18. Operation of the POR Instruction.

POR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1111111111111001010100000011010110111111111011110111011111110111

3006024

ch01.bk : ch03.doc Page 359 Friday, January 17, 1997 12:59 PM

3-360

INSTRUCTION SET REFERENCE

POR—Bitwise Logical OR (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 360 Friday, January 17, 1997 12:59 PM

3-361

INSTRUCTION SET REFERENCE

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical

Description

Shifts the bits in the data elements (words, doublewords, or quadword) in the destination
operand (first operand) to the left by the number of bits specified in the unsigned count operand
(second operand). (See Figure 3-19.) The result of the shift operation is written to the destination
operand. As the bits in the data elements are shifted left, the empty low-order bits are cleared
(set to zero). If the value specified by the count operand is greater than 15 (for words), 31 (for
doublewords), or 63 (for a quadword), then the destination operand is set to all zeros.

The destination operand must be an MMX register; the count operand can be either an MMX
register, a 64-bit memory location, or an 8-bit immediate.

The PSLLW instruction shifts each of the four words of the destination operand to the left by the
number of bits specified in the count operand; the PSLLD instruction shifts each of the two
doublewords of the destination operand; and the PSLLQ instruction shifts the 64-bit quadword
in the destination operand. As the individual data elements are shifted left, the empty low-order
bit positions are filled with zeros.

Opcode Instruction Description

0F F1 /r PSLLW mm, mm/m64 Shift words in mm left by amount specified in mm/m64,
while shifting in zeros.

0F 71 /6, ib PSLLW mm, imm8 Shift words in mm left by imm8, while shifting in zeros.

0F F2 /r PSLLD mm, mm/m64 Shift doublewords in mm left by amount specified in
mm/m64, while shifting in zeros.

0F 72 /6 ib PSLLD mm, imm8 Shift doublewords in mm by imm8, while shifting in zeros.

0F F3 /r PSLLQ mm, mm/m64 Shift mm left by amount specified in mm/m64, while
shifting in zeros.

0F 73 /6 ib PSLLQ mm, imm8 Shift mm left by Imm8, while shifting in zeros.

Figure 3-19. Operation of the PSLLW Instruction

PSLLW mm, 2

mm

mm

1111111111111100

1111111111110000

0001000111000111

0100011100011100

shift left

shift left shift left shift left

3006026

ch01.bk : ch03.doc Page 361 Friday, January 17, 1997 12:59 PM

3-362

INSTRUCTION SET REFERENCE

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical (Continued)

Operation

IF instruction is PSLLW
THEN

DEST(15..0) ← DEST(15..0) << COUNT;
DEST(31..16) ← DEST(31..16) << COUNT;
DEST(47..32) ← DEST(47..32) << COUNT;
DEST(63..48) ← DEST(63..48) << COUNT;

ELSE IF instruction is PSLLD
THEN {

DEST(31..0) ← DEST(31..0) << COUNT;
DEST(63..32) ← DEST(63..32) << COUNT;

ELSE (* instruction is PSLLQ *)
DEST ← DEST << COUNT;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

ch01.bk : ch03.doc Page 362 Friday, January 17, 1997 12:59 PM

3-363

INSTRUCTION SET REFERENCE

PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical (Continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 363 Friday, January 17, 1997 12:59 PM

3-364

INSTRUCTION SET REFERENCE

PSRAW/PSRAD—Packed Shift Right Arithmetic

Description

Shifts the bits in the data elements (words or doublewords) in the destination operand (first
operand) to the right by the amount of bits specified in the unsigned count operand (second
operand). (See Figure 3-20.) The result of the shift operation is written to the destination
operand. The empty high-order bits of each element are filled with the initial value of the sign
bit of the data element. If the value specified by the count operand is greater than 15 (for words)
or 31 (for doublewords), each destination data element is filled with the initial value of the sign
bit of the element.

The destination operand must be an MMX register; the count operand (source operand) can be
either an MMX register, a 64-bit memory location, or an 8-bit immediate.

The PSRAW instruction shifts each of the four words in the destination operand to the right by
the number of bits specified in the count operand; the PSRAD instruction shifts each of the two
doublewords in the destination operand. As the individual data elements are shifted right, the
empty high-order bit positions are filled with the sign value.

Operation
IF instruction is PSRAW

Opcode Instruction Description

0F E1 /r PSRAW mm,
mm/m64

Shift words in mm right by amount specified in mm/m64
while shifting in sign bits.

0F 71 /4 ib PSRAW mm, imm8 Shift words in mm right by imm8 while shifting in sign
bits

0F E2 /r PSRAD mm,
mm/m64

Shift doublewords in mm right by amount specified in
mm/m64 while shifting in sign bits.

0F 72 /4 ib PSRAD mm, imm8 Shift doublewords in mm right by imm8 while shifting in
sign bits.

Figure 3-20. Operation of the PSRAW Instruction

PSRAW mm, 2

mm

mm

1111111111111100

1111111111111111

1101000111000111

1111010001110001

shift right shift rightshift right shift right

3006048

ch01.bk : ch03.doc Page 364 Friday, January 17, 1997 12:59 PM

3-365

INSTRUCTION SET REFERENCE

PSRAW/PSRAD—Packed Shift Right Arithmetic (Continued)
THEN

DEST(15..0) ← SignExtend (DEST(15..0) >> COUNT);
DEST(31..16) ← SignExtend (DEST(31..16) >> COUNT);
DEST(47..32) ← SignExtend (DEST(47..32) >> COUNT);
DEST(63..48) ← SignExtend (DEST(63..48) >> COUNT);

ELSE { (*instruction is PSRAD *)
DEST(31..0) ← SignExtend (DEST(31..0) >> COUNT);
DEST(63..32) ← SignExtend (DEST(63..32) >> COUNT);

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

ch01.bk : ch03.doc Page 365 Friday, January 17, 1997 12:59 PM

3-366

INSTRUCTION SET REFERENCE

PSRAW/PSRAD—Packed Shift Right Arithmetic (Continued)

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 366 Friday, January 17, 1997 12:59 PM

3-367

INSTRUCTION SET REFERENCE

PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical

Description

Shifts the bits in the data elements (words, doublewords, or quadword) in the destination
operand (first operand) to the right by the number of bits specified in the unsigned count operand
(second operand). (See Figure 3-21.) The result of the shift operation is written to the destination
operand. As the bits in the data elements are shifted right, the empty high-order bits are cleared
(set to zero). If the value specified by the count operand is greater than 15 (for words), 31 (for
doublewords), or 63 (for a quadword), then the destination operand is set to all zeros.

The destination operand must be an MMX register; the count operand can be either an MMX
register, a 64-bit memory location, or an 8-bit immediate.

The PSRLW instruction shifts each of the four words of the destination operand to the right by
the number of bits specified in the count operand; the PSRLD instruction shifts each of the two
doublewords of the destination operand; and the PSRLQ instruction shifts the 64-bit quadword
in the destination operand. As the individual data elements are shifted right, the empty high-
order bit positions are filled with zeros.

Opcode Instruction Description

0F D1 /r PSRLW mm, mm/m64 Shift words in mm right by amount specified in
mm/m64 while shifting in zeros.

0F 71 /2 ib PSRLW mm, imm8 Shift words in mm right by imm8.

0F D2 /r PSRLD mm, mm/m64 Shift doublewords in mm right by amount specified
in mm/m64 while shifting in zeros.

0F 72 /2 ib PSRLD mm, imm8 Shift doublewords in mm right by imm8.

0F D3 /r PSRLQ mm, mm/m64 Shift mm right by amount specified in mm/m64
while shifting in zeros.

0F 73 /2 ib PSRLQ mm, imm8 Shift mm right by imm8 while shifting in zeros.

Figure 3-21. Operation of the PSRLW Instruction

PSRLW mm, 2

mm

mm

1111111111111100

0011111111111111

0001000111000111

0000010001110001

shift right shift rightshift right shift right

3006027

ch01.bk : ch03.doc Page 367 Friday, January 17, 1997 12:59 PM

3-368

INSTRUCTION SET REFERENCE

PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical (Continued)

Operation

IF instruction is PSRLW
THEN {

DEST(15..0) ← DEST(15..0) >> COUNT;
DEST(31..16) ← DEST(31..16) >> COUNT;
DEST(47..32) ← DEST(47..32) >> COUNT;
DEST(63..48) ← DEST(63..48) >> COUNT;

ELSE IF instruction is PSRLD
THEN {

DEST(31..0) ← DEST(31..0) >> COUNT;
DEST(63..32) ← DEST(63..32) >> COUNT;

ELSE (* instruction is PSRLQ *)
DEST ← DEST >> COUNT;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

ch01.bk : ch03.doc Page 368 Friday, January 17, 1997 12:59 PM

3-369

INSTRUCTION SET REFERENCE

PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical (Continued)

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 369 Friday, January 17, 1997 12:59 PM

3-370

INSTRUCTION SET REFERENCE

PSUBB/PSUBW/PSUBD—Packed Subtract

Description

Subtracts the individual data elements (bytes, words, or doublewords) of the source operand
(second operand) from the individual data elements of the destination operand (first operand).
(See Figure 3-22.) If the result of a subtraction exceeds the range for the specified data type
(overflows), the result is wrapped around, meaning that the result is truncated so that only the
lower (least significant) bits of the result are returned (that is, the carry is ignored).

The destination operand must be an MMX register; the source operand can be either an MMX
register or a quadword memory location.

The PSUBB instruction subtracts the bytes of the source operand from the bytes of the destina-
tion operand and stores the results to the destination operand. When an individual result is too
large to be represented in 8 bits, the lower 8 bits of the result are written to the destination
operand and therefore the result wraps around.

The PSUBW instruction subtracts the words of the source operand from the words of the desti-
nation operand and stores the results to the destination operand. When an individual result is too
large to be represented in 16 bits, the lower 16 bits of the result are written to the destination
operand and therefore the result wraps around.

Opcode Instruction Description

0F F8 /r PSUBB mm,
mm/m64

Subtract packed bytes in mm/m64 from packed bytes in
mm.

0F F9 /r PSUBW mm,
mm/m64

Subtract packed words inmm/m64 from packed words
in mm.

0F FA /r PSUBD mm,
mm/m64

Subtract packed doublewords in mm/m64 from packed
doublewords in mm.

Figure 3-22. Operation of the PSUBW Instruction

PSUBW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

0111111111111111

0111111100111000

1110100011111001

1001011000111111

3006028

– –– –

ch01.bk : ch03.doc Page 370 Friday, January 17, 1997 12:59 PM

3-371

INSTRUCTION SET REFERENCE

PSUBB/PSUBW/PSUBD—Packed Subtract (Continued)
The PSUBD instruction subtracts the doublewords of the source operand from the doublewords
of the destination operand and stores the results to the destination operand. When an individual
result is too large to be represented in 32 bits, the lower 32 bits of the result are written to the
destination operand and therefore the result wraps around.

Note that like the integer SUB instruction, the PSUBB, PSUBW, and PSUBD instructions can
operate on either unsigned or signed (two's complement notation) packed integers. Unlike the
integer instructions, none of the MMX instructions affect the EFLAGS register. With MMX
instructions, there are no carry or overflow flags to indicate when overflow has occurred, so the
software must control the range of values or else use the “with saturation” MMX instructions.

Operation

IF instruction is PSUBB
THEN

DEST(7..0) ← DEST(7..0) – SRC(7..0);
DEST(15..8) ← DEST(15..8) – SRC(15..8);
DEST(23..16) ← DEST(23..16) – SRC(23..16);
DEST(31..24) ← DEST(31..24) – SRC(31..24);
DEST(39..32) ← DEST(39..32) – SRC(39..32);
DEST(47..40) ← DEST(47..40) – SRC(47..40);
DEST(55..48) ← DEST(55..48) – SRC(55..48);
DEST(63..56) ← DEST(63..56) – SRC(63..56);

ELSEIF instruction is PSUBW
THEN

DEST(15..0) ← DEST(15..0) – SRC(15..0);
DEST(31..16) ← DEST(31..16) – SRC(31..16);
DEST(47..32) ← DEST(47..32) – SRC(47..32);
DEST(63..48) ← DEST(63..48) – SRC(63..48);

ELSE { (* instruction is PSUBD *)
DEST(31..0) ← DEST(31..0) – SRC(31..0);
DEST(63..32) ← DEST(63..32) – SRC(63..32);

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

ch01.bk : ch03.doc Page 371 Friday, January 17, 1997 12:59 PM

3-372

INSTRUCTION SET REFERENCE

PSUBB/PSUBW/PSUBD—Packed Subtract (Continued)

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 372 Friday, January 17, 1997 12:59 PM

3-373

INSTRUCTION SET REFERENCE

PSUBSB/PSUBSW—Packed Subtract with Saturation

Description

Subtracts the individual signed data elements (bytes or words) of the source operand (second
operand) from the individual signed data elements of the destination operand (first operand).
(See Figure 3-23.) If the result of a subtraction exceeds the range for the specified data type, the
result is saturated. The destination operand must be an MMX register; the source operand can
be either an MMX register or a quadword memory location.

The PSUBSB instruction subtracts the signed bytes of the source operand from the signed bytes
of the destination operand and stores the results to the destination operand. When an individual
result is beyond the range of a signed byte (that is, greater than 7FH or less than 80H), the satu-
rated byte value of 7FH or 80H, respectively, is written to the destination operand.

The PSUBSW instruction subtracts the signed words of the source operand from the signed
words of the destination operand and stores the results to the destination operand. When an indi-
vidual result is beyond the range of a signed word (that is, greater than 7FFFH or less than
8000H), the saturated word value of 7FFFH or 8000H, respectively, is written to the destination
operand.

Opcode Instruction Description

0F E8 /r PSUBSB mm,
mm/m64

Subtract signed packed bytes in mm/m64 from signed
packed bytes in mm and saturate.

0F E9 /r PSUBSW mm,
mm/m64

Subtract signed packed words in mm/m64 from
signed packed words in mm and saturate.

Figure 3-23. Operation of the PSUBSW Instruction

PSUBSW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

1000000000000000

0111111100111000

1110100011111001

0111111111111111

3006029

– –– –

ch01.bk : ch03.doc Page 373 Friday, January 17, 1997 12:59 PM

3-374

INSTRUCTION SET REFERENCE

PSUBSB/PSUBSW—Packed Subtract with Saturation (Continued)

Operation

IF instruction is PSUBSB
THEN

DEST(7..0) ← SaturateToSignedByte(DEST(7..0) – SRC (7..0));
DEST(15..8) ← SaturateToSignedByte(DEST(15..8) – SRC(15..8));
DEST(23..16) ← SaturateToSignedByte(DEST(23..16) – SRC(23..16));
DEST(31..24) ← SaturateToSignedByte(DEST(31..24) – SRC(31..24));
DEST(39..32) ← SaturateToSignedByte(DEST(39..32) – SRC(39..32));
DEST(47..40) ← SaturateToSignedByte(DEST(47..40) – SRC(47..40));
DEST(55..48) ← SaturateToSignedByte(DEST(55..48) – SRC(55..48));
DEST(63..56) ← SaturateToSignedByte(DEST(63..56) – SRC(63..56))

ELSE (* instruction is PSUBSW *)
DEST(15..0) ← SaturateToSignedWord(DEST(15..0) – SRC(15..0));
DEST(31..16) ← SaturateToSignedWord(DEST(31..16) – SRC(31..16));
DEST(47..32) ← SaturateToSignedWord(DEST(47..32) – SRC(47..32));
DEST(63..48) ← SaturateToSignedWord(DEST(63..48) – SRC(63..48));

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

ch01.bk : ch03.doc Page 374 Friday, January 17, 1997 12:59 PM

3-375

INSTRUCTION SET REFERENCE

PSUBSB/PSUBSW—Packed Subtract with Saturation (Continued)

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 375 Friday, January 17, 1997 12:59 PM

3-376

INSTRUCTION SET REFERENCE

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation

Description

Subtracts the individual unsigned data elements (bytes or words) of the source operand (second
operand) from the individual unsigned data elements of the destination operand (first operand).
(See Figure 3-24.) If the result of an individual subtraction exceeds the range for the specified
unsigned data type, the result is saturated. The destination operand musts be an MMX register;
the source operand can be either an MMX register or a quadword memory location.

The PSUBUSB instruction subtracts the unsigned bytes of the source operand from the unsigned
bytes of the destination operand and stores the results to the destination operand. When an indi-
vidual result is less than zero (a negative value), the saturated unsigned byte value of 00H is
written to the destination operand.

The PSUBUSW instruction subtracts the unsigned words of the source operand from the
unsigned words of the destination operand and stores the results to the destination operand.
When an individual result is less than zero (a negative value), the saturated unsigned word value
of 0000H is written to the destination operand.

Opcode Instruction Description

0F D8 /r PSUBUSB mm,
mm/m64

Subtract unsigned packed bytes in mm/m64 from
unsigned packed bytes in mm and saturate.

0F D9 /r PSUBUSW mm,
mm/m64

Subtract unsigned packed words in mm/m64 from
unsigned packed words in mm and saturate.

Figure 3-24. Operation of the PSUBUSB Instruction

PSUBUSB mm, mm/m64

mm

mm/m64

mm

10000000

11111111

00000000

01111111

00010111

01101000

11111000

00000111

11110001

3006030

– –––––– –

ch01.bk : ch03.doc Page 376 Friday, January 17, 1997 12:59 PM

3-377

INSTRUCTION SET REFERENCE

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation
(Continued)

Operation

IF instruction is PSUBUSB
THEN

DEST(7..0) ← SaturateToUnsignedByte (DEST(7..0 – SRC (7..0));
DEST(15..8) ← SaturateToUnsignedByte (DEST(15..8) – SRC(15..8));
DEST(23..16) ← SaturateToUnsignedByte (DEST(23..16) – SRC(23..16));
DEST(31..24) ← SaturateToUnsignedByte (DEST(31..24) – SRC(31..24));
DEST(39..32) ← SaturateToUnsignedByte (DEST(39..32) – SRC(39..32));
DEST(47..40) ← SaturateToUnsignedByte (DEST(47..40) – SRC(47..40));
DEST(55..48) ← SaturateToUnsignedByte (DEST(55..48) – SRC(55..48));
DEST(63..56) ← SaturateToUnsignedByte (DEST(63..56) – SRC(63..56));

ELSE { (* instruction is PSUBUSW *)
DEST(15..0) ← SaturateToUnsignedWord (DEST(15..0) – SRC(15..0));
DEST(31..16) ← SaturateToUnsignedWord (DEST(31..16) – SRC(31..16));
DEST(47..32) ← SaturateToUnsignedWord (DEST(47..32) – SRC(47..32));
DEST(63..48) ← SaturateToUnsignedWord (DEST(63..48) – SRC(63..48));

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

ch01.bk : ch03.doc Page 377 Friday, January 17, 1997 12:59 PM

3-378

INSTRUCTION SET REFERENCE

PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation
(Continued)

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 378 Friday, January 17, 1997 12:59 PM

3-379

INSTRUCTION SET REFERENCE

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed
Data

Description

Unpacks and interleaves the high-order data elements (bytes, words, or doublewords) of the
destination operand (first operand) and source operand (second operand) into the destination
operand (see Figure 3-25). The low-order data elements are ignored. The destination operand
must be an MMX register; the source operand may be either an MMX register or a 64-bit
memory location. When the source data comes from a memory operand, the full 64-bit operand
is accessed from memory, but the instruction uses only the high-order 32 bits.

The PUNPCKHBW instruction interleaves the four high-order bytes of the source operand and
the four high-order bytes of the destination operand and writes them to the destination operand.

The PUNPCKHWD instruction interleaves the two high-order words of the source operand and
the two high-order words of the destination operand and writes them to the destination operand.

The PUNPCKHDQ instruction interleaves the high-order doubleword of the source operand and
the high-order doubleword of the destination operand and writes them to the destination
operand.

Opcode Instruction Description

0F 68 /r PUNPCKHBW mm,
mm/m64

Interleave high-order bytes from mm and mm/m64 into
mm.

0F 69 /r PUNPCKHWD mm,
mm/m64

Interleave high-order words from mm and mm/m64 into
mm.

0F 6A /r PUNPCKHDQ mm,
mm/m64

Interleave high-order doublewords from mm and
mm/m64 into mm.

Figure 3-25. High-Order Unpacking and Interleaving of Bytes
With the PUNPCKHBW Instruction

PUNPCKHBW mm, mm/m64
mm/m64 mm

1 1 1 1 1 1 1 12 2 2 2 2 2 2 2

mm
2 1 2 1 2 1 2 1

3006031

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 7 6 6 5 5 4 4

ch01.bk : ch03.doc Page 379 Friday, January 17, 1997 12:59 PM

3-380

INSTRUCTION SET REFERENCE

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed
Data (Continued)
If the source operand is all zeros, the result (stored in the destination operand) contains zero
extensions of the high-order data elements from the original value in the destination operand.
With the PUNPCKHBW instruction the high-order bytes are zero extended (that is, unpacked
into unsigned words), and with the PUNPCKHWD instruction, the high-order words are zero
extended (unpacked into unsigned doublewords).

Operation

IF instruction is PUNPCKHBW
THEN

DEST(7..0) ← DEST(39..32);
DEST(15..8) ← SRC(39..32);
DEST(23..16) ← DEST(47..40);
DEST(31..24) ← SRC(47..40);
DEST(39..32) ← DEST(55..48);
DEST(47..40) ← SRC(55..48);
DEST(55..48) ← DEST(63..56);
DEST(63..56) ← SRC(63..56);

ELSE IF instruction is PUNPCKHW
THEN

DEST(15..0) ← DEST(47..32);
DEST(31..16) ← SRC(47..32);
DEST(47..32) ← DEST(63..48);
DEST(63..48) ← SRC(63..48);

ELSE (* instruction is PUNPCKHDQ *)
DEST(31..0) ← DEST(63..32)
DEST(63..32) ← SRC(63..32);

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

ch01.bk : ch03.doc Page 380 Friday, January 17, 1997 12:59 PM

3-381

INSTRUCTION SET REFERENCE

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed
Data (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 381 Friday, January 17, 1997 12:59 PM

3-382

INSTRUCTION SET REFERENCE

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed
Data

Description

Unpacks and interleaves the low-order data elements (bytes, words, or doublewords) of the
destination and source operands into the destination operand (see Figure 3-26). The destination
operand must be an MMX register; the source operand may be either an MMX register or a
memory location. When source data comes from an MMX register, the upper 32 bits of the
register are ignored. When the source data comes from a memory, only 32-bits are accessed from
memory.

The PUNPCKLBW instruction interleaves the four low-order bytes of the source operand and
the four low-order bytes of the destination operand and writes them to the destination operand.

The PUNPCKLWD instruction interleaves the two low-order words of the source operand and
the two low-order words of the destination operand and writes them to the destination operand.

The PUNPCKLDQ instruction interleaves the low-order doubleword of the source operand and
the low-order doubleword of the destination operand and writes them to the destination operand.

Opcode Instruction Description

0F 60 /r PUNPCKLBW mm,
mm/m32

Interleave low-order bytes from mm and mm/m64
into mm.

0F 61 /r PUNPCKLWD mm,
mm/m32

Interleave low-order words from mm and mm/m64
into mm.

0F 62 /r PUNPCKLDQ mm,
mm/m32

Interleave low-order doublewords from mm and
mm/m64 into mm.

Figure 3-26. Low-Order Unpacking and Interleaving of Bytes
With the PUNPCKLBW Instruction

PUNPCKLBW mm, mm/m32
mm/m32 mm

1 1 1 1 1 1 1 12 2 2 2

mm
2 1 2 1 2 1 2 1

3006032

3 3 2 2 1 1 0 0

3 2 1 0 7 6 5 4 3 2 1 0

ch01.bk : ch03.doc Page 382 Friday, January 17, 1997 12:59 PM

3-383

INSTRUCTION SET REFERENCE

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed
Data (Continued)

If the source operand is all zeros, the result (stored in the destination operand) contains zero
extensions of the high-order data elements from the original value in the destination operand.
With the PUNPCKLBW instruction the low-order bytes are zero extended (that is, unpacked
into unsigned words), and with the PUNPCKLWD instruction, the low-order words are zero
extended (unpacked into unsigned doublewords).

Operation

IF instruction is PUNPCKLBW
THEN

DEST(63..56) ← SRC(31..24);
DEST(55..48) ← DEST(31..24);
DEST(47..40) ← SRC(23..16);
DEST(39..32) ← DEST(23..16);
DEST(31..24) ← SRC(15..8);
DEST(23..16) ← DEST(15..8);
DEST(15..8) ← SRC(7..0);
DEST(7..0) ← DEST(7..0);

ELSE IF instruction is PUNPCKLWD
THEN

DEST(63..48) ← SRC(31..16);
DEST(47..32) ← DEST(31..16);
DEST(31..16) ← SRC(15..0);
DEST(15..0) ← DEST(15..0);

ELSE (* instruction is PUNPCKLDQ *)
DEST(63..32) ← SRC(31..0);
DEST(31..0) ← DEST(31..0);

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

ch01.bk : ch03.doc Page 383 Friday, January 17, 1997 12:59 PM

3-384

INSTRUCTION SET REFERENCE

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed
Data (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 384 Friday, January 17, 1997 12:59 PM

3-385

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack

Description

Decrements the stack pointer and then stores the source operand on the top of the stack. The
address-size attribute of the stack segment determines the stack pointer size (16 bits or 32 bits),
and the operand-size attribute of the current code segment determines the amount the stack
pointer is decremented (2 bytes or 4 bytes). For example, if these address- and operand-size
attributes are 32, the 32-bit ESP register (stack pointer) is decremented by 4 and, if they are 16,
the 16-bit SP register is decremented by 2.(The B flag in the stack segment’s segment descriptor
determines the stack’s address-size attribute, and the D flag in the current code segment’s
segment descriptor, along with prefixes, determines the operand-size attribute and also the
address-size attribute of the source operand.) Pushing a 16-bit operand when the stack address-
size attribute is 32 can result in a misaligned the stack pointer (that is, the stack pointer is not
aligned on a doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruc-
tion was executed. Thus, if a PUSH instruction uses a memory operand in which the ESP register
is used as a base register for computing the operand address, the effective address of the operand
is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed,
the processor shuts down due to a lack of stack space. No exception is generated to indicate this
condition.

Intel Architecture Compatibility

For Intel Architecture processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is also true in
the real-address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction
pushes the new value of the SP register (that is the value after it has been decremented by 2).

Opcode Instruction Description

FF /6 PUSH r/m16 Push r/m16

FF /6 PUSH r/m32 Push r/m32

50+rw PUSH r16 Push r16

50+rd PUSH r32 Push r32

6A PUSH imm8 Push imm8

68 PUSH imm16 Push imm16

68 PUSH imm32 Push imm32

0E PUSH CS Push CS

16 PUSH SS Push SS

1E PUSH DS Push DS

06 PUSH ES Push ES

0F A0 PUSH FS Push FS

0F A8 PUSH GS Push GS

ch01.bk : ch03.doc Page 385 Friday, January 17, 1997 12:59 PM

3-386

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack (Continued)

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

ESP ← ESP − 4;
SS:ESP ← SRC; (* push doubleword *)

ELSE (* OperandSize = 16*)
ESP ← ESP − 2;
SS:ESP ← SRC; (* push word *)

FI;
ELSE (* StackAddrSize = 16*)

IF OperandSize = 16
THEN

SP ← SP − 2;
 SS:SP ← SRC; (* push word *)

ELSE (* OperandSize = 32*)
SP ← SP − 4;
SS:SP ← SRC; (* push doubleword *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

ch01.bk : ch03.doc Page 386 Friday, January 17, 1997 12:59 PM

3-387

INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack (Continued)

#SS If a memory operand effective address is outside the SS segment limit.

If the new value of the SP or ESP register is outside the stack segment
limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 387 Friday, January 17, 1997 12:59 PM

3-388

INSTRUCTION SET REFERENCE

PUSHA/PUSHAD—Push All General-Purpose Registers

Description

Pushes the contents of the general-purpose registers onto the stack. The registers are stored on
the stack in the following order: EAX, ECX, EDX, EBX, EBP, ESP (original value), EBP, ESI,
and EDI (if the current operand-size attribute is 32) and AX, CX, DX, BX, SP (original value),
BP, SI, and DI (if the operand-size attribute is 16). (These instructions perform the reverse oper-
ation of the POPA/POPAD instructions.) The value pushed for the ESP or SP register is its value
before prior to pushing the first register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same opcode.
The PUSHA instruction is intended for use when the operand-size attribute is 16 and the
PUSHAD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHA is used and to 32 when PUSHAD is used. Others may treat
these mnemonics as synonyms (PUSHA/PUSHAD) and use the current setting of the operand-
size attribute to determine the size of values to be pushed from the stack, regardless of the
mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

Operation

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp ← (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp ← (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);

Opcode Instruction Description

60 PUSHA Push AX, CX, DX, BX, original SP, BP, SI, and DI

60 PUSHAD Push EAX, ECX, EDX, EBX, original ESP, EBP, ESI, and EDI

ch01.bk : ch03.doc Page 388 Friday, January 17, 1997 12:59 PM

3-389

INSTRUCTION SET REFERENCE

PUSHA/PUSHAD—Push All General-Purpose Register (Continued)

Push(BP);
Push(SI);
Push(DI);

FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real-Address Mode Exceptions

#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual-8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

ch01.bk : ch03.doc Page 389 Friday, January 17, 1997 12:59 PM

3-390

INSTRUCTION SET REFERENCE

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and pushes the
entire contents of the EFLAGS register onto the stack, or decrements the stack pointer by 2 (if
the operand-size attribute is 16) and pushes the lower 16 bits of the EFLAGS register (that is,
the FLAGS register) onto the stack. (These instructions reverse the operation of the
POPF/POPFD instructions.) When copying the entire EFLAGS register to the stack, the VM and
RF flags (bits 16 and 17) are not copied; instead, the values for these flags are cleared in the
EFLAGS image stored on the stack. See the section titled “EFLAGS Register” in Chapter 3 of
the Intel Architecture Software Developer’s Manual, Volume 1, for information about the
EFLAGS registers.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the same
opcode. The PUSHF instruction is intended for use when the operand-size attribute is 16 and the
PUSHFD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHF is used and to 32 when PUSHFD is used. Others may treat these
mnemonics as synonyms (PUSHF/PUSHFD) and use the current setting of the operand-size
attribute to determine the size of values to be pushed from the stack, regardless of the mnemonic
used.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

Operation

IF (PE=0) OR (PE=1 AND ((VM=0) OR (VM=1 AND IOPL=3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)

THEN
IF OperandSize = 32

THEN
push(EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack*)

ELSE
push(EFLAGS); (* Lower 16 bits only *)

FI;

Opcode Instruction Description

9C PUSHF Push lower 16 bits of EFLAGS

9C PUSHFD Push EFLAGS

ch01.bk : ch03.doc Page 390 Friday, January 17, 1997 12:59 PM

3-391

INSTRUCTION SET REFERENCE

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack
(Continued)

ELSE (* In Virtual-8086 Mode with IOPL less than 0 *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment boundary.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the I/O privilege level is less than 3.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

ch01.bk : ch03.doc Page 391 Friday, January 17, 1997 12:59 PM

3-392

INSTRUCTION SET REFERENCE

PXOR—Logical Exclusive OR

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the quadword source (second) and
destination (first) operands and stores the result in the destination operand location (see Figure
3-27). The source operand can be an MMX register or a quadword memory location; the desti-
nation operand must be an MMX register. Each bit of the result is 1 if the corresponding bits of
the two operands are different; each bit is 0 if the corresponding bits of the operands are the
same.

Operation

DEST ← DEST XOR SRC;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If EM in CR0 is set.

Opcode Instruction Description

0F EF /r PXOR mm, mm/m64 XOR quadword from mm/m64 to quadword in
mm.

Figure 3-27. Operation of the PXOR Instruction

PXOR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1110111100100001010100000011010010101011011001110110001011100010

3006033

^

ch01.bk : ch03.doc Page 392 Friday, January 17, 1997 12:59 PM

3-393

INSTRUCTION SET REFERENCE

PXOR—Logical Exclusive OR (Continued)

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 393 Friday, January 17, 1997 12:59 PM

3-394

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate

Opcode Instruction Description

D0 /2 RCL r/m8,1 Rotate 9 bits (CF,r/m8) left once

D2 /2 RCL r/m8,CL Rotate 9 bits (CF,r/m8) left CL times

C0 /2 ib RCL r/m8,imm8 Rotate 9 bits (CF,r/m8) left imm8 times

D1 /2 RCL r/m16,1 Rotate 17 bits (CF,r/m16) left once

D3 /2 RCL r/m16,CL Rotate 17 bits (CF,r/m16) left CL times

C1 /2 ib RCL r/m16,imm8 Rotate 17 bits (CF,r/m16) left imm8 times

D1 /2 RCL r/m32,1 Rotate 33 bits (CF,r/m32) left once

D3 /2 RCL r/m32,CL Rotate 33 bits (CF,r/m32) left CL times

C1 /2 ib RCL r/m32,imm8 Rotate 33 bits (CF,r/m32) left imm8 times

D0 /3 RCR r/m8,1 Rotate 9 bits (CF,r/m8) right once

D2 /3 RCR r/m8,CL Rotate 9 bits (CF,r/m8) right CL times

C0 /3 ib RCR r/m8,imm8 Rotate 9 bits (CF,r/m8) right imm8 times

D1 /3 RCR r/m16,1 Rotate 17 bits (CF,r/m16) right once

D3 /3 RCR r/m16,CL Rotate 17 bits (CF,r/m16) right CL times

C1 /3 ib RCR r/m16,imm8 Rotate 17 bits (CF,r/m16) right imm8 times

D1 /3 RCR r/m32,1 Rotate 33 bits (CF,r/m32) right once

D3 /3 RCR r/m32,CL Rotate 33 bits (CF,r/m32) right CL times

C1 /3 ib RCR r/m32,imm8 Rotate 33 bits (CF,r/m32) right imm8 times

D0 /0 ROL r/m8,1 Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8,CL Rotate 8 bits r/m8 left CL times

C0 /0 ib ROL r/m8,imm8 Rotate 8 bits r/m8 left imm8 times

D1 /0 ROL r/m16,1 Rotate 16 bits r/m16 left once

D3 /0 ROL r/m16,CL Rotate 16 bits r/m16 left CL times

C1 /0 ib ROL r/m16,imm8 Rotate 16 bits r/m16 left imm8 times

D1 /0 ROL r/m32,1 Rotate 32 bits r/m32 left once

D3 /0 ROL r/m32,CL Rotate 32 bits r/m32 left CL times

C1 /0 ib ROL r/m32,imm8 Rotate 32 bits r/m32 left imm8 times

D0 /1 ROR r/m8,1 Rotate 8 bits r/m8 right once

D2 /1 ROR r/m8,CL Rotate 8 bits r/m8 right CL times

C0 /1 ib ROR r/m8,imm8 Rotate 8 bits r/m16 right imm8 times

D1 /1 ROR r/m16,1 Rotate 16 bits r/m16 right once

D3 /1 ROR r/m16,CL Rotate 16 bits r/m16 right CL times

C1 /1 ib ROR r/m16,imm8 Rotate 16 bits r/m16 right imm8 times

D1 /1 ROR r/m32,1 Rotate 32 bits r/m32 right once

D3 /1 ROR r/m32,CL Rotate 32 bits r/m32 right CL times

C1 /1 ib ROR r/m32,imm8 Rotate 32 bits r/m32 right imm8 times

ch01.bk : ch03.doc Page 394 Friday, January 17, 1997 12:59 PM

3-395

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (Continued)

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit positions
specified in the second operand (count operand) and stores the result in the destination operand.
The destination operand can be a register or a memory location; the count operand is an unsigned
integer that can be an immediate or a value in the CL register. The processor restricts the count
to a number between 0 and 31 by masking all the bits in the count operand except the 5 least-
significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits toward
more-significant bit positions, except for the most-significant bit, which is rotated to the least-
significant bit location (see Figure 6-10 in the Intel Architecture Software Developer’s Manual,
Volume 1). The rotate right (ROR) and rotate through carry right (RCR) instructions shift all the
bits toward less significant bit positions, except for the least-significant bit, which is rotated to
the most-significant bit location (see Figure 6-10 in the Intel Architecture Software Developer’s
Manual, Volume 1).

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction shifts
the CF flag into the least-significant bit and shifts the most-significant bit into the CF flag (see
Figure 6-10 in the Intel Architecture Software Developer’s Manual, Volume 1). The RCR
instruction shifts the CF flag into the most-significant bit and shifts the least-significant bit into
the CF flag (see Figure 6-10 in the Intel Architecture Software Developer’s Manual, Volume 1).
For the ROL and ROR instructions, the original value of the CF flag is not a part of the result,
but the CF flag receives a copy of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases (except that a
zero-bit rotate does nothing, that is affects no flags). For left rotates, the OF flag is set to the
exclusive OR of the CF bit (after the rotate) and the most-significant bit of the result. For right
rotates, the OF flag is set to the exclusive OR of the two most-significant bits of the result.

Intel Architecture Compatibility

The 8086 does not mask the rotation count. However, all other Intel Architecture processors
(starting with the Intel 286 processor) do mask the rotation count to 5 bits, resulting in a
maximum count of 31. This masking is done in all operating modes (including the virtual-8086
mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)
SIZE ← OperandSize
CASE (determine count) OF

SIZE = 8: tempCOUNT ← (COUNT AND 1FH) MOD 9;
SIZE = 16: tempCOUNT ← (COUNT AND 1FH) MOD 17;
SIZE = 32: tempCOUNT ← COUNT AND 1FH;

ESAC;

ch01.bk : ch03.doc Page 395 Friday, January 17, 1997 12:59 PM

3-396

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (Continued)

(* RCL instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + CF;
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
(* RCR instruction operation *)
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (CF * 2SIZE);
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
(* ROL and ROR instructions *)
SIZE ← OperandSize
CASE (determine count) OF

SIZE = 8: tempCOUNT ← COUNT MOD 8;
SIZE = 16: tempCOUNT ← COUNT MOD 16;
SIZE = 32: tempCOUNT ← COUNT MOD 32;

ESAC;
(* ROL instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← LSB(DEST);
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

ch01.bk : ch03.doc Page 396 Friday, January 17, 1997 12:59 PM

3-397

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (Continued)

(* ROR instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (tempCF ∗ 2SIZE);
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← MSB(DEST);
IF COUNT = 1

THEN OF ← MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single-
bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF, ZF, AF, and
PF flags are not affected.

Protected Mode Exceptions

#GP(0) If the source operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

ch01.bk : ch03.doc Page 397 Friday, January 17, 1997 12:59 PM

3-398

INSTRUCTION SET REFERENCE

RCL/RCR/ROL/ROR-—Rotate (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 398 Friday, January 17, 1997 12:59 PM

3-399

INSTRUCTION SET REFERENCE

RDMSR—Read from Model Specific Register

Description

Loads the contents of a 64-bit model specific register (MSR) specified in the ECX register into
registers EDX:EAX. The EDX register is loaded with the high-order 32 bits of the MSR and the
EAX register is loaded with the low-order 32 bits. If less than 64 bits are implemented in the
MSR being read, the values returned to EDX:EAX in unimplemented bit locations are unde-
fined.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a
general protection exception #GP(0) will be generated. Specifying a reserved or unimplemented
MSR address in ECX will also cause a general protection exception.

The MSRs control functions for testability, execution tracing, performance-monitoring and
machine check errors. Appendix B, Model-Specific Registers (MSRs), in the Intel Architecture
Software Developer’s Manual, Volume 3, lists all the MSRs that can be read with this instruction
and their addresses.

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

Intel Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into the
Intel Architecture with the Pentium processor. Execution of this instruction by an Intel Archi-
tecture processor earlier than the Pentium processor results in an invalid opcode exception #UD.

Operation

EDX:EAX ← MSR[ECX];

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.

Real-Address Mode Exceptions

#GP If the value in ECX specifies a reserved or unimplemented MSR address.

Opcode Instruction Description

0F 32 RDMSR Load MSR specified by ECX into EDX:EAX

ch01.bk : ch03.doc Page 399 Friday, January 17, 1997 12:59 PM

3-400

INSTRUCTION SET REFERENCE

RDMSR—Read from Model Specific Register (Continued)

Virtual-8086 Mode Exceptions

#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

ch01.bk : ch03.doc Page 400 Friday, January 17, 1997 12:59 PM

3-401

INSTRUCTION SET REFERENCE

RDPMC—Read Performance-Monitoring Counters

Description

Loads the contents of the 40-bit performance-monitoring counter specified in the ECX register
into registers EDX:EAX. The EDX register is loaded with the high-order 8 bits of the counter
and the EAX register is loaded with the low-order 32 bits. The Pentium Pro processor has two
performance-monitoring counters (0 and 1), which are specified by placing 0000H or 0001H,
respectively, in the ECX register.

The RDPMC instruction allows application code running at a privilege level of 1, 2, or 3 to read
the performance-monitoring counters if the PCE flag in the CR4 register is set. This instruction
is provided to allow performance monitoring by application code without incurring the overhead
of a call to an operating-system procedure.

The performance-monitoring counters are event counters that can be programmed to count
events such as the number of instructions decoded, number of interrupts received, or number of
cache loads. Appendix A, Performance Monitoring Counters, in the Intel Architecture Software
Developer’s Manual, Volume 3, lists all the events that can be counted.

The RDPMC instruction does not serialize instruction execution. That is, it does not imply that
all the events caused by the preceding instructions have been completed or that events caused by
subsequent instructions have not begun. If an exact event count is desired, software must use a
serializing instruction (such as the CPUID instruction) before and/or after the execution of the
RDPCM instruction.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however,
the full contents of the ECX register are used to determine the counter to access and a full 40-bit
result is returned (the low-order 32 bits in the EAX register and the high-order 9 bits in the EDX
register).

Intel Architecture Compatibility

The RDPMC instruction was introduced into the Intel Architecture in the Pentium Pro processor
and the Pentium processor with MMX technology. The other Pentium processors have perfor-
mance-monitoring counters, but they must be read with the RDMSR instruction.

Operation

IF (ECX = 0 OR 1) AND ((CR4.PCE = 1) OR ((CR4.PCE = 0) AND (CPL=0)))
THEN

EDX:EAX ← PMC[ECX];
ELSE (* ECX is not 0 or 1 and/or CR4.PCE is 0 and CPL is 1, 2, or 3 *)

#GP(0); FI;

Opcode Instruction Description

0F 33 RDPMC Read performance-monitoring counter specified by ECX
into EDX:EAX

ch01.bk : ch03.doc Page 401 Friday, January 17, 1997 12:59 PM

3-402

INSTRUCTION SET REFERENCE

RDPMC—Read Performance-Monitoring Counters (Continued)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register
is clear.

If the value in the ECX register is not 0 or 1.

Real-Address Mode Exceptions

#GP If the PCE flag in the CR4 register is clear.

If the value in the ECX register is not 0 or 1.

Virtual-8086 Mode Exceptions

#GP(0) If the PCE flag in the CR4 register is clear.

If the value in the ECX register is not 0 or 1.

ch01.bk : ch03.doc Page 402 Friday, January 17, 1997 12:59 PM

3-403

INSTRUCTION SET REFERENCE

RDTSC—Read Time-Stamp Counter

Description

Loads the current value of the processor’s time-stamp counter into the EDX:EAX registers. The
time-stamp counter is contained in a 64-bit MSR. The high-order 32 bits of the MSR are loaded
into the EDX register, and the low-order 32 bits are loaded into the EAX register. The processor
increments the time-stamp counter MSR every clock cycle and resets it to 0 whenever the
processor is reset.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSC instruction.
When the TSD flag is clear, the RDTSC instruction can be executed at any privilege level; when
the flag is set, the instruction can only be executed at privilege level 0. The time-stamp counter
can also be read with the RDMSR instruction, when executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. Thus, it does not necessarily wait until
all previous instructions have been executed before reading the counter. Similarly, subsequent
instructions may begin execution before the read operation is performed.

This instruction was introduced into the Intel Architecture in the Pentium processor.

Operation

IF (CR4.TSD = 0) OR ((CR4.TSD = 1) AND (CPL=0))
THEN

EDX:EAX ← TimeStampCounter;
ELSE (* CR4 is 1 and CPL is 1, 2, or 3 *)

#GP(0)
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.

Real-Address Mode Exceptions

#GP If the TSD flag in register CR4 is set.

Virtual-8086 Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set.

Opcode Instruction Description

0F 31 RDTSC Read time-stamp counter into EDX:EAX

ch01.bk : ch03.doc Page 403 Friday, January 17, 1997 12:59 PM

3-404

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix

Description

Repeats a string instruction the number of times specified in the count register ((E)CX) or until
the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE (repeat while
equal), REPNE (repeat while not equal), REPZ (repeat while zero), and REPNZ (repeat while
not zero) mnemonics are prefixes that can be added to one of the string instructions. The REP
prefix can be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the REPE,
REPNE, REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The
REPZ and REPNZ prefixes are synonymous forms of the REPE and REPNE prefixes, respec-
tively.) The behavior of the REP prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions,
use the LOOP instruction or another looping construct.

Opcode Instruction Description

F3 6C REP INS r/m8, DX Input (E)CX bytes from port DX into ES:[(E)DI]

F3 6D REP INS r/m16,DX Input (E)CX words from port DX into ES:[(E)DI]

F3 6D REP INS r/m32,DX Input (E)CX doublewords from port DX into ES:[(E)DI]

F3 A4 REP MOVS m8,m8 Move (E)CX bytes from DS:[(E)SI] to ES:[(E)DI]

F3 A5 REP MOVS m16,m16 Move (E)CX words from DS:[(E)SI] to ES:[(E)DI]

F3 A5 REP MOVS m32,m32 Move (E)CX doublewords from DS:[(E)SI] to ES:[(E)DI]

F3 6E REP OUTS DX,r/m8 Output (E)CX bytes from DS:[(E)SI] to port DX

F3 6F REP OUTS DX,r/m16 Output (E)CX words from DS:[(E)SI] to port DX

F3 6F REP OUTS DX,r/m32 Output (E)CX doublewords from DS:[(E)SI] to port DX

F3 AC REP LODS AL Load (E)CX bytes from DS:[(E)SI] to AL

F3 AD REP LODS AX Load (E)CX words from DS:[(E)SI] to AX

F3 AD REP LODS EAX Load (E)CX doublewords from DS:[(E)SI] to EAX

F3 AA REP STOS m8 Fill (E)CX bytes at ES:[(E)DI] with AL

F3 AB REP STOS m16 Fill (E)CX words at ES:[(E)DI] with AX

F3 AB REP STOS m32 Fill (E)CX doublewords at ES:[(E)DI] with EAX

F3 A6 REPE CMPS m8,m8 Find nonmatching bytes in ES:[(E)DI] and DS:[(E)SI]

F3 A7 REPE CMPS m16,m16 Find nonmatching words in ES:[(E)DI] and DS:[(E)SI]

F3 A7 REPE CMPS m32,m32 Find nonmatching doublewords in ES:[(E)DI] and DS:[(E)SI]

F3 AE REPE SCAS m8 Find non-AL byte starting at ES:[(E)DI]

F3 AF REPE SCAS m16 Find non-AX word starting at ES:[(E)DI]

F3 AF REPE SCAS m32 Find non-EAX doubleword starting at ES:[(E)DI]

F2 A6 REPNE CMPS m8,m8 Find matching bytes in ES:[(E)DI] and DS:[(E)SI]

F2 A7 REPNE CMPS m16,m16 Find matching words in ES:[(E)DI] and DS:[(E)SI]

F2 A7 REPNE CMPS m32,m32 Find matching doublewords in ES:[(E)DI] and DS:[(E)SI]

F2 AE REPNE SCAS m8 Find AL, starting at ES:[(E)DI]

F2 AF REPNE SCAS m16 Find AX, starting at ES:[(E)DI]

F2 AF REPNE SCAS m32 Find EAX, starting at ES:[(E)DI]

ch01.bk : ch03.doc Page 404 Friday, January 17, 1997 12:59 PM

3-405

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(Continued)

All of these repeat prefixes cause the associated instruction to be repeated until the count in
register (E)CX is decremented to 0 (see the following table). (If the current address-size attribute
is 32, register ECX is used as a counter, and if the address-size attribute is 16, the CX register is
used.) The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state. When both
termination conditions are tested, the cause of a repeat termination can be determined either by
testing the (E)CX register with a JECXZ instruction or by testing the ZF flag with a JZ, JNZ,
and JNE instruction.

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require
initialization because both the CMPS and SCAS instructions affect the ZF flag according to the
results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens,
the state of the registers is preserved to allow the string operation to be resumed upon a return
from the exception or interrupt handler. The source and destination registers point to the next
string elements to be operated on, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration of the instruction. This mech-
anism allows long string operations to proceed without affecting the interrupt response time of
the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with
REPE or REPNE, the EFLAGS value is restored to the state prior to the execution of the instruc-
tion. Since the SCAS and CMPS instructions do not use EFLAGS as an input, the processor can
resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate
at which these instructions execute.

A REP STOS instruction is the fastest way to initialize a large block of memory.

Repeat Conditions

Repeat Prefix Termination Condition 1 Termination Condition 2

REP ECX=0 None

REPE/REPZ ECX=0 ZF=0

REPNE/REPNZ ECX=0 ZF=1

ch01.bk : ch03.doc Page 405 Friday, January 17, 1997 12:59 PM

3-406

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(Continued)

Operation

IF AddressSize = 16
THEN

use CX for CountReg;
ELSE (* AddressSize = 32 *)

use ECX for CountReg;
FI;
WHILE CountReg ≠ 0

DO
service pending interrupts (if any);
execute associated string instruction;
CountReg ← CountReg – 1;
IF CountReg = 0

THEN exit WHILE loop
FI;
IF (repeat prefix is REPZ or REPE) AND (ZF=0)
OR (repeat prefix is REPNZ or REPNE) AND (ZF=1)

THEN exit WHILE loop
FI;

OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS register.

Exceptions (All Operating Modes)

None; however, exceptions can be generated by the instruction a repeat prefix is associated with.

ch01.bk : ch03.doc Page 406 Friday, January 17, 1997 12:59 PM

3-407

INSTRUCTION SET REFERENCE

RET—Return from Procedure

Description

Transfers program control to a return address located on the top of the stack. The address is
usually placed on the stack by a CALL instruction, and the return is made to the instruction that
follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return
address is popped; the default is none. This operand can be used to release parameters from the
stack that were passed to the called procedure and are no longer needed. It must be used when
the CALL instruction used to switch to a new procedure uses a call gate with a non-zero word
count to access the new procedure. Here, the source operand for the RET instruction must
specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

• Near return—A return to a calling procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment return.

• Far return—A return to a calling procedure located in a different segment than the current
code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return—A far return to a different privilege level than that of the
currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section
titled “Calling Procedures Using Call and RET” in Chapter 4 of the Intel Architecture Software
Developer’s Manual, Volume 1, for detailed information on near, far, and inter-privilege-level
returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the
top of the stack into the EIP register and begins program execution at the new instruction pointer.
The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the
stack into the EIP register, then pops the segment selector from the top of the stack into the CS
register. The processor then begins program execution in the new code segment at the new
instruction pointer.

Opcode Instruction Description

C3 RET Near return to calling procedure

CB RET Far return to calling procedure

C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes
from stack

CA iw RET imm16 Far return to calling procedure and pop imm16 bytes from
stack

ch01.bk : ch03.doc Page 407 Friday, January 17, 1997 12:59 PM

3-408

INSTRUCTION SET REFERENCE

RET—Return from Procedure (Continued)

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except
that the processor examines the privilege levels and access rights of the code and stack segments
being returned to determine if the control transfer is allowed to be made. The DS, ES, FS, and
GS segment registers are cleared by the RET instruction during an inter-privilege-level return if
they refer to segments that are not allowed to be accessed at the new privilege level. Since a stack
switch also occurs on an inter-privilege level return, the ESP and SS registers are loaded from
the stack.

If parameters are passed to the called procedure during an inter-privilege level call, the optional
source operand must be used with the RET instruction to release the parameters on the return.
Here, the parameters are released both from the called procedure’s stack and the calling proce-
dure’s stack (that is, the stack being returned to).

Operation

(* Near return *)
IF instruction = near return

THEN;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0)
FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP ← tempEIP;

FI;
IF instruction has immediate operand

THEN IF StackAddressSize=32
THEN

ESP ← ESP + SRC; (* release parameters from stack *)
ELSE (* StackAddressSize=16 *)

SP ← SP + SRC; (* release parameters from stack *)
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) OR (PE = 1 AND VM = 1)) AND instruction = far return

THEN;

ch01.bk : ch03.doc Page 408 Friday, January 17, 1997 12:59 PM

3-409

INSTRUCTION SET REFERENCE

RET—Return from Procedure (Continued)

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP ← tempEIP;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN
SP ← SP + (SRC AND FFFFH); (* release parameters from stack *)

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE = 1 AND VM = 0) AND instruction = far RET

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits THEN #SS(0); FI;

ELSE (* OperandSize = 16 *)
IF second word on stack is not within stack limits THEN #SS(0); FI;

FI;
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond diescriptor table limit

THEN GP(selector; FI;
Obtain descriptor to which return code segment selector points from descriptor table
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
if return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming

AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL

FI;
END;FI;

ch01.bk : ch03.doc Page 409 Friday, January 17, 1997 12:59 PM

3-410

INSTRUCTION SET REFERENCE

RET—Return from Procedure (Continued)
RETURN-SAME-PRIVILEGE-LEVEL:

IF the return instruction pointer is not within ther return code segment limit
THEN #GP(0);

FI;
IF OperandSize=32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
ESP ← ESP + SRC; (* release parameters from stack *)

ELSE (* OperandSize=16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
ESP ← ESP + SRC; (* release parameters from stack *)

FI;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize=32)

OR top (8 + SRC) bytes of stack are not within stack limits (OperandSize=16)
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector

OR stack segment is not a writable data segment
OR stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present THEN #SS(StackSegmentSelector); FI;

IF the return instruction pointer is not within the return code segment limit THEN #GP(0); FI:
 CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize=32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* release parameters from called procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16-bits discarded *)
 (* segment descriptor information also loaded *)
ESP ← tempESP;
SS ← tempSS;

ch01.bk : ch03.doc Page 410 Friday, January 17, 1997 12:59 PM

3-411

INSTRUCTION SET REFERENCE

RET—Return from Procedure (Continued)
ELSE (* OperandSize=16 *)

EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* release parameters from called procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
 (* segment descriptor information also loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;
FOR each of segment register (ES, FS, GS, and DS)

DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN (* segment register invalid *)
SegmentSelector ← 0; (* null segment selector *)

FI;
OD;

For each of ES, FS, GS, and DS
DO

IF segment selector index is not within descriptor table limits
OR segment descriptor indicates the segment is not a data or

readable code segment
OR if the segment is a data or non-conforming code segment and the segment

descriptor’s DPL < CPL or RPL of code segment’s segment selector
THEN

segment selector register ← null selector;
OD;
ESP ← ESP + SRC; (* release parameters from calling procedure’s stack *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector null.

If the return instruction pointer is not within the return code segment limit

#GP(selector) If the RPL of the return code segment selector is less then the CPL.

If the return code or stack segment selector index is not within its
descriptor table limits.

If the return code segment descriptor does not indicate a code segment.

ch01.bk : ch03.doc Page 411 Friday, January 17, 1997 12:59 PM

3-412

INSTRUCTION SET REFERENCE

RET—Return from Procedure (Continued)

If the return code segment is non-conforming and the segment selector’s
DPL is not equal to the RPL of the code segment’s segment selector

If the return code segment is conforming and the segment selector’s DPL
greater than the RPL of the code segment’s segment selector

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.

If the return stack segment is not present.

#NP(selector) If the return code segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit

#SS(0) If the top bytes of stack are not within stack limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

ch01.bk : ch03.doc Page 412 Friday, January 17, 1997 12:59 PM

3-413

INSTRUCTION SET REFERENCE

ROL/ROR—Rotate

See entry for RCL/RCR/ROL/ROR—Rotate.

ch01.bk : ch03.doc Page 413 Friday, January 17, 1997 12:59 PM

3-414

INSTRUCTION SET REFERENCE

RSM—Resume from System Management Mode

Description

Returns program control from system management mode (SMM) to the application program or
operating-system procedure that was interrupted when the processor received an SSM interrupt.
The processor’s state is restored from the dump created upon entering SMM. If the processor
detects invalid state information during state restoration, it enters the shutdown state. The
following invalid information can cause a shutdown:

• Any reserved bit of CR4 is set to 1.

• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and CD=0).

• (Intel Pentium® and Intel486™ processors only.) The value stored in the state dump base
field is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

See Chapter 11, System Management Mode (SMM), in the Intel Architecture Software Devel-
oper’s Manual, Volume 3, for more information about SMM and the behavior of the RSM
instruction.

Operation

ReturnFromSSM;
ProcessorState ← Restore(SSMDump);

Flags Affected

All.

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor is not
in SMM.

Real-Address Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor is not
in SMM.

Virtual-8086 Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor is not
in SMM.

Opcode Instruction Description

0F AA RSM Resume operation of interrupted program

ch01.bk : ch03.doc Page 414 Friday, January 17, 1997 12:59 PM

3-415

INSTRUCTION SET REFERENCE

SAHF—Store AH into Flags

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corre-
sponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 5 of register
AH are ignored; the corresponding reserved bits (1, 3, and 5) in the EFLAGS register remain as
shown in the “Operation” section below.

Operation

EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, and 5
of the EFLAGS register are unaffected, with the values remaining 1, 0, and 0, respectively.

Exceptions (All Operating Modes)

None.

Opcode Instruction Clocks Description

9E SAHF 2 Loads SF, ZF, AF, PF, and CF from AH into
EFLAGS register

ch01.bk : ch03.doc Page 415 Friday, January 17, 1997 12:59 PM

3-416

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift

NOTE:

* Not the same form of division as IDIV; rounding is toward negative infinity.

Opcode Instruction Description

D0 /4 SAL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SAL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SAL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SAL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SAL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SAL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SAL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SAL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SAL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /7 SAR r/m8,1 Signed divide* r/m8 by 2, once

D2 /7 SAR r/m8,CL Signed divide* r/m8 by 2, CL times

C0 /7 ib SAR r/m8,imm8 Signed divide* r/m8 by 2, imm8 times

D1 /7 SAR r/m16,1 Signed divide* r/m16 by 2, once

D3 /7 SAR r/m16,CL Signed divide* r/m16 by 2, CL times

C1 /7 ib SAR r/m16,imm8 Signed divide* r/m16 by 2, imm8 times

D1 /7 SAR r/m32,1 Signed divide* r/m32 by 2, once

D3 /7 SAR r/m32,CL Signed divide* r/m32 by 2, CL times

C1 /7 ib SAR r/m32,imm8 Signed divide* r/m32 by 2, imm8 times

D0 /4 SHL r/m8,1 Multiply r/m8 by 2, once

D2 /4 SHL r/m8,CL Multiply r/m8 by 2, CL times

C0 /4 ib SHL r/m8,imm8 Multiply r/m8 by 2, imm8 times

D1 /4 SHL r/m16,1 Multiply r/m16 by 2, once

D3 /4 SHL r/m16,CL Multiply r/m16 by 2, CL times

C1 /4 ib SHL r/m16,imm8 Multiply r/m16 by 2, imm8 times

D1 /4 SHL r/m32,1 Multiply r/m32 by 2, once

D3 /4 SHL r/m32,CL Multiply r/m32 by 2, CL times

C1 /4 ib SHL r/m32,imm8 Multiply r/m32 by 2, imm8 times

D0 /5 SHR r/m8,1 Unsigned divide r/m8 by 2, once

D2 /5 SHR r/m8,CL Unsigned divide r/m8 by 2, CL times

C0 /5 ib SHR r/m8,imm8 Unsigned divide r/m8 by 2, imm8 times

D1 /5 SHR r/m16,1 Unsigned divide r/m16 by 2, once

D3 /5 SHR r/m16,CL Unsigned divide r/m16 by 2, CL times

C1 /5 ib SHR r/m16,imm8 Unsigned divide r/m16 by 2, imm8 times

D1 /5 SHR r/m32,1 Unsigned divide r/m32 by 2, once

D3 /5 SHR r/m32,CL Unsigned divide r/m32 by 2, CL times

C1 /5 ib SHR r/m32,imm8 Unsigned divide r/m32 by 2, imm8 times

ch01.bk : ch03.doc Page 416 Friday, January 17, 1997 12:59 PM

3-417

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift (Continued)

Description

Shifts the bits in the first operand (destination operand) to the left or right by the number of bits
specified in the second operand (count operand). Bits shifted beyond the destination operand
boundary are first shifted into the CF flag, then discarded. At the end of the shift operation, the
CF flag contains the last bit shifted out of the destination operand.

The destination operand can be a register or a memory location. The count operand can be an
immediate value or register CL. The count is masked to 5 bits, which limits the count range to
0 to 31. A special opcode encoding is provided for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same oper-
ation; they shift the bits in the destination operand to the left (toward more significant bit loca-
tions). For each shift count, the most significant bit of the destination operand is shifted into the
CF flag, and the least significant bit is cleared (see Figure 6-6 in the Intel Architecture Software
Developer’s Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the
destination operand to the right (toward less significant bit locations). For each shift count, the
least significant bit of the destination operand is shifted into the CF flag, and the most significant
bit is either set or cleared depending on the instruction type. The SHR instruction clears the most
significant bit (see Figure 6-7 in the Intel Architecture Software Developer’s Manual, Volume 1);
the SAR instruction sets or clears the most significant bit to correspond to the sign (most signif-
icant bit) of the original value in the destination operand. In effect, the SAR instruction fills the
empty bit position’s shifted value with the sign of the unshifted value (see Figure 6-8 in the Intel
Architecture Software Developer’s Manual, Volume 1).

The SAR and SHR instructions can be used to perform signed or unsigned division, respectively,
of the destination operand by powers of 2. For example, using the SAR instruction to shift a
signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same result as
the IDIV instruction. The quotient from the IDIV instruction is rounded toward zero, whereas
the “quotient” of the SAR instruction is rounded toward negative infinity. This difference is
apparent only for negative numbers. For example, when the IDIV instruction is used to divide
-9 by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to shift -9 right by
two bits, the result is -3 and the “remainder” is +3; however, the SAR instruction stores only the
most significant bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is cleared to 0 if the most-
significant bit of the result is the same as the CF flag (that is, the top two bits of the original
operand were the same); otherwise, it is set to 1. For the SAR instruction, the OF flag is cleared
for all 1-bit shifts. For the SHR instruction, the OF flag is set to the most-significant bit of the
original operand.

ch01.bk : ch03.doc Page 417 Friday, January 17, 1997 12:59 PM

3-418

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift (Continued)

Intel Architecture Compatibility

The 8086 does not mask the shift count. However, all other Intel Architecture processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in a maximum
count of 31. This masking is done in all operating modes (including the virtual-8086 mode) to
reduce the maximum execution time of the instructions.

Operation

tempCOUNT ← (COUNT AND 1FH);
tempDEST ← DEST;
WHILE (tempCOUNT ≠ 0)
DO

IF instruction is SAL or SHL
THEN

CF ← MSB(DEST);
ELSE (* instruction is SAR or SHR *)

CF ← LSB(DEST);
FI;
IF instruction is SAL or SHL

THEN
DEST ← DEST ∗ 2;

ELSE
IF instruction is SAR

THEN
DEST ← DEST / 2 (*Signed divide, rounding toward negative infinity*);

ELSE (* instruction is SHR *)
DEST ← DEST / 2 ; (* Unsigned divide *);

FI;
FI;
tempCOUNT ← tempCOUNT – 1;

OD;
(* Determine overflow for the various instructions *)
IF COUNT = 1

THEN
IF instruction is SAL or SHL

THEN
OF ← MSB(DEST) XOR CF;

ELSE
IF instruction is SAR

THEN
OF ← 0;

ELSE (* instruction is SHR *)
OF ← MSB(tempDEST);

FI;
FI;

ch01.bk : ch03.doc Page 418 Friday, January 17, 1997 12:59 PM

3-419

INSTRUCTION SET REFERENCE

SAL/SAR/SHL/SHR—Shift (Continued)

ELSE IF COUNT = 0
THEN

All flags remain unchanged;
ELSE (* COUNT neither 1 or 0 *)

OF ← undefined;
FI;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is unde-
fined for SHL and SHR instructions where the count is greater than or equal to the size (in bits)
of the destination operand. The OF flag is affected only for 1-bit shifts (see “Description”
above); otherwise, it is undefined. The SF, ZF, and PF flags are set according to the result. If the
count is 0, the flags are not affected. For a non-zero count, the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 419 Friday, January 17, 1997 12:59 PM

3-420

INSTRUCTION SET REFERENCE

SBB—Integer Subtraction with Borrow

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the result from
the destination operand (first operand). The result of the subtraction is stored in the destination
operand. The destination operand can be a register or a memory location; the source operand can
be an immediate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) The state of the CF flag represents a borrow from a previous subtrac-
tion.

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

The SBB instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a
borrow in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed
result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction in which
a SUB instruction is followed by a SBB instruction.

Operation

DEST ← DEST – (SRC + CF);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Opcode Instruction Description

1C ib SBB AL,imm8 Subtract with borrow imm8 from AL

1D iw SBB AX,imm16 Subtract with borrow imm16 from AX

1D id SBB EAX,imm32 Subtract with borrow imm32 from EAX

80 /3 ib SBB r/m8,imm8 Subtract with borrow imm8 from r/m8

81 /3 iw SBB r/m16,imm16 Subtract with borrow imm16 from r/m16

81 /3 id SBB r/m32,imm32 Subtract with borrow imm32 from r/m32

83 /3 ib SBB r/m16,imm8 Subtract with borrow sign-extended imm8 from r/m16

83 /3 ib SBB r/m32,imm8 Subtract with borrow sign-extended imm8 from r/m32

18 /r SBB r/m8,r8 Subtract with borrow r8 from r/m8

19 /r SBB r/m16,r16 Subtract with borrow r16 from r/m16

19 /r SBB r/m32,r32 Subtract with borrow r32 from r/m32

1A /r SBB r8,r/m8 Subtract with borrow r/m8 from r8

1B /r SBB r16,r/m16 Subtract with borrow r/m16 from r16

1B /r SBB r32,r/m32 Subtract with borrow r/m32 from r32

ch01.bk : ch03.doc Page 420 Friday, January 17, 1997 12:59 PM

3-421

INSTRUCTION SET REFERENCE

SBB—Integer Subtraction with Borrow (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 421 Friday, January 17, 1997 12:59 PM

3-422

INSTRUCTION SET REFERENCE

SCAS/SCASB/SCASW/SCASD—Scan String

Description

Compares the byte, word, or double word specified with the memory operand with the value in
the AL, AX, or EAX register, and sets the status flags in the EFLAGS register according to the
results. The memory operand address is read from either the ES:EDI or the ES:DI registers
(depending on the address-size attribute of the instruction, 32 or 16, respectively). The ES
segment cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operand form (specified with the SCAS
mnemonic) allows the memory operand to be specified explicitly. Here, the memory operand
should be a symbol that indicates the size and location of the operand value. The register operand
is then automatically selected to match the size of the memory operand (the AL register for byte
comparisons, AX for word comparisons, and EAX for doubleword comparisons). This explicit-
operand form is provided to allow documentation; however, note that the documentation
provided by this form can be misleading. That is, the memory operand symbol must specify the
correct type (size) of the operand (byte, word, or doubleword), but it does not have to specify
the correct location. The location is always specified by the ES:(E)DI registers, which must be
loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
SCAS instructions. Here also ES:(E)DI is assumed to be the memory operand and the AL, AX,
or EAX register is assumed to be the register operand. The size of the two operands is selected
with the mnemonic: SCASB (byte comparison), SCASW (word comparison), or SCASD
(doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automatically according
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is
incremented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI register is incre-
mented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for double-
word operations.

The SCAS, SCASB, SCASW, and SCASD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in this chapter for a description of the REP prefix.

Opcode Instruction Description

AE SCAS m8 Compare AL with byte at ES:(E)DI and set status flags

AF SCAS m16 Compare AX with word at ES:(E)DI and set status flags

AF SCAS m32 Compare EAX with doubleword at ES(E)DI and set status flags

AE SCASB Compare AL with byte at ES:(E)DI and set status flags

AF SCASW Compare AX with word at ES:(E)DI and set status flags

AF SCASD Compare EAX with doubleword at ES:(E)DI and set status flags

ch01.bk : ch03.doc Page 422 Friday, January 17, 1997 12:59 PM

3-423

INSTRUCTION SET REFERENCE

SCAS/SCASB/SCASW/SCASD—Scan String (Continued)

Operation

IF (byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (word comparison)

THEN
temp ← AX − SRC;
SetStatusFlags(temp)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword comparison *)

temp ← EAX − SRC;
SetStatusFlags(temp)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segment is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

ch01.bk : ch03.doc Page 423 Friday, January 17, 1997 12:59 PM

3-424

INSTRUCTION SET REFERENCE

SCAS/SCASB/SCASW/SCASD—Scan String (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 424 Friday, January 17, 1997 12:59 PM

3-425

INSTRUCTION SET REFERENCE

SETcc—Set Byte on Condition

Description

Set the destination operand to 0 or 1 depending on the settings of the status flags (CF, SF, OF,
ZF, and PF) in the EFLAGS register. The destination operand points to a byte register or a byte
in memory. The condition code suffix (cc) indicates the condition being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the relationship
between two unsigned integer values. The terms “greater” and “less” are associated with the SF
and OF flags and refer to the relationship between two signed integer values.

Opcode Instruction Description

0F 97 SETA r/m8 Set byte if above (CF=0 and ZF=0)

0F 93 SETAE r/m8 Set byte if above or equal (CF=0)

0F 92 SETB r/m8 Set byte if below (CF=1)

0F 96 SETBE r/m8 Set byte if below or equal (CF=1 or ZF=1)

0F 92 SETC r/m8 Set if carry (CF=1)

0F 94 SETE r/m8 Set byte if equal (ZF=1)

0F 9F SETG r/m8 Set byte if greater (ZF=0 and SF=OF)

0F 9D SETGE r/m8 Set byte if greater or equal (SF=OF)

0F 9C SETL r/m8 Set byte if less (SF<>OF)

0F 9E SETLE r/m8 Set byte if less or equal (ZF=1 or SF<>OF)

0F 96 SETNA r/m8 Set byte if not above (CF=1 or ZF=1)

0F 92 SETNAE r/m8 Set byte if not above or equal (CF=1)

0F 93 SETNB r/m8 Set byte if not below (CF=0)

0F 97 SETNBE r/m8 Set byte if not below or equal (CF=0 and ZF=0)

0F 93 SETNC r/m8 Set byte if not carry (CF=0)

0F 95 SETNE r/m8 Set byte if not equal (ZF=0)

0F 9E SETNG r/m8 Set byte if not greater (ZF=1 or SF<>OF)

0F 9C SETNGE r/m8 Set if not greater or equal (SF<>OF)

0F 9D SETNL r/m8 Set byte if not less (SF=OF)

0F 9F SETNLE r/m8 Set byte if not less or equal (ZF=0 and SF=OF)

0F 91 SETNO r/m8 Set byte if not overflow (OF=0)

0F 9B SETNP r/m8 Set byte if not parity (PF=0)

0F 99 SETNS r/m8 Set byte if not sign (SF=0)

0F 95 SETNZ r/m8 Set byte if not zero (ZF=0)

0F 90 SETO r/m8 Set byte if overflow (OF=1)

0F 9A SETP r/m8 Set byte if parity (PF=1)

0F 9A SETPE r/m8 Set byte if parity even (PF=1)

0F 9B SETPO r/m8 Set byte if parity odd (PF=0)

0F 98 SETS r/m8 Set byte if sign (SF=1)

0F 94 SETZ r/m8 Set byte if zero (ZF=1)

ch01.bk : ch03.doc Page 425 Friday, January 17, 1997 12:59 PM

3-426

INSTRUCTION SET REFERENCE

SETcc—Set Byte on Condition (Continued)

Many of the SETcc instruction opcodes have alternate mnemonics. For example, the SETG (set
byte if greater) and SETNLE (set if not less or equal) both have the same opcode and test for the
same condition: ZF equals 0 and SF equals OF. These alternate mnemonics are provided to make
code more intelligible. Appendix B, EFLAGS Condition Codes, in the Intel Architecture Soft-
ware Developer’s Manual, Volume 1, shows the alternate mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This representation can be
obtained by choosing the logically opposite condition for the SETcc instruction, then decre-
menting the result. For example, to test for overflow, use the SETNO instruction, then decrement
the result.

Operation

IF condition
THEN DEST ← 1
ELSE DEST ← 0;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 426 Friday, January 17, 1997 12:59 PM

3-427

INSTRUCTION SET REFERENCE

SGDT/SIDT—Store Global/Interrupt Descriptor Table Register

Description

Stores the contents of the global descriptor table register (GDTR) or the interrupt descriptor
table register (IDTR) in the destination operand. The destination operand specifies a 6-byte
memory location. If the operand-size attribute is 32 bits, the 16-bit limit field of the register is
stored in the lower 2 bytes of the memory location and the 32-bit base address is stored in the
upper 4 bytes. If the operand-size attribute is 16 bits, the limit is stored in the lower 2 bytes and
the 24-bit base address is stored in the third, fourth, and fifth byte, with the sixth byte filled with
0s.

The SGDT and SIDT instructions are only useful in operating-system software; however, they
can be used in application programs without causing an exception to be generated.

See “LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in this chapter for infor-
mation on loading the GDTR and IDTR.

Intel Architecture Compatibility

The 16-bit forms of the SGDT and SIDT instructions are compatible with the Intel 286
processor, if the upper 8 bits are not referenced. The Intel 286 processor fills these bits with 1s;
the Pentium Pro, Pentium, Intel486, and Intel386 processors fill these bits with 0s.

Operation

IF instruction is IDTR
THEN

IF OperandSize = 16
THEN

DEST[0:15] ← IDTR(Limit);
DEST[16:39] ← IDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47] ← 0;

ELSE (* 32-bit Operand Size *)
DEST[0:15] ← IDTR(Limit);
DEST[16:47] ← IDTR(Base); (* full 32-bit base address loaded *)

FI;
ELSE (* instruction is SGDT *)

IF OperandSize = 16
THEN

DEST[0:15] ← GDTR(Limit);
DEST[16:39] ← GDTR(Base); (* 24 bits of base address loaded; *)
DEST[40:47] ← 0;

Opcode Instruction Description

0F 01 /0 SGDT m Store GDTR to m

0F 01 /1 SIDT m Store IDTR to m

ch01.bk : ch03.doc Page 427 Friday, January 17, 1997 12:59 PM

3-428

INSTRUCTION SET REFERENCE

SGDT/SIDT—Store Global/Interrupt Descriptor Table Register
(Continued)

ELSE (* 32-bit Operand Size *)
DEST[0:15] ← GDTR(Limit);
DEST[16:47] ← GDTR(Base); (* full 32-bit base address loaded *)

FI; FI;

Flags Affected

None.

Protected Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions

#UD If the destination operand is a register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

ch01.bk : ch03.doc Page 428 Friday, January 17, 1997 12:59 PM

3-429

INSTRUCTION SET REFERENCE

SHL/SHR—Shift Instructions

See entry for SAL/SAR/SHL/SHR—Shift.

ch01.bk : ch03.doc Page 429 Friday, January 17, 1997 12:59 PM

3-430

INSTRUCTION SET REFERENCE

SHLD—Double Precision Shift Left

Description

Shifts the first operand (destination operand) to the left the number of bits specified by the third
operand (count operand). The second operand (source operand) provides bits to shift in from the
right (starting with bit 0 of the destination operand). The destination operand can be a register
or a memory location; the source operand is a register. The count operand is an unsigned integer
that can be an immediate byte or the contents of the CL register. Only bits 0 through 4 of the
count are used, which masks the count to a value between 0 and 31. If the count is greater than
the operand size, the result in the destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If
the count operand is 0, the flags are not affected.

The SHLD instruction is useful for multiprecision shifts of 64 bits or more.

Operation

COUNT ← COUNT MOD 32;
SIZE ← OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT ≥ SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i ← SIZE – 1 DOWNTO COUNT
DO

Bit(DEST, i) ← Bit(DEST, i – COUNT);
OD;

Opcode Instruction Description

0F A4 SHLD r/m16,r16,imm8 Shift r/m16 to left imm8 places while shifting bits from r16
in from the right

0F A5 SHLD r/m16,r16,CL Shift r/m16 to left CL places while shifting bits from r16 in
from the right

0F A4 SHLD r/m32,r32,imm8 Shift r/m32 to left imm8 places while shifting bits from r32
in from the right

0F A5 SHLD r/m32,r32,CL Shift r/m32 to left CL places while shifting bits from r32 in
from the right

ch01.bk : ch03.doc Page 430 Friday, January 17, 1997 12:59 PM

3-431

INSTRUCTION SET REFERENCE

SHLD—Double Precision Shift Left (Continued)

FOR i ← COUNT – 1 DOWNTO 0
DO

BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];
OD;

FI;
FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit,
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the
flags are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 431 Friday, January 17, 1997 12:59 PM

3-432

INSTRUCTION SET REFERENCE

SHRD—Double Precision Shift Right

Description

Shifts the first operand (destination operand) to the right the number of bits specified by the third
operand (count operand). The second operand (source operand) provides bits to shift in from the
left (starting with the most significant bit of the destination operand). The destination operand
can be a register or a memory location; the source operand is a register. The count operand is an
unsigned integer that can be an immediate byte or the contents of the CL register. Only bits 0
through 4 of the count are used, which masks the count to a value between 0 and 31. If the count
is greater than the operand size, the result in the destination operand is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If
the count operand is 0, the flags are not affected.

The SHRD instruction is useful for multiprecision shifts of 64 bits or more.

Operation

COUNT ← COUNT MOD 32;
SIZE ← OperandSize
IF COUNT = 0

THEN
no operation

ELSE
IF COUNT ≥ SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, COUNT – 1]; (* last bit shifted out on exit *)
FOR i ← 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] ← BIT[DEST, i – COUNT];

OD;

Opcode Instruction Description

0F AC SHRD r/m16,r16,imm8 Shift r/m16 to right imm8 places while shifting bits from
r16 in from the left

0F AD SHRD r/m16,r16,CL Shift r/m16 to right CL places while shifting bits from r16
in from the left

0F AC SHRD r/m32,r32,imm8 Shift r/m32 to right imm8 places while shifting bits from
r32 in from the left

0F AD SHRD r/m32,r32,CL Shift r/m32 to right CL places while shifting bits from r32
in from the left

ch01.bk : ch03.doc Page 432 Friday, January 17, 1997 12:59 PM

3-433

INSTRUCTION SET REFERENCE

SHRD—Double Precision Shift Right (Continued)

FOR i ← SIZE – COUNT TO SIZE – 1
DO

BIT[DEST,i] ← BIT[inBits,i+COUNT – SIZE];
OD;

FI;
FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit,
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the
flags are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 433 Friday, January 17, 1997 12:59 PM

3-434

INSTRUCTION SET REFERENCE

SIDT—Store Interrupt Descriptor Table Register

See entry for SGDT/SIDT—Store Global/Interrupt Descriptor Table Register.

ch01.bk : ch03.doc Page 434 Friday, January 17, 1997 12:59 PM

3-435

INSTRUCTION SET REFERENCE

SLDT—Store Local Descriptor Table Register

Description

Stores the segment selector from the local descriptor table register (LDTR) in the destination
operand. The destination operand can be a general-purpose register or a memory location. The
segment selector stored with this instruction points to the segment descriptor (located in the
GDT) for the current LDT. This instruction can only be executed in protected mode.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the
lower-order 16 bits of the register. The high-order 16 bits of the register are cleared to 0s for the
Pentium Pro processor and are undefined for Pentium, Intel486, and Intel386 processors. When
the destination operand is a memory location, the segment selector is written to memory as a 16-
bit quantity, regardless of the operand size.

The SLDT instruction is only useful in operating-system software; however, it can be used in
application programs.

Operation

DEST ← LDTR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0F 00 /0 SLDT r/m16 Stores segment selector from LDTR in r/m16

0F 00 /0 SLDT r/m32 Store segment selector from LDTR in low-order 16 bits of
r/m32

ch01.bk : ch03.doc Page 435 Friday, January 17, 1997 12:59 PM

3-436

INSTRUCTION SET REFERENCE

SLDT—Store Local Descriptor Table Register (Continued)

Real-Address Mode Exceptions

#UD The SLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The SLDT instruction is not recognized in virtual-8086 mode.

ch01.bk : ch03.doc Page 436 Friday, January 17, 1997 12:59 PM

3-437

INSTRUCTION SET REFERENCE

SMSW—Store Machine Status Word

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the destination
operand. The destination operand can be a 16-bit general-purpose register or a memory location.

When the destination operand is a 32-bit register, the low-order 16 bits of register CR0 are
copied into the low-order 16 bits of the register and the upper 16 bits of the register are unde-
fined. When the destination operand is a memory location, the low-order 16 bits of register CR0
are written to memory as a 16-bit quantity, regardless of the operand size.

The SMSW instruction is only useful in operating-system software; however, it is not a privi-
leged instruction and can be used in application programs.

This instruction is provided for compatibility with the Intel 286 processor. Programs and proce-
dures intended to run on the Pentium Pro, Pentium, Intel486, and Intel386 processors should use
the MOV (control registers) instruction to load the machine status word.

Operation

DEST ← CR0[15:0]; (* Machine status word *);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0F 01 /4 SMSW r/m16 Store machine status word to r/m16

0F 01 /4 SMSW r32/m16 Store machine status word in low-order 16 bits of r32/m16;
high-order 16 bits of r32 are undefined

ch01.bk : ch03.doc Page 437 Friday, January 17, 1997 12:59 PM

3-438

INSTRUCTION SET REFERENCE

SMSW—Store Machine Status Word (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 438 Friday, January 17, 1997 12:59 PM

3-439

INSTRUCTION SET REFERENCE

STC—Set Carry Flag

Description

Sets the CF flag in the EFLAGS register.

Operation

CF ← 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

F9 STC Set CF flag

ch01.bk : ch03.doc Page 439 Friday, January 17, 1997 12:59 PM

3-440

INSTRUCTION SET REFERENCE

STD—Set Direction Flag

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decre-
ment the index registers (ESI and/or EDI).

Operation

DF ← 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Operation

DF ← 1;

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FD STD Set DF flag

ch01.bk : ch03.doc Page 440 Friday, January 17, 1997 12:59 PM

3-441

INSTRUCTION SET REFERENCE

STI—Set Interrupt Flag

Description

Sets the interrupt flag (IF) in the EFLAGS register. After the IF flag is set, the processor begins
responding to external, maskable interrupts after the next instruction is executed. The delayed
effect of this instruction is provided to allow interrupts to be enabled just before returning from
a procedure (or subroutine). For instance, if an STI instruction is followed by an RET instruc-
tion, the RET instruction is allowed to execute before external interrupts are recognized1. This
behavior allows external interrupts to be disabled at the beginning of a procedure and enabled
again at the end of the procedure. If the STI instruction is followed by a CLI instruction (which
clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions have no affect on the generation of exceptions and
NMI interrupts.

The following decision table indicates the action of the STI instruction (bottom of the table)
depending on the processor’s mode of operation and the CPL and IOPL of the currently running
program or procedure (top of the table).

NOTES:

X Don't care.

N Action in Column 1 not taken.

Y Action in Column 1 taken.

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:
 STI

MOV SS, AX
MOV ESP, EBP

interrupts may be recognized before MOV ESP, EBP executes, even though MOV SS, AX normally delays
interrupts for one instruction.

Opcode Instruction Description

FB STI Set interrupt flag; external, maskable interrupts enabled
at the end of the next instruction

PE = 0 1 1 1

VM = X 0 0 1

CPL X ≤ IOPL > IOPL =3

IOPL X X X =3

IF ← 1 Y Y N Y

#GP(0) N N Y N

ch01.bk : ch03.doc Page 441 Friday, January 17, 1997 12:59 PM

3-442

INSTRUCTION SET REFERENCE

STI—Set Interrupt Flag (Continued)

Operation

IF PE=0 (* Executing in real-address mode *)
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)

IF VM=0 (* Executing in protected mode*)
THEN

IF IOPL = 3
THEN

IF ← 1;
ELSE

IF CPL ≤ IOPL
THEN

IF ← 1;
 ELSE

#GP(0);
FI;

FI;
ELSE (* Executing in Virtual-8086 mode *)

#GP(0); (* Trap to virtual-8086 monitor *)
FI;

FI;

Flags Affected

The IF flag is set to 1.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

ch01.bk : ch03.doc Page 442 Friday, January 17, 1997 12:59 PM

3-443

INSTRUCTION SET REFERENCE

STOS/STOSB/STOSW/STOSD—Store String

Description

Stores a byte, word, or doubleword from the AL, AX, or EAX register, respectively, into the
destination operand. The destination operand is a memory location, the address of which is read
from either the ES:EDI or the ES:DI registers (depending on the address-size attribute of the
instruction, 32 or 16, respectively). The ES segment cannot be overridden with a segment over-
ride prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the STOS
mnemonic) allows the destination operand to be specified explicitly. Here, the destination
operand should be a symbol that indicates the size and location of the destination value. The
source operand is then automatically selected to match the size of the destination operand (the
AL register for byte operands, AX for word operands, and EAX for doubleword operands). This
explicit-operands form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the destination operand symbol must
specify the correct type (size) of the operand (byte, word, or doubleword), but it does not have
to specify the correct location. The location is always specified by the ES:(E)DI registers, which
must be loaded correctly before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
STOS instructions. Here also ES:(E)DI is assumed to be the destination operand and the AL,
AX, or EAX register is assumed to be the source operand. The size of the destination and source
operands is selected with the mnemonic: STOSB (byte read from register AL), STOSW (word
from AX), or STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the AL, AX, or EAX register to the
memory location, the (E)DI register is incremented or decremented automatically according to
the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is incre-
mented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI register is incremented
or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword oper-
ations.

Opcode Instruction Description

AA STOS m8 Store AL at address ES:(E)DI

AB STOS m16 Store AX at address ES:(E)DI

AB STOS m32 Store EAX at address ES:(E)DI

AA STOSB Store AL at address ES:(E)DI

AB STOSW Store AX at address ES:(E)DI

AB STOSD Store EAX at address ES:(E)DI

ch01.bk : ch03.doc Page 443 Friday, January 17, 1997 12:59 PM

3-444

INSTRUCTION SET REFERENCE

STOS/STOSB/STOSW/STOSD—Store String (Continued)

The STOS, STOSB, STOSW, and STOSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions are
used within a LOOP construct because data needs to be moved into the AL, AX, or EAX register
before it can be stored. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation
Prefix” in this chapter for a description of the REP prefix.

Operation

IF (byte store)
THEN

DEST ← AL;
THEN IF DF = 0

THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;
ELSE (* doubleword store *)

DEST ← EAX;
THEN IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

ch01.bk : ch03.doc Page 444 Friday, January 17, 1997 12:59 PM

3-445

INSTRUCTION SET REFERENCE

STOS/STOSB/STOSW/STOSD—Store String (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the ES segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the ES segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 445 Friday, January 17, 1997 12:59 PM

3-446

INSTRUCTION SET REFERENCE

STR—Store Task Register

Description

Stores the segment selector from the task register (TR) in the destination operand. The destina-
tion operand can be a general-purpose register or a memory location. The segment selector
stored with this instruction points to the task state segment (TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the
lower 16 bits of the register and the upper 16 bits of the register are cleared to 0s. When the desti-
nation operand is a memory location, the segment selector is written to memory as a 16-bit
quantity, regardless of operand size.

The STR instruction is useful only in operating-system software. It can only be executed in
protected mode.

Operation

DEST ← TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a nonwritable
segment or if the effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD The STR instruction is not recognized in real-address mode.

Opcode Instruction Description

0F 00 /1 STR r/m16 Stores segment selector from TR in r/m16

ch01.bk : ch03.doc Page 446 Friday, January 17, 1997 12:59 PM

3-447

INSTRUCTION SET REFERENCE

STR—Store Task Register (Continued)

Virtual-8086 Mode Exceptions

#UD The STR instruction is not recognized in virtual-8086 mode.

ch01.bk : ch03.doc Page 447 Friday, January 17, 1997 12:59 PM

3-448

INSTRUCTION SET REFERENCE

SUB—Subtract

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, register, or memory location.
(However, two memory operands cannot be used in one instruction.) When an immediate value
is used as an operand, it is sign-extended to the length of the destination operand format.

The SUB instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a
borrow in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed
result.

Operation

DEST ← DEST – SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

Opcode Instruction Description

2C ib SUB AL,imm8 Subtract imm8 from AL

2D iw SUB AX,imm16 Subtract imm16 from AX

2D id SUB EAX,imm32 Subtract imm32 from EAX

80 /5 ib SUB r/m8,imm8 Subtract imm8 from r/m8

81 /5 iw SUB r/m16,imm16 Subtract imm16 from r/m16

81 /5 id SUB r/m32,imm32 Subtract imm32 from r/m32

83 /5 ib SUB r/m16,imm8 Subtract sign-extended imm8 from r/m16

83 /5 ib SUB r/m32,imm8 Subtract sign-extended imm8 from r/m32

28 /r SUB r/m8,r8 Subtract r8 from r/m8

29 /r SUB r/m16,r16 Subtract r16 from r/m16

29 /r SUB r/m32,r32 Subtract r32 from r/m32

2A /r SUB r8,r/m8 Subtract r/m8 from r8

2B /r SUB r16,r/m16 Subtract r/m16 from r16

2B /r SUB r32,r/m32 Subtract r/m32 from r32

ch01.bk : ch03.doc Page 448 Friday, January 17, 1997 12:59 PM

3-449

INSTRUCTION SET REFERENCE

SUB—Subtract (Continued)

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 449 Friday, January 17, 1997 12:59 PM

3-450

INSTRUCTION SET REFERENCE

TEST—Logical Compare

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the second operand
(source 2 operand) and sets the SF, ZF, and PF status flags according to the result. The result is
then discarded.

Operation

TEMP ← SRC1 AND SRC2;
SF ← MSB(TEMP);
IF TEMP = 0

THEN ZF ← 0;
ELSE ZF ← 1;

FI:
PF ← BitwiseXNOR(TEMP[0:7]);
CF ← 0;
OF ← 0;
(*AF is Undefined*)

Flags Affected

The OF and CF flags are cleared to 0. The SF, ZF, and PF flags are set according to the result
(see the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

A8 ib TEST AL,imm8 AND imm8 with AL; set SF, ZF, PF according to result

A9 iw TEST AX,imm16 AND imm16 with AX; set SF, ZF, PF according to result

A9 id TEST EAX,imm32 AND imm32 with EAX; set SF, ZF, PF according to result

F6 /0 ib TEST r/m8,imm8 AND imm8 with r/m8; set SF, ZF, PF according to result

F7 /0 iw TEST r/m16,imm16 AND imm16 with r/m16; set SF, ZF, PF according to result

F7 /0 id TEST r/m32,imm32 AND imm32 with r/m32; set SF, ZF, PF according to result

84 /r TEST r/m8,r8 AND r8 with r/m8; set SF, ZF, PF according to result

85 /r TEST r/m16,r16 AND r16 with r/m16; set SF, ZF, PF according to result

85 /r TEST r/m32,r32 AND r32 with r/m32; set SF, ZF, PF according to result

ch01.bk : ch03.doc Page 450 Friday, January 17, 1997 12:59 PM

3-451

INSTRUCTION SET REFERENCE

TEST—Logical Compare (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 451 Friday, January 17, 1997 12:59 PM

3-452

INSTRUCTION SET REFERENCE

UD2—Undefined Instruction

Description

Generates an invalid opcode. This instruction is provided for software testing to explicitly
generate an invalid opcode. The opcode for this instruction is reserved for this purpose.

Other than raising the invalid opcode exception, this instruction is the same as the NOP instruc-
tion.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)

#UD Instruction is guaranteed to raise an invalid opcode exception in all oper-
ating modes).

Opcode Instruction Description

0F 0B UD2 Raise invalid opcode exception

ch01.bk : ch03.doc Page 452 Friday, January 17, 1997 12:59 PM

3-453

INSTRUCTION SET REFERENCE

VERR, VERW—Verify a Segment for Reading or Writing

Description

Verifies whether the code or data segment specified with the source operand is readable (VERR)
or writable (VERW) from the current privilege level (CPL). The source operand is a 16-bit
register or a memory location that contains the segment selector for the segment to be verified.
If the segment is accessible and readable (VERR) or writable (VERW), the ZF flag is set; other-
wise, the ZF flag is cleared. Code segments are never verified as writable. This check cannot be
performed on system segments.

To set the ZF flag, the following conditions must be met:

• The segment selector is not null.

• The selector must denote a descriptor within the bounds of the descriptor table (GDT or
LDT).

• The selector must denote the descriptor of a code or data segment (not that of a system
segment or gate).

• For the VERR instruction, the segment must be readable.

• For the VERW instruction, the segment must be a writable data segment.

• If the segment is not a conforming code segment, the segment’s DPL must be greater than
or equal to (have less or the same privilege as) both the CPL and the segment selector's
RPL.

The validation performed is the same as is performed when a segment selector is loaded into the
DS, ES, FS, or GS register, and the indicated access (read or write) is performed. The segment
selector's value cannot result in a protection exception, enabling the software to anticipate
possible segment access problems.

Operation

IF SRC(Offset) > (GDTR(Limit) OR (LDTR(Limit))
THEN

ZF ← 0
Read segment descriptor;
IF SegmentDescriptor(DescriptorType) = 0 (* system segment *)

OR (SegmentDescriptor(Type) ≠ conforming code segment)
AND (CPL > DPL) OR (RPL > DPL)

THEN
ZF ← 0

Opcode Instruction Description

0F 00 /4 VERR r/m16 Set ZF=1 if segment specified with r/m16 can be read

0F 00 /5 VERW r/m16 Set ZF=1 if segment specified with r/m16 can be written

ch01.bk : ch03.doc Page 453 Friday, January 17, 1997 12:59 PM

3-454

INSTRUCTION SET REFERENCE

VERR, VERW—Verify a Segment for Reading or Writing
(Continued)

ELSE
IF ((Instruction = VERR) AND (segment = readable))

OR ((Instruction = VERW) AND (segment = writable))
THEN

ZF ← 1;
FI;

FI;

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable (VERW);
otherwise, it is cleared to 0.

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal addressing of the
source operand.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD The VERR and VERW instructions are not recognized in real-address
mode.

Virtual-8086 Mode Exceptions

#UD The VERR and VERW instructions are not recognized in virtual-8086
mode.

ch01.bk : ch03.doc Page 454 Friday, January 17, 1997 12:59 PM

3-455

INSTRUCTION SET REFERENCE

WAIT/FWAIT—Wait

Description

Causes the processor to check for and handle pending, unmasked, floating-point exceptions
before proceeding. (FWAIT is an alternate mnemonic for the WAIT).

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a
WAIT instruction after a floating-point instruction insures that any unmasked floating-point
exceptions the instruction may raise are handled before the processor can modify the instruc-
tion’s results. See the section titled “Floating-Point Exception Synchronization” in Chapter 7 of
the Intel Architecture Software Developer’s Manual, Volume 1, for more information on using
the WAIT/FWAIT instruction.

Operation
CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM MP and TS in CR0 is set.

Real-Address Mode Exceptions

#NM MP and TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM MP and TS in CR0 is set.

Opcode Instruction Description

9B WAIT Check pending unmasked floating-point exceptions.

9B FWAIT Check pending unmasked floating-point exceptions.

ch01.bk : ch03.doc Page 455 Friday, January 17, 1997 12:59 PM

3-456

INSTRUCTION SET REFERENCE

WBINVD—Write Back and Invalidate Cache

Description

Writes back all modified cache lines in the processor’s internal cache to main memory and inval-
idates (flushes) the internal caches. The instruction then issues a special-function bus cycle that
directs external caches to also write back modified data and another bus cycle to indicate that
the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches to complete
their write-back and flushing operations before proceeding with instruction execution. It is the
responsibility of hardware to respond to the cache write-back and flush signals.

The WDINVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction
is also a serializing instruction (see “Serializing Instructions” in Chapter 7 of the Intel Architec-
ture Software Developer’s Manual, Volume 3).

In situations where cache coherency with main memory is not a concern, software can use the
INVD instruction.

Intel Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be implemented
differently on future Intel Architecture processors. The instruction is not supported on Intel
Architecture processors earlier than the Intel486 processor.

Operation

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Opcode Instruction Description

0F 09 WBINVD Write back and flush Internal caches; initiate writing-back
and flushing of external caches.

ch01.bk : ch03.doc Page 456 Friday, January 17, 1997 12:59 PM

3-457

INSTRUCTION SET REFERENCE

WBINVD—Write Back and Invalidate Cache (Continued)

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) The WBINVD instruction cannot be executed at the virtual-8086 mode.

ch01.bk : ch03.doc Page 457 Friday, January 17, 1997 12:59 PM

3-458

INSTRUCTION SET REFERENCE

WRMSR—Write to Model Specific Register

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) speci-
fied in the ECX register. The high-order 32 bits are copied from EDX and the low-order 32 bits
are copied from EAX. Always set the undefined or reserved bits in an MSR to the values previ-
ously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a
general protection exception #GP(0) will be generated. Specifying a reserved or unimplemented
MSR address in ECX will also cause a general protection exception.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated, including
the global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the Intel Archi-
tecture Software Developer’s Manual, Volume 3). (MTRRs are an implementation-specific
feature of the Pentium Pro processor.)

The MSRs control functions for testability, execution tracing, performance monitoring and
machine check errors. Appendix B, Model-Specific Registers (MSRs), in the Intel Architecture
Software Developer’s Manual, Volume 3, lists all the MSRs that can be written to with this
instruction and their addresses.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 7
of the Intel Architecture Software Developer’s Manual, Volume 3).

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

Intel Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into the
Intel Architecture with the Pentium processor. Execution of this instruction by an Intel Archi-
tecture processor earlier than the Pentium processor results in an invalid opcode exception #UD.

Operation

MSR[ECX] ← EDX:EAX;

Flags Affected

None.

Opcode Instruction Description

0F 30 WRMSR Write the value in EDX:EAX to MSR specified by ECX

ch01.bk : ch03.doc Page 458 Friday, January 17, 1997 12:59 PM

3-459

INSTRUCTION SET REFERENCE

WRMSR—Write to Model Specific Register (Continued)

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.

Real-Address Mode Exceptions

#GP If the value in ECX specifies a reserved or unimplemented MSR address.

Virtual-8086 Mode Exceptions

#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

ch01.bk : ch03.doc Page 459 Friday, January 17, 1997 12:59 PM

3-460

INSTRUCTION SET REFERENCE

XADD—Exchange and Add

Description

Exchanges the first operand (destination operand) with the second operand (source operand),
then loads the sum of the two values into the destination operand. The destination operand can
be a register or a memory location; the source operand is a register.

This instruction can be used with a LOCK prefix.

Intel Architecture Compatibility

Intel Architecture processors earlier than the Intel486 processor do not recognize this instruc-
tion. If this instruction is used, you should provide an equivalent code sequence that runs on
earlier processors.

Operation

TEMP ← SRC + DEST
SRC ← DEST
DEST ← TEMP

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition, which is
stored in the destination operand.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

0F C0/r XADD r/m8,r8 Exchange r8 and r/m8; load sum into r/m8.

0F C1/r XADD r/m16,r16 Exchange r16 and r/m16; load sum into r/m16.

0F C1/r XADD r/m32,r32 Exchange r32 and r/m32; load sum into r/m32.

ch01.bk : ch03.doc Page 460 Friday, January 17, 1997 12:59 PM

3-461

INSTRUCTION SET REFERENCE

XADD—Exchange and Add (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 461 Friday, January 17, 1997 12:59 PM

3-462

INSTRUCTION SET REFERENCE

XCHG—Exchange Register/Memory with Register

Description

Exchanges the contents of the destination (first) and source (second) operands. The operands can
be two general-purpose registers or a register and a memory location. If a memory operand is
referenced, the processor’s locking protocol is automatically implemented for the duration of the
exchange operation, regardless of the presence or absence of the LOCK prefix or of the value of
the IOPL. (See the LOCK prefix description in this chapter for more information on the locking
protocol.)

This instruction is useful for implementing semaphores or similar data structures for process
synchronization. (See “Bus Locking” in Chapter 7 of the Intel Architecture Software Devel-
oper’s Manual, Volume 3, for more information on bus locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

Operation

TEMP ← DEST
DEST ← SRC
SRC ← TEMP

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If either operand is in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

90+rw XCHG AX,r16 Exchange r16 with AX

90+rw XCHG r16,AX Exchange AX with r16

90+rd XCHG EAX,r32 Exchange r32 with EAX

90+rd XCHG r32,EAX Exchange EAX with r32

86 /r XCHG r/m8,r8 Exchange r8 (byte register) with byte from r/m8

86 /r XCHG r8,r/m8 Exchange byte from r/m8 with r8 (byte register)

87 /r XCHG r/m16,r16 Exchange r16 with word from r/m16

87 /r XCHG r16,r/m16 Exchange word from r/m16 with r16

87 /r XCHG r/m32,r32 Exchange r32 with doubleword from r/m32

87 /r XCHG r32,r/m32 Exchange doubleword from r/m32 with r32

ch01.bk : ch03.doc Page 462 Friday, January 17, 1997 12:59 PM

3-463

INSTRUCTION SET REFERENCE

XCHG—Exchange Register/Memory with Register (Continued)

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 463 Friday, January 17, 1997 12:59 PM

3-464

INSTRUCTION SET REFERENCE

XLAT/XLATB—Table Look-up Translation

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a table index,
then copies the contents of the table entry back into the AL register. The index in the AL register
is treated as an unsigned integer. The XLAT and XLATB instructions get the base address of the
table in memory from either the DS:EBX or the DS:BX registers (depending on the address-size
attribute of the instruction, 32 or 16, respectively). (The DS segment may be overridden with a
segment override prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operand”
form and the “no-operand” form. The explicit-operand form (specified with the XLAT
mnemonic) allows the base address of the table to be specified explicitly with a symbol. This
explicit-operands form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the symbol does not have to specify the
correct base address. The base address is always specified by the DS:(E)BX registers, which
must be loaded correctly before the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here also
the processor assumes that the DS:(E)BX registers contain the base address of the table.

Operation

IF AddressSize = 16
THEN

AL ← (DS:BX + ZeroExtend(AL))
ELSE (* AddressSize = 32 *)

AL ← (DS:EBX + ZeroExtend(AL));
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

D7 XLAT m8 Set AL to memory byte DS:[(E)BX + unsigned AL]

D7 XLATB Set AL to memory byte DS:[(E)BX + unsigned AL]

ch01.bk : ch03.doc Page 464 Friday, January 17, 1997 12:59 PM

3-465

INSTRUCTION SET REFERENCE

XLAT/XLATB—Table Look-up Translation (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

ch01.bk : ch03.doc Page 465 Friday, January 17, 1997 12:59 PM

3-466

INSTRUCTION SET REFERENCE

XOR—Logical Exclusive OR

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location. (However, two memory operands cannot be used in one instruction.) Each bit
of the result is 1 if the corresponding bits of the operands are different; each bit is 0 if the corre-
sponding bits are the same.

Operation

DEST ← DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Description

34 ib XOR AL,imm8 AL XOR imm8

35 iw XOR AX,imm16 AX XOR imm16

35 id XOR EAX,imm32 EAX XOR imm32

80 /6 ib XOR r/m8,imm8 r/m8 XOR imm8

81 /6 iw XOR r/m16,imm16 r/m16 XOR imm16

81 /6 id XOR r/m32,imm32 r/m32 XOR imm32

83 /6 ib XOR r/m16,imm8 r/m16 XOR imm8 (sign-extended)

83 /6 ib XOR r/m32,imm8 r/m32 XOR imm8 (sign-extended)

30 /r XOR r/m8,r8 r/m8 XOR r8

31 /r XOR r/m16,r16 r/m16 XOR r16

31 /r XOR r/m32,r32 r/m32 XOR r32

32 /r XOR r8,r/m8 r8 XOR r/m8

33 /r XOR r16,r/m16 r8 XOR r/m8

33 /r XOR r32,r/m32 r8 XOR r/m8

ch01.bk : ch03.doc Page 466 Friday, January 17, 1997 12:59 PM

3-467

INSTRUCTION SET REFERENCE

XOR—Logical Exclusive OR (Continued)

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

ch01.bk : ch03.doc Page 467 Friday, January 17, 1997 12:59 PM

ch01.bk : ch03.doc Page 468 Friday, January 17, 1997 12:59 PM

A
Opcode Map

ch01.bk : appadiv.doc Page 469 Friday, January 17, 1997 12:59 PM

ch01.bk : appadiv.doc Page 470 Friday, January 17, 1997 12:59 PM

A-1

APPENDIX A
OPCODE MAP

The opcode tables in this chapter are provided to aid in interpreting Intel Architecture object
code. The instructions are divided into three encoding groups: 1-byte opcode encodings, 2-byte
opcode encodings, and escape (floating-point) encodings. The 1- and 2-byte opcode encodings
are used to encode integer, system, and MMX instructions. The opcode maps for these instruc-
tions are given in Tables A-1 through A-3. Sections A.2. through A.4. give instructions for in-
terpreting 1- and 2-byte opcode maps. The escape encodings are used to encode floating-point
instructions. The opcode maps for these instructions are given in Tables A-4 through A-13. Sec-
tion A.5. gives instructions for interpreting the escape opcode maps.

See Chapter 2, Instruction Format, for detailed information on the ModR/M byte, register val-
ues, and the various addressing forms.

A.1. KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an uppercase
letter, specifies the addressing method; the second character, a lowercase letter, specifies the
type of operand.

A.1.1. Codes for Addressing Method

The following abbreviations are used for addressing methods:

A Direct address. The instruction has no ModR/M byte; the address of the operand is en-
coded in the instruction; and no base register, index register, or scaling factor can be
applied, for example, far JMP (EA).

C The reg field of the ModR/M byte selects a control register, for example,
MOV (0F20, 0F22).

D The reg field of the ModR/M byte selects a debug register, for example,
MOV (0F21,0F23).

E A ModR/M byte follows the opcode and specifies the operand. The operand is either a
general-purpose register or a memory address. If it is a memory address, the address is
computed from a segment register and any of the following values: a base register, an
index register, a scaling factor, a displacement.

F EFLAGS Register.

G The reg field of the ModR/M byte selects a general register, for example, AX (000).

I Immediate data. The operand value is encoded in subsequent bytes of the instruction.

ch01.bk : apdxa.doc Page 1 Friday, January 17, 1997 12:59 PM

A-2

OPCODE MAP

J The instruction contains a relative offset to be added to the instruction pointer register,
for example, JMP short, LOOP.

M The ModR/M byte may refer only to memory, for example, BOUND, LES, LDS, LSS,
LFS, LGS, CMPXCHG8B.

O The instruction has no ModR/M byte; the offset of the operand is coded as a word or
double word (depending on address size attribute) in the instruction. No base register,
index register, or scaling factor can be applied, for example, MOV (A0–A3).

P The reg field of the ModR/M byte selects a packed quadword MMX register.

Q An ModR/M byte follows the opcode and specifies the operand. The operand is either
an MMX register or a memory address. If it is a memory address, the address is com-
puted from a segment register and any of the following values: a base register, an index
register, a scaling factor, and a displacement.

R The mod field of the ModR/M byte may refer only to a general register, for example,
MOV (0F20-0F24, 0F26).

S The reg field of the ModR/M byte selects a segment register, for example, MOV
(8C,8E).

T The reg field of the ModR/M byte selects a test register, for example, MOV
(0F24,0F26).

X Memory addressed by the DS:SI register pair (for example, MOVS, OUTS, or LODS).

Y Memory addressed by the ES:DI register pair (for example, MOVS, INS, or STOS).

A.1.2. Codes for Operand Type

The following abbreviations are used for operand types:

a Two one-word operands in memory or two double-word operands in memory, depend-
ing on operand size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

p 32-bit or 48-bit pointer, depending on operand size attribute.

q Quadword, regardless of operand-size attribute.

s 6-byte pseudo-descriptor.

v Word or doubleword, depending on operand-size attribute.

w Word, regardless of operand-size attribute.

ch01.bk : apdxa.doc Page 2 Friday, January 17, 1997 12:59 PM

A-3

OPCODE MAP

A.1.3. Register Codes

When an operand is a specific register encoded in the opcode, the register is identified by its
name (for example, AX, CL, or ESI). The name of the register indicates whether the register is
32, 16, or 8 bits wide. A register identifier of the form eXX is used when the width of the register
depends on the operand size attribute. For example, eAX indicates that the AX register is used
when the operand size attribute is 16, and the EAX register is used when the operand size at-
tribute is 32.

A.2. ONE-BYTE OPCODE INTEGER INSTRUCTIONS

The opcode map for 1-byte opcodes are shown in Table A-1. For 1-byte opcodes, the instruction
and its operands can be determined from the hexadecimal opcode. For example, the opcode
030500000000H for an ADD instruction can be interpreted from the 1-byte opcode map in Table
A-1 as follows. The first digit (0) of the opcode indicates the row and the second digit (3) indi-
cates the column in the opcode map table, which points to ADD instruction with operand types
Gv and Ev. The first operand (type Gv) indicates a general register that is a word or doubleword
depending on the operand-size attribute. The second operand (type Ev) indicates that a ModR/M
byte follows that specifies whether the operand is a word or doubleword general-purpose register
or a memory address. The ModR/M byte for this instruction is 05H, which indicates that a 32-
bit displacement follows (00000000H). The reg/opcode portion of the ModR/M byte (bits 3
through 5) is 000 indicating the EAX register. Thus, it can be determined that the instruction for
this opcode is ADD EAX, mem_op and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to “group” numbers. These group numbers indicate that the
instruction uses the reg/opcode bits in the ModR/M byte as an opcode extension (see Section
A.4., “Opcode Extensions For One- And Two-byte Opcodes”).

A.3. TWO-BYTE OPCODE INTEGER INSTRUCTIONS

Instructions that begin with 0FH can be found in the two-byte opcode map given in Table A-2.
Here, the second opcode byte is used to reference a row and column in the Table. For example,
the opcode 0FA4050000000003H is located on the first page of the two-byte opcode map in row
A, column 4, which points to an SHLD instruction with the operands Ev, Gv, and Ib. The Ev,
Gv, and Ib operands are interpreted as follows. The first operand (Ev type) indicates that a
ModR/M byte follows the opcode to specify a word or doubleword operand. The second oper-
and (Gv type) indicates that the reg field of the ModR/M byte selects a general-purpose register.
The third operand (Ib type) indicates that immediate data is encoded in the subsequent byte of
the instruction.

The third byte of the opcode (05H) is the ModR/M byte. The mod and opcode/reg fields indicate
that a 32-bit displacement follows and that the EAX register is the source.

ch01.bk : apdxa.doc Page 3 Friday, January 17, 1997 12:59 PM

A-4

OPCODE MAP

Table A-1. One-Byte Opcode Map 1

0 1 2 3 4 5 6 7

0 ADD PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv ES ES

1 ADC PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv SS SS

2 AND SEG DAA

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =ES

3 XOR SEG AAA

Eb,Gb Ev,Gv Gb,Eb Gb,Ev AL,Ib eAX,Iv =SS

4 INC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5 PUSH general register

eAX eCX eDX eBX eSP eBP eSI eDI

6 PUSHA POPA BOUND ARPL SEG SEG Operand Address

PUSHAD POPAD Gv,Ma Ew,Gw =FS =GS Size Size

7 Short-displacement jump on condition (Jb)

JO JNO JB/JNAE/J
C

JNB/JAE/J
NC

JZ JNZ JBE JNBE

8 Immediate Group 12 TEST XCHG

Eb,Ib Ev,Iv Ev,Ib Eb,lb Eb,Gb Ev,Gv Eb,Gb Ev,Gv

9 NOP XCHG word or double-word register with eAX

eCX eDX eBX eSP eBP eSI eDI

A MOV MOVSB MOVSW CMPSB CMPSW

AL,Ob eAX,Ov Ob,AL Ov,eAX Xb,Yb Xv,Yv Xb,Yb Xv,Yv

B MOV immediate byte into byte register

AL CL DL BL AH CH DH BH

C Shift Group 2a2 RET near LES LDS MOV

Eb,Ib Ev,Ib Iw Gv,Mp Gv,Mp Eb,Ib Ev,Iv

D Shift Group 22 AAM AAD XLAT

Eb,1 Ev,1 Eb,CL Ev,CL

E LOOPN LOOPE LOOP JCXZ/JECXZ IN OUT

Jb Jb Jb Jb AL,Ib eAX,Ib Ib,AL Ib,eAX

F LOCK REPNE REP HLT CMC Unary Group 32

REPE Eb Ev

ch01.bk : apdxa.doc Page 4 Friday, January 17, 1997 12:59 PM

A-5

OPCODE MAP

NOTES:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

2. Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (see Section A.4.).

Table A-1. One-Byte Opcode Map (Continued)

8 9 A B C D E F

0 OR PUSH 2-byte

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv CS Escape

1 SBB PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv DS DS

2 SUB SEG DAS

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =CS

3 CMP SEG AAS

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =DS

4 DEC General-Purpose Register

eAX eCX eDX eBX eSP eBP eSI eDI

5 POP Into General-Purpose Register

eAX eCX eDX eBX eSP eBP eSI eDI

6 PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D

lv Gv,Ev,lv lb Gv,Ev,lb Yb,DX Yv,DX Dx,Xb DX,Xv

7 Short-Displacement Jump on Condition (Jb)

JS JNS JP JNP JL JNL JLE JNLE

8 MOV MOV LEA MOV POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev Ew,Sw Gv,M Sw,Ew Ev

9 CBW CWD/CDQ CALL WAIT PUSHF POP SAHF LAHF

aP Fv Fv

A TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D

AL,Ib eAX,Iv Yb,AL Yv,eAX AL,Xb eAX,Xv AL,Yb eAX,Yv

B MOV Immediate Word or Double Into Word or Double Register

eAX eCX eDX eBX eSP eBP eSI eDI

C ENTER LEAVE RET far RET far INT INT INTO IRET

Iw, Ib Iw 3 lb

D ESC (Escape to Coprocessor Instruction Set)

E CALL JMP IN OUT

Jv Jv Ap Jb AL,DX eAX,DX DX,AL DX,eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

 Group 42 Group 52

ch01.bk : apdxa.doc Page 5 Friday, January 17, 1997 12:59 PM

A-6

OPCODE MAP

The next part of the SHLD opcode is the 32-bit displacement for the destination memory oper-
and (00000000H), which is followed by the immediate byte representing the count of the shift
(03H). By this breakdown, it has been shown that the opcode 0FA4050000000003H represents
the instruction: SHLD DS:00000000H, EAX, 3 .

Table A-2. Two Byte Opcode Map (First byte is 0FH) 1

0 1 2 3 4 5 6 7

0 Group 62 LAR
Gv,Ew

LSL
Gv,Ew

CLTS

1

2 MOV
Rd,Cd

MOV
Rd,Dd

MOV
Cd,Rd

MOV
Dd,Rd

3 WRMSR RDTSC RDMSR RDPMC

4 CMOVO
Gv, Ev

CMOVNO
Gv, Ev

CMOVB,
CMOVC,

CMOVNAE
Gv, Ev

CMOVAE,
CMOVNB,
CMOVNC

Gv, Ev

CMOVE,
CMOVZ
Gv, Ev

CMOVNE,
CMOVNZ

Gv, Ev

CMOVBE,
CMOVNA

Gv, Ev

CMOVA,
CMOVNBE

Gv, Ev

5

6 PUNPCKLBW
Pq, Qd

PUNPCKLWD
Pq, Qd

PUNOCKLDQ
Pq, Qd

PACKUSDW
Pq, Qd

PCMPGTB
Pq, Qd

PCMPGTW
Pq, Qd

PCMPGTD
Pq, Qd

PACKSSWB
Pq, Qd

Group A2 PCMPEQB
Pq, Qd

PCMPEQW
Pq, Qd

PCMPEQD
Pq, Qd

EMMS

7 PSHIMW3 PSHIMD3 PSHIMQ3

8 Long-Displacement Jump on Condition (Jv)

JO JNO JB JNB JZ JNZ JBE JNBE

9 Byte Set on condition (Eb)

SETO SETNO SETB SETNB SETZ SETNZ SETBE SETNBE

A PUSH
FS

POP
FS

CPUID BT
Ev,Gv

SHLD
Ev,Gv,Ib

SHLD
Ev,Gv,CL

B CMPXCHG CMPXCHG LSS BTR LFS LGS MOVZX

Eb,Gb Ev,Gv Mp Ev,Gv Mp Mp Gv,Eb Gv,Ew

C XADD
Eb,Gb

XADD
Ev,Gv

Group 92

D PSRLW
Pq, Qd

PSRLD
Pq, Qd

PSRLQ
Pq, Qd

PMULLW
Pq, Qd

E PSRAW
Pq, Qd

PSRAD
Pq, Qd

PMULHW
Pq, Qd

F PSLLW
Pq, Qd

PSLLD
Pq, Qd

PSLLQ
Pq, Qd

PMADDWD
Pq, Qd

ch01.bk : apdxa.doc Page 6 Friday, January 17, 1997 12:59 PM

A-7

OPCODE MAP

NOTES:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

2. Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (see Section A.4.).

3. These abbreviations are not actual mnemonics. When shifting by immediate shift counts, the PSHIMD
mnemonic represents the PSLLD, PSRAD, and PSRLD instructions, PSHIMW represents the PSLLW,
PSRAW, and PSRLW instructions, and PSHIMQ represents the PSLLQ and PSRLQ instructions. The
instructions that shift by immediate counts are differentiated by the ModR/M bytes (see Section A.4.).

4. Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately trying to generate an
invalid opcode exception (#UD).

Table A-2. Two-Byte Opcode Map (First byte is 0FH) (Continued)

8 9 A B C D E F

0 INVD WBINVD UD24

1

2

3

4 CMOVS
Gv, Ev

CMOVNS
Gv, Ev

CMOVP,
CMOVPE

Gv, Ev

CMOVNP,
CMOVPO

Gv, Ev

CMOVL,
CMOVNGE

Gv, Ev

CMOVGE,
CMOVNL

Gv, Ev

CMOVLE,
CMOVNG

Gv, Ev

CMOVG,
CMOVNLE

Gv, Ev

5

6 PUNPCKHBW
Pq, Qd

PUNPCKHWD
Pq, Qd

PUNPCKHDQ
Pq, Qd

PACKSSDW
Pq, Qd

MOVD
Pd, Ed

MOVQ
Pq, Qq

7 MOVD
Ed, Pd

MOVQ
Qq, Pq

8 Long-Displacement Jump on Condition (Jv)

JS JNS JP JNP JL JNL JLE JNLE

Byte set on condition (Eb)

9 SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE

Eb Eb Eb Eb Eb Eb Eb Eb

A PUSH
GS

POP
GS

RSM BTS
Ev,Gv

SHRD
Ev,Gv,Ib

SHRD
Ev,Gv,CL

IMUL
Gv,Ev

B Invalid
Opcode4

Group 82 BTC BSF BSR MOVSX

Ev,lb Ev,Gv Gv,Ev Gv,Ev Gv,Eb Gv,Ew

C BSWAP
EAX

BSWAP
ECX

BSWAP
EDX

BSWAP
EBX

BSWAP
ESP

BSWAP
EBP

BSWAP
ESI

BSWAP
EDI

D PSUBUSB
Pq, Qq

PSUBUSW
Pq, Qq

PAND
Pq, Qq

PADDUSB
Pq, Qq

PADDUSW
Pq, Qq

PANDN
Pq, Qq

E PSUBSB
Pq, Qq

PSUBSW
Pq, Qq

POR
Pq, Qq

PADDSB
Pq, Qq

PADDSW
Pq, Qq

PXOR
Pq, Qq

F PSUBB
Pq, Qq

PSUBW
Pq, Qq

PSUBD
Pq, Qq

PADDB
Pq, Qq

PADDW
Pq, Qq

PADDD
Pq, Qq

ch01.bk : apdxa.doc Page 7 Friday, January 17, 1997 12:59 PM

A-8

OPCODE MAP

A.4. OPCODE EXTENSIONS FOR ONE- AND TWO-BYTE
OPCODES

Some of the 1-byte and 2-byte opcodes use bits 5, 4, and 3 of the ModR/M byte (the nnn field
in Figure A-1) as an extension of the opcode. Those opcodes that have opcode extensions are
indicated in Tables A-1 and A-2 with group numbers (Group 1, Group 2, etc.). The group num-
bers (which range from 1 to A) provide an entry point into Table A-3 where the encoding of the
opcode extension field can be found. For example, the ADD instruction with a 1-byte opcode of
80H is a Group 1 instruction. Table A-3 then indicates that the opcode extension that must be
encoded in the ModR/M byte for this instruction is 000B.

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

mod nnn R/M

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)

Table A-3. Opcode Extensions for One- and Two-Byte Opcodes by Group Number 1

Encoding of Bits 5,4,3 of the ModR/M Byte

Group 000 001 010 011 100 101 110 111

1 ADD OR ADC SBB AND SUB XOR CMP

2 ROL ROR RCL RCR SHL,
SAL

SHR SAR

3 TEST
Ib/Iv

NOT NEG MUL
AL/eAX

IMUL
AL/eAX

DIV
AL/eAX

IDIV
AL/eAX

4 INC
Eb

DEC
Eb

5 INC
Ev

DEC
Ev

CALL
Ev

CALL
Ep

JMP
Ev

JMP
Ep

PUSH
Ev

6 SLDT
Ew

STR
Ew

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

7 SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Ew

LMSW
Ew

INVLPG

8 BT BTS BTR BTC

9 CMPXCH
8BMq

A PSRLD,
PSRLW,
PSRLQ
Pq, Ib

PSRAD,
PSRAW
Pq, Ib

PSLLD,
PSLLW,
PSLLQ
Pq, Ib

ch01.bk : apdxa.doc Page 8 Friday, January 17, 1997 12:59 PM

A-9

OPCODE MAP

A.5. ESCAPE OPCODE INSTRUCTIONS

The opcode maps for the escape instruction opcodes (floating-point instruction opcodes) are
given in Tables A-4 through A-13. These opcode maps are grouped by the first byte of the op-
code from D8 through DF. Each of these opcodes has a ModR/M byte. If the ModR/M byte is
within the range of 00H through BFH, bits 5, 4, and 3 of the ModR/M byte are used as an opcode
extension, similar to the technique used for 1-and 2-byte opcodes (see Section A.4., “Opcode
Extensions For One- And Two-byte Opcodes”). If the ModR/M byte is outside the range of 00H
through BFH, the entire ModR/M byte is used as an opcode extension.

For example, the opcode DD0504000000H can be interpreted as follows. The instruction encod-
ed with this opcode can be located in Section A.5.6., “Escape Opcodes with DD as First Byte”.
Since the ModR/M byte (05H) is within the 00H through BFH range, bits 3 through 5 (000) of
this byte indicate the opcode to be for an FLD double-real instruction (see Table A-6). The dou-
ble-real value to be loaded is at 00000004H, which is the 32-bit displacement that follows and
belongs to this opcode.

The opcode D8C1H illustrates an opcode with a ModR/M byte outside the range of 00H through
BFH. The instruction encoded here, can be located in Section A.5.1., “Escape Opcodes with D8
as First Byte”. InTable A-5, the ModR/M byte C1H indicates row C, column 1, which is an
FADD instruction using ST(0), ST(1) as the operands.

ch01.bk : apdxa.doc Page 9 Friday, January 17, 1997 12:59 PM

A-10

OPCODE MAP

A.5.1. Escape Opcodes with D8 as First Byte

Tables A-4 and A-5 contain the opcodes maps for the escape instruction opcodes that begin with
D8H. Table A-4 shows the opcode map if the accompanying ModR/M byte within the range of
00H through BFH. Here, the value of bits 5, 4, and 3 (the nnn field in Figure A-1) selects the
instruction.

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-5 shows the opcode map if the accompanying ModR/M byte is outside the range of 00H
to BFH. In this case the first digit of the ModR/M byte selects the row in the table and the second
digit selects the column.

Table A-4. D8 Opcode Map When ModR/M Byte is Within 00H to BFH 1

nnn Field of ModR/M Byte (see Figure A-1)

000 001 010 011 100 101 110 111

FADD
single-real

FMUL
single-real

FCOM
single-real

FCOMP
single-real

FSUB
single-real

FSUBR
single-real

FDIV
single-real

FDIVR
single-real

ch01.bk : apdxa.doc Page 10 Friday, January 17, 1997 12:59 PM

A-11

OPCODE MAP

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-5. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH 1

0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOM

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUBR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIVR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

ch01.bk : apdxa.doc Page 11 Friday, January 17, 1997 12:59 PM

A-12

OPCODE MAP

A.5.2. Escape Opcodes with D9 as First Byte

Tables A-6 and A-13 contain the opcodes maps for the escape instruction opcodes that begin
with D9H. Table A-6 shows the opcode map if the accompanying ModR/M byte within the range
of 00H through BFH. Here, the value of bits 5, 4, and 3 (the nnn field in Figure A-1) selects the
instruction.

.

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-13 shows the opcode map if the accompanying ModR/M byte is outside the range of
00H to BFH. In this case the first digit of the ModR/M byte selects the row in the table and the
second digit selects the column.

Table A-6. D9 Opcode Map When ModR/M Byte is Within 00H to BFH 1

nnn Field of ModR/M Byte (see Figure A-1)

000 001 010 011 100 101 110 111

FLD
single-real

FST
single-real

FSTP
single-real

FLDENV
14/28 bytes

FLDCW
2 bytes

FSTENV
14/28 bytes

FSTCW
2 bytes

ch01.bk : apdxa.doc Page 12 Friday, January 17, 1997 12:59 PM

A-13

OPCODE MAP

:

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-7. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH 1

0 1 2 3 4 5 7

C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F

C FXCH

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

ch01.bk : apdxa.doc Page 13 Friday, January 17, 1997 12:59 PM

A-14

OPCODE MAP

A.5.3. Escape Opcodes with DA as First Byte

Tables A-6 and A-13 contain the opcodes maps for the escape instruction opcodes that begin
with DAH. Table A-6 shows the opcode map if the accompanying ModR/M byte within the
range of 00H through BFH. Here, the value of bits 5, 4, and 3 (the nnn field in Figure A-1) selects
the instruction.

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-13 shows the opcode map if the accompanying ModR/M byte is outside the range of
00H to BFH. In this case the first digit of the ModR/M byte selects the row in the table and the
second digit selects the column.

Table A-8. DA Opcode Map When ModR/M Byte is Within 00H to BFH 1

nnn Field of ModR/M Byte (see Figure A-1)

000 001 010 011 100 101 110 111

FIADD
short-integer

FIMUL
short-integer

FICOM
short-integer

FICOMP
short-integer

FISUB
short-integer

FISUBR
short-integer

FIDIV
short-integer

FIDIVR
short-integer

ch01.bk : apdxa.doc Page 14 Friday, January 17, 1997 12:59 PM

A-15

OPCODE MAP

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-9. DA Opcode Map When ModR/M Byte is Outside 00H to BFH 1

0 1 2 3 4 5 7

C FCMOVB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E

F

8 9 A B C D E F

C FCMOVE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMPP

F

ch01.bk : apdxa.doc Page 15 Friday, January 17, 1997 12:59 PM

A-16

OPCODE MAP

A.5.4. Escape Opcodes with DB as First Byte

Tables A-6 and A-13 contain the opcodes maps for the escape instruction opcodes that begin
with DBH. Table A-6 shows the opcode map if the accompanying ModR/M byte within the
range of 00H through BFH. Here, the value of bits 5, 4, and 3 (the nnn field in Figure A-1) selects
the instruction.

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-13 shows the opcode map if the accompanying ModR/M byte is outside the range of
00H to BFH. In this case the first digit of the ModR/M byte selects the row in the table and the
second digit selects the column.

Table A-10. DB Opcode Map When ModR/M Byte is Within 00H to BFH 1

nnn Field of ModR/M Byte (see Figure A-1)

000 001 010 011 100 101 110 111

FILD
short-integer

FIST
short-integer

FISTP
short-integer

FLD
extended-real

FSTP
extended-real

ch01.bk : apdxa.doc Page 16 Friday, January 17, 1997 12:59 PM

A-17

OPCODE MAP

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-11. DB Opcode Map When ModR/M Byte is Outside 00H to BFH 1

0 1 2 3 4 5 7

C FCMOVNB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

ch01.bk : apdxa.doc Page 17 Friday, January 17, 1997 12:59 PM

A-18

OPCODE MAP

A.5.5. Escape Opcodes with DC as First Byte

Tables A-6 and A-13 contain the opcodes maps for the escape instruction opcodes that begin
with DCH. Table A-6 shows the opcode map if the accompanying ModR/M byte within the
range of 00H through BFH. Here, the value of bits 5, 4, and 3 (the nnn field in Figure A-1) selects
the instruction.

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-13 shows the opcode map if the accompanying ModR/M byte is outside the range of
00H to BFH. In this case the first digit of the ModR/M byte selects the row in the table and the
second digit selects the column.

Table A-12. DC Opcode Map When ModR/M Byte is Within 00H to BFH 1

nnn Field of ModR/M Byte (see Figure A-1)

000 001 010 011 100 101 110 111

FADD
double-real

FMUL
double-real

FCOM
double-real

FCOMP
double-real

FSUB
double-real

FSUBR
double-real

FDIV
double-real

FDIVR
double-real

ch01.bk : apdxa.doc Page 18 Friday, January 17, 1997 12:59 PM

A-19

OPCODE MAP

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-13. DC Opcode Map When ModR/M Byte is Outside 00H to BFH 1

0 1 2 3 4 5 7

C FADD

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUB

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIV

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

ch01.bk : apdxa.doc Page 19 Friday, January 17, 1997 12:59 PM

A-20

OPCODE MAP

A.5.6. Escape Opcodes with DD as First Byte

Tables A-6 and A-13 contain the opcodes maps for the escape instruction opcodes that begin
with DDH. Table A-6 shows the opcode map if the accompanying ModR/M byte within the
range of 00H through BFH. Here, the value of bits 5, 4, and 3 (the nnn field in Figure A-1) selects
the instruction.

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-13 shows the opcode map if the accompanying ModR/M byte is outside the range of
00H to BFH. In this case the first digit of the ModR/M byte selects the row in the table and the
second digit selects the column.

Table A-14. DD Opcode Map When ModR/M Byte is Within 00H to BFH 1

nnn Field of ModR/M Byte (see Figure A-1)

000 001 010 011 100 101 110 111

FLD
double-real

FST
double-real

FSTP
double-real

FRSTOR
98/108bytes

FSAVE
98/108bytes

FSTSW
2 bytes

ch01.bk : apdxa.doc Page 20 Friday, January 17, 1997 12:59 PM

A-21

OPCODE MAP

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-15. DD Opcode Map When ModR/M Byte is Outside 00H to BFH 1

0 1 2 3 4 5 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F

ch01.bk : apdxa.doc Page 21 Friday, January 17, 1997 12:59 PM

A-22

OPCODE MAP

A.5.7. Escape Opcodes with DE as First Byte

Tables A-6 and A-13 contain the opcodes maps for the escape instruction opcodes that begin
with DEH. Table A-6 shows the opcode map if the accompanying ModR/M byte within the
range of 00H through BFH. Here, the value of bits 5, 4, and 3 (the nnn field in Figure A-1) selects
the instruction.

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-13 shows the opcode map if the accompanying ModR/M byte is outside the range of
00H to BFH. In this case the first digit of the ModR/M byte selects the row in the table and the
second digit selects the column.

Table A-16. DE Opcode Map When ModR/M Byte is Within 00H to BFH 1

nnn Field of ModR/M Byte (see Figure A-1)

000 001 010 011 100 101 110 111

FIADD
word-integer

FIMUL
word-integer

FICOM
word-integer

FICOMP
word-integer

FISUB
word-integer

FISUBR
word-integer

FIDIV
word-integer

FIDIVR
word-integer

ch01.bk : apdxa.doc Page 22 Friday, January 17, 1997 12:59 PM

A-23

OPCODE MAP

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-17. DE Opcode Map When ModR/M Byte is Outside 00H to BFH 1

0 1 2 3 4 5 7

C FADDP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMULP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D FCOMPP

E FSUBP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0). ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

ch01.bk : apdxa.doc Page 23 Friday, January 17, 1997 12:59 PM

A-24

OPCODE MAP

A.5.8. Escape Opcodes with DF As First Byte

Tables A-6 and A-13 contain the opcodes maps for the escape instruction opcodes that begin
with DFH. Table A-6 shows the opcode map if the accompanying ModR/M byte within the
range of 00H through BFH. Here, the value of bits 5, 4, and 3 (the nnn field in Figure A-1) selects
the instruction.

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-13 shows the opcode map if the accompanying ModR/M byte is outside the range of
00H to BFH. In this case the first digit of the ModR/M byte selects the row in the table and the
second digit selects the column.

Table A-18. DF Opcode Map When ModR/M Byte is Within 00H to BFH 1

nnn Field of ModR/M Byte (see Figure A-1)

000 001 010 011 100 101 110 111

FILD
word-integer

FIST
word-integer

FISTP
word-integer

FBLD
packed-BCD

FILD
long-integer

FBSTP
packed-BCD

FISTP
long-integer

ch01.bk : apdxa.doc Page 24 Friday, January 17, 1997 12:59 PM

A-25

OPCODE MAP

NOTE:

1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of
these undefined opcodes.

Table A-19. DF Opcode Map When ModR/M Byte is Outside 00H to BFH 1

0 1 2 3 4 5 7

C

D

E FSTSW
AX

F FCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C

D

E FUCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

ch01.bk : apdxa.doc Page 25 Friday, January 17, 1997 12:59 PM

ch01.bk : apdxa.doc Page 26 Friday, January 17, 1997 12:59 PM

B
Instruction Formats
and Encodings

ch01.bk : appbdiv.doc Page 27 Friday, January 17, 1997 12:59 PM

ch01.bk : appbdiv.doc Page 28 Friday, January 17, 1997 12:59 PM

B-1

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix shows the formats and encodings of the Intel Architecture instructions. The main
format and encoding tables are Tables B-10, B-14, and B-16.

B.1. MACHINE INSTRUCTION FORMAT

All Intel Architecture instructions are encoded using subsets of the general machine instruction
format shown in Figure B-1. Each instruction consists of an opcode, a register and/or address
mode specifier (if required) consisting of the ModR/M byte and sometimes the scale-index-base
(SIB) byte, a displacement (if required), and an immediate data field (if required).

The primary opcode for an instruction is encoded in one or two bytes of the instruction. Some
instructions also use an opcode extension field encoded in bits 5, 4, and 3 of the ModR/M byte.
Within the primary opcode, smaller encoding fields may be defined. These fields vary according
to the class of operation being performed. The fields define such information as register encod-
ing, conditional test performed, or sign extension of immediate byte.

Almost all instructions that refer to a register and/or memory operand have a register and/or ad-
dress mode byte following the opcode. This byte, the ModR/M byte, consists of the mod field,
the reg field, and the R/M field. Certain encodings of the ModR/M byte indicate that a second
address mode byte, the SIB byte, must be used.

If the selected addressing mode specifies a displacement, the displacement value is placed im-
mediately following the ModR/M byte or SIB byte. If a displacement is present, the possible siz-
es are 8, 16, or 32 bits.

If the instruction specifies an immediate operand, the immediate value follows any displacement
bytes. An immediate operand, if specified, is always the last field of the instruction.

Figure B-1. General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7-6 5-3 2-07-6 5-3 2-0

T T T T T T T T T T T T T T T T Mod Reg* R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

Opcode
1 or 2 Bytes

(T Represents an
Opcode Bit)

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

* Reg Field is sometimes used as
an opcode extension field (TTT).

ch01.bk : apdxb.doc Page 1 Friday, January 17, 1997 12:59 PM

B-2

INSTRUCTION FORMATS AND ENCODINGS

Table B-1 lists several smaller fields or bits that appear in certain instructions, sometimes within
the opcode bytes themselves. The following tables describe these fields and bits and list the al-
lowable values. All of these fields (except the d bit) are shown in the integer instruction formats
given in Table B-10.

B.1.1. Reg Field (reg)

The reg field in the ModR/M byte specifies a general-purpose register operand. The group of
registers specified is modified by the presence of and state of the w bit in an encoding (see Table
B-4). Table B-2 shows the encoding of the reg field when the w bit is not present in an encoding,
and Table B-3 shows the encoding of the reg field when the w bit is present.

Table B-1. Special Fields Within Instruction Encodings

Field Name Description Number of
Bits

reg General-register specifier (see Table B-2 or B-3) 3

w Specifies if data is byte or full-sized, where full-sized is either 16 or 32
bits (see Table B-4)

1

s Specifies sign extension of an immediate data field (see Table B-5) 1

sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-6) 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-6) 3

eee Specifies a special-purpose (control or debug) register (see
Table B-7)

3

tttn For conditional instructions, specifies a condition asserted or a
condition negated (see Table B-8)

4

d Specifies direction of data operation (see Table B-9) 1

Table B-2. Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI

ch01.bk : apdxb.doc Page 2 Friday, January 17, 1997 12:59 PM

B-3

INSTRUCTION FORMATS AND ENCODINGS

B.1.2. Encoding of Operand Size Bit (w)

The current operand-size attribute determines whether the processor is performing 16-or 32-bit
operations. Within the constraints of the current operand-size attribute, the operand-size bit (w)
can be used to indicate operations on 8-bit operands or the full operand size specified with the
operand-size attribute (16 bits or 32 bits). Table B-4 shows the encoding of the w bit depending
on the current operand-size attribute.

B.1.3. Sign Extend (s) Bit

The sign-extend (s) bit occurs primarily in instructions with immediate data fields that are being
extended from 8 bits to 16 or 32 bits. Table B-5 shows the encoding of the s bit.

Table B-3. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
during 16-Bit Data Operations

Register Specified by reg Field
during 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH SP 100 AH ESP

101 CH BP 101 CH EBP

110 DH SI 110 DH ESI

111 BH DI 111 BH EDI

Table B-4. Encoding of Operand Size (w) Bit

w Bit
Operand Size When

Operand-Size Attribute is 16 bits
Operand Size When

Operand-Size Attribute is 32 bits

0 8 Bits 8 Bits

1 16 Bits 32 Bits

Table B-5. Encoding of Sign-Extend (s) Bit

s
Effect on 8-Bit

Immediate Data
Effect on 16- or 32-Bit

Immediate Data

0 None None

1 Sign-extend to fill 16-bit or 32-bit destination None

ch01.bk : apdxb.doc Page 3 Friday, January 17, 1997 12:59 PM

B-4

INSTRUCTION FORMATS AND ENCODINGS

B.1.4. Segment Register Field (sreg)

When an instruction operates on a segment register, the reg field in the ModR/M byte is called
the sreg field and is used to specify the segment register. Table B-6 shows the encoding of the
sreg field. This field is sometimes a 2-bit field (sreg2) and other times a 3-bit field (sreg3).

* Do not use reserved encodings.

B.1.5. Special-Purpose Register (eee) Field

When the control or debug registers are referenced in an instruction they are encoded in the eee
field, which is located in bits 5, 4, and 3 of the ModR/M byte. Table B-7 shows the encoding of
the eee field.

* Do not use reserved encodings.

Table B-6. Encoding of the Segment Register (sreg) Field

2-Bit sreg2 Field
Segment Register

Selected 3-Bit sreg3 Field
Segment Register

Selected

00 ES 000 ES

01 CS 001 CS

10 SS 010 SS

11 DS 011 DS

100 FS

101 GS

110 Reserved*

111 Reserved*

Table B-7. Encoding of Special-Purpose Register (eee) Field

eee Control Register Debug Register

000 CR0 DR0

001 Reserved* DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved*

101 Reserved* Reserved*

110 Reserved* DR6

111 Reserved* DR7

ch01.bk : apdxb.doc Page 4 Friday, January 17, 1997 12:59 PM

B-5

INSTRUCTION FORMATS AND ENCODINGS

B.1.6. Condition Test Field (tttn)

For conditional instructions (such as conditional jumps and set on condition), the condition test
field (tttn) is encoded for the condition being tested for. The ttt part of the field gives the condi-
tion to test and the n part indicates whether to use the condition (n = 0) or its negation (n = 1).
For 1-byte primary opcodes, the tttn field is located in bits 3,2,1, and 0 of the opcode byte; for
2-byte primary opcodes, the tttn field is located in bits 3,2,1, and 0 of the second opcode byte.
Table B-8 shows the encoding of the tttn field.

B.1.7. Direction (d) Bit

In many two-operand instructions, a direction bit (d) indicates which operand is considered the
source and which is the destination. Table B-9 shows the encoding of the d bit. When used for
integer instructions, the d bit is located at bit 1 of a 1-byte primary opcode. This bit does not
appear as the symbol “d” in Table B-10; instead, the actual encoding of the bit as 1 or 0 is given.
When used for floating-point instructions (in Table B-16), the d bit is shown as bit 2 of the first
byte of the primary opcode.

Table B-8. Encoding of Conditional Test (tttn) Field

t t t n Mnemonic Condition

0000 O Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to

1101 NL, GE Not less than, Greater than or equal to

1110 LE, NG Less than or equal to, Not greater than

1111 NLE, G Not less than or equal to, Greater than

ch01.bk : apdxb.doc Page 5 Friday, January 17, 1997 12:59 PM

B-6

INSTRUCTION FORMATS AND ENCODINGS

.

B.2. INTEGER INSTRUCTION FORMATS AND ENCODINGS

Table B-10 shows the formats and encodings of the integer instructions.

Table B-9. Encoding of Operation Direction (d) Bit

d Source Destination

0 reg Field ModR/M or SIB Byte

1 ModR/M or SIB Byte reg Field

Table B-10. Integer Instruction Formats and Encodings

Instruction and Format Encoding

AAA – ASCII Adjust after Addition 0011 0111

AAD – ASCII Adjust AX before Division 1101 0101 : 0000 1010

AAM – ASCII Adjust AX after Multiply 1101 0100 : 0000 1010

AAS – ASCII Adjust AL after Subtraction 0011 1111

ADC – ADD with Carry

register1 to register2 0001 000w : 11 reg1 reg2

register2 to register1 0001 001w : 11 reg1 reg2

memory to register 0001 001w : mod reg r/m

register to memory 0001 000w : mod reg r/m

immediate to register 1000 00sw : 11 010 reg : immediate data

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to memory 1000 00sw : mod 010 r/m : immediate data

ADD – Add

register1 to register2 0000 000w : 11 reg1 reg2

register2 to register1 0000 001w : 11 reg1 reg2

memory to register 0000 001w : mod reg r/m

register to memory 0000 000w : mod reg r/m

immediate to register 1000 00sw : 11 000 reg : immediate data

immediate to AL, AX, or EAX 0000 010w : immediate data

immediate to memory 1000 00sw : mod 000 r/m : immediate data

AND – Logical AND

register1 to register2 0010 000w : 11 reg1 reg2

register2 to register1 0010 001w : 11 reg1 reg2

memory to register 0010 001w : mod reg r/m

register to memory 0010 000w : mod reg r/m

immediate to register

ch01.bk : apdxb.doc Page 6 Friday, January 17, 1997 12:59 PM

B-7

INSTRUCTION FORMATS AND ENCODINGS

immediate to AL, AX, or EAX 0010 010w : immediate data

immediate to memory 1000 00sw : mod 100 r/m : immediate data

ARPL – Adjust RPL Field of Selector

from register 0110 0011 : 11 reg1 reg2

from memory 0110 0011 : mod reg r/m

BOUND – Check Array Against Bounds 0110 0010 : mod reg r/m

BSF – Bit Scan Forward

register1, register2 0000 1111 : 1011 1100 : 11 reg2 reg1

memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR – Bit Scan Reverse

register1, register2 0000 1111 : 1011 1101 : 11 reg2 reg1

memory, register 0000 1111 : 1011 1101 : mod reg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BT – Bit Test

register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data

register1, register2 0000 1111 : 1010 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 0011 : mod reg r/m

BTC – Bit Test and Complemen t

register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8 data

register1, register2 0000 1111 : 1011 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 1011 : mod reg r/m

BTR – Bit Test and Reset

register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8 data

register1, register2 0000 1111 : 1011 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 0011 : mod reg r/m

BTS – Bit Test and Set

register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8 data

register1, register2 0000 1111 : 1010 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 1011 : mod reg r/m

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 7 Friday, January 17, 1997 12:59 PM

B-8

INSTRUCTION FORMATS AND ENCODINGS

CALL – Call Procedure (in same segment)

direct 1110 1000 : full displacement

register indirect 1111 1111 : 11 010 reg

memory indirect 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

direct 1001 1010 : unsigned full offset, selector

indirect 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMOVcc – Conditional Move

register2 to register1 0000 1111: 0100 tttn : 11 reg1 reg2

memory to register 0000 1111: 0100 tttn : mod mem r/m

CMP – Compare Two Operands

register1 with register2 0011 100w : 11 reg1 reg2

register2 with register1 0011 101w : 11 reg1 reg2

memory with register 0011 100w : mod reg r/m

register with memory 0011 101w : mod reg r/m

immediate with register 1000 00sw : 11 111 reg : immediate data

immediate with AL, AX, or EAX 0011 110w : immediate data

immediate with memory 1000 00sw : mod 111 r/m

CMPS/CMPSB/CMPSW/CMPSD – Compare String
Operands

1010 011w

CMPXCHG – Compare and Exchange

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

CMPXCHG8B – Compare and Exchange 8 Bytes

memory, register 0000 1111 : 1100 0111 : mod reg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DAA – Decimal Adjust AL after Addition 0010 0111

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 8 Friday, January 17, 1997 12:59 PM

B-9

INSTRUCTION FORMATS AND ENCODINGS

DAS – Decimal Adjust AL after Subtraction 0010 1111

DEC – Decrement by 1

register 1111 111w : 11 001 reg

register (alternate encoding) 0100 1 reg

memory 1111 111w : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 1111 011w : 11 110 reg

AL, AX, or EAX by memory 1111 011w : mod 110 r/m

ENTER – Make Stack Frame for High Level
Procedure

1100 1000 : 16-bit displacement : 8-bit level (L)

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 1111 011w : 11 111 reg

AL, AX, or EAX by memory 1111 011w : mod 111 r/m

IMUL – Signed Multiply

AL, AX, or EAX with register 1111 011w : 11 101 reg

AL, AX, or EAX with memory 1111 011w : mod 101 reg

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

register with memory 0000 1111 : 1010 1111 : mod reg r/m

register1 with immediate to register2 0110 10s1 : 11 reg1 reg2 : immediate data

memory with immediate to register 0110 10s1 : mod reg r/m : immediate data

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 1111 111w : 11 000 reg

reg (alternate encoding) 0100 0 reg

memory 1111 111w : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

IRET/IRETD – Interrupt Return 1100 1111

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 9 Friday, January 17, 1997 12:59 PM

B-10

INSTRUCTION FORMATS AND ENCODINGS

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

full displacement 0000 1111 : 1000 tttn : full displacement

JCXZ/JECXZ – Jump on CX/ECX Zero
 Address-size prefix differentiates JCXZ
 and JECXZ

1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : full displacement

register indirect 1111 1111 : 11 100 reg

memory indirect 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

direct intersegment 1110 1010 : unsigned full offset, selector

indirect intersegment 1111 1111 : mod 101 r/m

LAHF – Load Flags into AHRegister 1001 1111

LAR – Load Access Rights Byte

from register 0000 1111 : 0000 0010 : 11 reg1 reg2

from memory 0000 1111 : 0000 0010 : mod reg r/m

LDS – Load Pointer to DS 1100 0101 : mod reg r/m

LEA – Load Effective Address 1000 1101 : mod reg r/m

LEAVE – High Level Procedure Exit 1100 1001

LES – Load Pointer to ES 1100 0100 : mod reg r/m

LFS – Load Pointer to FS 0000 1111 : 1011 0100 : mod reg r/m

LGDT – Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod 010 r/m

LGS – Load Pointer to GS 0000 1111 : 1011 0101 : mod reg r/m

LIDT – Load Interrupt Descriptor Table Register

LLDT – Load Local Descriptor Table Register

LDTR from register 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

from register 0000 1111 : 0000 0001 : 11 110 reg

from memory 0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD – Load String
Operand

1010 110w

LOOP – Loop Count 1110 0010 : 8-bit displacement

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 10 Friday, January 17, 1997 12:59 PM

B-11

INSTRUCTION FORMATS AND ENCODINGS

LOOPZ/LOOPE – Loop Count while Zero/Equal 1110 0001 : 8-bit displacement

LOOPNZ/LOOPNE – Loop Count while not
Zero/Equal

1110 0000 : 8-bit displacement

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from memory 0000 1111 : 0000 0011 : mod reg r/m

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : mod reg r/m

LTR – Load Task Register

from register 0000 1111 : 0000 0000 : 11 011 reg

from memory 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 1000 100w : 11 reg1 reg2

register2 to register1 1000 101w : 11 reg1 reg2

memory to reg 1000 101w : mod reg r/m

reg to memory 1000 100w : mod reg r/m

immediate to register 1100 011w : 11 000 reg : immediate data

immediate to register (alternate encoding) 1011 w reg : immediate data

immediate to memory 1100 011w : mod 000 r/m : immediate data

memory to AL, AX, or EAX 1010 000w : full displacement

AL, AX, or EAX to memory 1010 001w : full displacement

MOV – Move to/from Control Registers

CR0 from register 0000 1111 : 0010 0010 : 11 000 reg

CR2 from register 0000 1111 : 0010 0010 : 11 010reg

CR3 from register 0000 1111 : 0010 0010 : 11 011 reg

CR4 from register 0000 1111 : 0010 0010 : 11 100 reg

register from CR0-CR4 0000 1111 : 0010 0000 : 11 eee reg

MOV – Move to/from Debug Registers

DR0-DR3 from register 0000 1111 : 0010 0011 : 11 eee reg

DR4-DR5 from register 0000 1111 : 0010 0011 : 11 eee reg

DR6-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg

register from DR6-DR7 0000 1111 : 0010 0001 : 11 eee reg

register from DR4-DR5 0000 1111 : 0010 0001 : 11 eee reg

register from DR0-DR3 0000 1111 : 0010 0001 : 11 eee reg

MOV – Move to/from Segment Registers

register to segment register 1000 1110 : 11 sreg3 reg

register to SS 1000 1110 : 11 sreg3 reg

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 11 Friday, January 17, 1997 12:59 PM

B-12

INSTRUCTION FORMATS AND ENCODINGS

memory to segment reg 1000 1110 : mod sreg3 r/m

memory to SS 1000 1110 : mod sreg3 r/m

segment register to register 1000 1100 : 11 sreg3 reg

segment register to memory 1000 1100 : mod sreg3 r/m

MOVS/MOVSB/MOVSW/MOVSD – Move Data
from String to String

1010 010w

MOVSX – Move with Sign-Extend

register2 to register1 0000 1111 : 1011 111w : 11 reg1 reg2

memory to reg 0000 1111 : 1011 111w : mod reg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0000 1111 : 1011 011w : 11 reg1 reg2

memory to register 0000 1111 : 1011 011w : mod reg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 1111 011w : 11 100 reg

AL, AX, or EAX with memory 1111 011w : mod 100 reg

NEG – Two's Complement Negation

register 1111 011w : 11 011 reg

memory 1111 011w : mod 011 r/m

NOP – No Operation 1001 0000

NOT – One's Complement Negation

register 1111 011w : 11 010 reg

memory 1111 011w : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

register2 to register1 0000 101w : 11 reg1 reg2

memory to register 0000 101w : mod reg r/m

register to memory 0000 100w : mod reg r/m

immediate to register 1000 00sw : 11 001 reg : immediate data

immediate to AL, AX, or EAX 0000 110w : immediate data

immediate to memory 1000 00sw : mod 001 r/m : immediate data

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port 0110 111w

POP – Pop a Word from the Stack

register 1000 1111 : 11 000 reg

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 12 Friday, January 17, 1997 12:59 PM

B-13

INSTRUCTION FORMATS AND ENCODINGS

register (alternate encoding) 0101 1 reg

memory 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack

segment register CS, DS, ES 000 sreg2 111

segment register SS 000 sreg2 111

segment register FS, GS 0000 1111: 10 sreg3 001

POPA/POPAD – Pop All General Registers 0110 0001

POPF/POPFD – Pop Stack into FLAGS or
EFLAGS Registe r

1001 1101

PUSH – Push Operand onto the Stack

register 1111 1111 : 11 110 reg

register (alternate encoding) 0101 0 reg

memory 1111 1111 : mod 110 r/m

immediate 0110 10s0 : immediate data

PUSH – Push Segment Register onto the Stack

segment register CS,DS,ES,SS 000 sreg2 110

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHA/PUSHAD – Push All General Registers 0110 0000

PUSHF/PUSHFD – Push Flags Register onto the
Stack

1001 1100

RCL – Rotate thru Carry Left

register by 1 1101 000w : 11 010 reg

memory by 1 1101 000w : mod 010 r/m

register by CL 1101 001w : 11 010 reg

memory by CL 1101 001w : mod 010 r/m

register by immediate count 1100 000w : 11 010 reg : imm8 data

memory by immediate count 1100 000w : mod 010 r/m : imm8 data

RCR – Rotate thru Carry Right

register by 1 1101 000w : 11 011 reg

memory by 1 1101 000w : mod 011 r/m

register by CL 1101 001w : 11 011 reg

memory by CL 1101 001w : mod 011 r/m

register by immediate count 1100 000w : 11 011 reg : imm8 data

memory by immediate count 1100 000w : mod 011 r/m : imm8 data

RDMSR – Read from Model-Specific Register 0000 1111 : 0011 0010

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 13 Friday, January 17, 1997 12:59 PM

B-14

INSTRUCTION FORMATS AND ENCODINGS

RDPMC – Read Performance Monitoring
Counters

0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter 0000 1111 : 0011 0001

REP INS – Input String 1111 0011 : 0110 110w

REP LODS – Load String 1111 0011 : 1010 110w

REP MOVS – Move String 1111 0011 : 1010 010w

REP OUTS – Output String 1111 0011 : 0110 111w

REP STOS – Store String 1111 0011 : 1010 101w

REPE CMPS – Compare String 1111 0011 : 1010 011w

REPE SCAS – Scan String 1111 0011 : 1010 111w

REPNE CMPS – Compare String 1111 0010 : 1010 011w

REPNE SCAS – Scan String 1111 0010 : 1010 111w

RET – Return from Procedure (to same segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 1101 000w : 11 000 reg

memory by 1 1101 000w : mod 000 r/m

register by CL 1101 001w : 11 000 reg

memory by CL 1101 001w : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8 data

memory by immediate count 1100 000w : mod 000 r/m : imm8 data

ROR – Rotate Right

register by 1 1101 000w : 11 001 reg

memory by 1 1101 000w : mod 001 r/m

register by CL 1101 001w : 11 001 reg

memory by CL 1101 001w : mod 001 r/m

register by immediate count 1100 000w : 11 001 reg : imm8 data

memory by immediate count 1100 000w : mod 001 r/m : imm8 data

RSM – Resume from System Management Mode 0000 1111 : 1010 1010

SAHF – Store AH into Flags 1001 1110

SAL – Shift Arithmetic Left same instruction as SHL

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 14 Friday, January 17, 1997 12:59 PM

B-15

INSTRUCTION FORMATS AND ENCODINGS

SAR – Shift Arithmetic Right

register by 1 1101 000w : 11 111 reg

memory by 1 1101 000w : mod 111 r/m

register by CL 1101 001w : 11 111 reg

memory by CL 1101 001w : mod 111 r/m

register by immediate count 1100 000w : 11 111 reg : imm8 data

memory by immediate count 1100 000w : mod 111 r/m : imm8 data

SBB – Integer Subtraction with Borrow

register1 to register2 0001 100w : 11 reg1 reg2

register2 to register1 0001 101w : 11 reg1 reg2

memory to register 0001 101w : mod reg r/m

register to memory 0001 100w : mod reg r/m

immediate to register 1000 00sw : 11 011 reg : immediate data

immediate to AL, AX, or EAX 0001 110w : immediate data

immediate to memory 1000 00sw : mod 011 r/m : immediate data

SCAS/SCASB/SCASW/SCASD – Scan String 1101 111w

SETcc – Byte Set on Condition

register 0000 1111 : 1001 tttn : 11 000 reg

memory 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : mod 000 r/m

SHL – Shift Left

register by 1 1101 000w : 11 100 reg

memory by 1 1101 000w : mod 100 r/m

register by CL 1101 001w : 11 100 reg

memory by CL 1101 001w : mod 100 r/m

register by immediate count 1100 000w : 11 100 reg : imm8 data

memory by immediate count 1100 000w : mod 100 r/m : imm8 data

SHLD – Double Precision Shift Left

register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 0101 : mod reg r/m

SHR – Shift Right

register by 1 1101 000w : 11 101 reg

memory by 1 1101 000w : mod 101 r/m

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 15 Friday, January 17, 1997 12:59 PM

B-16

INSTRUCTION FORMATS AND ENCODINGS

register by CL 1101 001w : 11 101 reg

memory by CL 1101 001w : mod 101 r/m

register by immediate count 1100 000w : 11 101 reg : imm8 data

memory by immediate count 1100 000w : mod 101 r/m : imm8 data

SHRD – Double Precision Shift Right

register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

SIDT – Store Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0000 1111 : 0000 0000 : 11 000 reg

to memory 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

to register 0000 1111 : 0000 0001 : 11 100 reg

to memory 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD – Store String Data 1010 101w

STR – Store Task Register

to register 0000 1111 : 0000 0000 : 11 001 reg

to memory 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

register1 to register2 0010 100w : 11 reg1 reg2

register2 to register1 0010 101w : 11 reg1 reg2

memory to register 0010 101w : mod reg r/m

register to memory 0010 100w : mod reg r/m

immediate to register 1000 00sw : 11 101 reg : immediate data

immediate to AL, AX, or EAX 0010 110w : immediate data

immediate to memory 1000 00sw : mod 101 r/m : immediate data

TEST – Logical Compare

register1 and register2 1000 010w : 11 reg1 reg2

memory and register 1000 010w : mod reg r/m

immediate and register 1111 011w : 11 000 reg : immediate data

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 16 Friday, January 17, 1997 12:59 PM

B-17

INSTRUCTION FORMATS AND ENCODINGS

immediate and AL, AX, or EAX 1010 100w : immediate data

immediate and memory 1111 011w : mod 000 r/m : immediate data

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading

register 0000 1111 : 0000 0000 : 11 100 reg

memory 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0000 1111 : 0000 0000 : 11 101 reg

memory 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data Cache 0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1

memory, reg 0000 1111 : 1100 000w : mod reg r/m

XCHG – Exchange Register/Memory with
Register

register1 with register2 1000 011w : 11 reg1 reg2

AL, AX, or EAX with reg 1001 0 reg

memory with reg 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0011 000w : 11 reg1 reg2

register2 to register1 0011 001w : 11 reg1 reg2

memory to register 0011 001w : mod reg r/m

register to memory 0011 000w : mod reg r/m

immediate to register 1000 00sw : 11 110 reg : immediate data

immediate to AL, AX, or EAX 0011 010w : immediate data

immediate to memory 1000 00sw : mod 110 r/m : immediate data

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 17 Friday, January 17, 1997 12:59 PM

B-18

INSTRUCTION FORMATS AND ENCODINGS

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

Table B-10. Integer Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

ch01.bk : apdxb.doc Page 18 Friday, January 17, 1997 12:59 PM

B-19

INSTRUCTION FORMATS AND ENCODINGS

B.3. MMX™ INSTRUCTION FORMATS AND ENCODINGS

All MMX instructions, except the EMMS instruction, use the a format similar to the 2-byte Intel
Architecture integer format. Details of subfield encodings within these formats are presented be-
low.

B.3.1. Granularity Field (gg)

The granularity field (gg) indicates the size of the packed operands that the instruction is op-
erating on. When this field is used, it is located in bits 1 and 0 of the second opcode byte. Table
B-11 shows the encoding of this gg field.

B.3.2. MMX™ and General-Purpose Register Fields (mmxreg
and reg)

When MMX registers (mmxreg) are used as operands, they are encoded in the ModR/M byte in
the reg field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1, and 0). Table B-12 shows the 3-bit
encodings used for mmxreg fields.

If an MMX instruction operates on a general-purpose register (reg), the register is encoded in
the R/M field of the ModR/M byte. Table B-13 shows the encoding of general-purpose registers
when used in MMX instructions.

Table B-11. Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Table B-12. Encoding of the MMX™ Register Field (mmxreg)

mmxreg Field Encoding MMX™ Register

000 MM0

001 MM1

010 MM2

011 MM3

100 MM4

101 MM5

110 MM6

111 MM7

ch01.bk : apdxb.doc Page 19 Friday, January 17, 1997 12:59 PM

B-20

INSTRUCTION FORMATS AND ENCODINGS

B.3.3. MMX™ Instruction Formats and Encodings Table

Table B-14 shows the formats and encodings for MMX instructions for the data types support-
ed—packed byte (B), packed word (W), packed doubleword (D), and quadword (Q). Figure
B-2 describes the nomenclature used in columns (3 through 6) of the table.

.

Table B-13. Encoding of the General-Purpose Register Field (reg) When
Used in MMX™ Instructions.

reg Field Encoding Register Selected

000 EAX

001 ECX

010 EDX

011 EBX

100 ESP

101 EBP

110 ESI

111 EDI

Code Meaning

Y Supported

N Not supported

O Output

I Input

n/a Not Applicable

Figure B-2. Key to Codes for MMX™ Data Type Cross-Reference

Table B-14. MMX™ Instruction Formats and Encodings

Instruction and Format Encoding B W D Q

EMMS - Empty MMX™ state 0000 1111:01110111 n/a n/a n/a n/a

MOVD - Move doubleword N N Y N

reg to mmreg 0000 1111:01101110: 11 mmxreg reg

reg from mmxreg 0000 1111:01111110: 11 mmxreg reg

mem to mmxreg 0000 1111:01101110: mod mmxreg r/m

mem from mmxreg 0000 1111:01111110: mod mmxreg r/m

MOVQ - Move quadword N N N Y

mmxreg2 to mmxreg1 0000 1111:01101111: 11 mmxreg1 mmxreg2

mmxreg2 from mmxreg1 0000 1111:01111111: 11 mmxreg1 mmxreg2

ch01.bk : apdxb.doc Page 20 Friday, January 17, 1997 12:59 PM

B-21

INSTRUCTION FORMATS AND ENCODINGS

mem to mmxreg 0000 1111:01101111: mod mmxreg r/m

mem from mmxreg 0000 1111:01111111: mod mmxreg r/m

PACKSSDW1 - Pack dword to
word data (signed with
saturation)

n/a O I n/a

mmxreg2 to mmxreg1 0000 1111:01101011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:01101011: mod mmxreg r/m

PACKSSWB 1 - Pack word to
byte data (signed with
saturation)

O I n/a n/a

mmxreg2 to mmxreg1 0000 1111:01100011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:01100011: mod mmxreg r/m

PACKUSWB 1 - Pack word to
byte data (unsigned with
saturation)

O I n/a n/a

mmxreg2 to mmxreg1 0000 1111:01100111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:01100111: mod mmxreg r/m

PADD - Add with wrap-around Y Y Y N

mmxreg2 to mmxreg1 0000 1111: 111111gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 111111gg: mod mmxreg r/m

PADDS - Add signed with
saturation

Y Y N N

mmxreg2 to mmxreg1 0000 1111: 111011gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 111011gg: mod mmxreg r/m

PADDUS - Add unsigned with
saturation

Y Y N N

mmxreg2 to mmxreg1 0000 1111: 110111gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 110111gg: mod mmxreg r/m

PAND - Bitwise And N N N Y

mmxreg2 to mmxreg1 0000 1111:11011011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:11011011: mod mmxreg r/m

PANDN - Bitwise AndNot N N N Y

mmxreg2 to mmxreg1 0000 1111:11011111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:11011111: mod mmxreg r/m

PCMPEQ - Packed compare
for equality

Y Y Y N

Table B-14. MMX™ Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding B W D Q

ch01.bk : apdxb.doc Page 21 Friday, January 17, 1997 12:59 PM

B-22

INSTRUCTION FORMATS AND ENCODINGS

 mmxreg1 with mmxreg2 0000 1111:011101gg: 11 mmxreg1 mmxreg2

 mmxreg with memory 0000 1111:011101gg: mod mmxreg r/m

PCMPGT - Packed compare
greater (signed)

Y Y Y N

mmxreg1 with mmxreg2 0000 1111:011001gg: 11 mmxreg1 mmxreg2

mmxreg with memory 0000 1111:011001gg: mod mmxreg r/m

PMADD - Packed multiply add n/a I O n/a

mmxreg2 to mmxreg1 0000 1111:11110101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:11110101: mod mmxreg r/m

PMULH - Packed
multiplication

N Y N N

mmxreg2 to mmxreg1 0000 1111:11100101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:11100101: mod mmxreg r/m

PMULL - Packed
multiplication

N Y N N

mmxreg2 to mmxreg1 0000 1111:11010101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:11010101: mod mmxreg r/m

POR - Bitwise Or N N N Y

mmxreg2 to mmxreg1 0000 1111:11101011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:11101011: mod mmxreg r/m

PSLL 2 - Packed shift left
logical

N Y Y Y

mmxreg1 by mmxreg2 0000 1111:111100gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:111100gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:011100gg: 11 110 mmxreg: imm8
data

PSRA2 - Packed shift right
arithmetic

N Y Y N

mmxreg1 by mmxreg2 0000 1111:111000gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:111000gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:011100gg: 11 100 mmxreg: imm8
data

Table B-14. MMX™ Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding B W D Q

ch01.bk : apdxb.doc Page 22 Friday, January 17, 1997 12:59 PM

B-23

INSTRUCTION FORMATS AND ENCODINGS

NOTES:

1. The pack instructions perform saturation from signed packed data of one type to signed or unsigned
data of the next smaller type.

2. The format of the shift instructions has one additional format to support shifting by immediate shift-
counts. The shift operations are not supported equally for all data types.

PSRL2 - Packed shift right
logical

N Y Y Y

mmxreg1 by mmxreg2 0000 1111:110100gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:110100gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:011100gg: 11 010 mmxreg: imm8
data

PSUB - Subtract with wrap-
around

Y Y Y N

mmxreg2 from mmxreg1 0000 1111:111110gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:111110gg: mod mmxreg r/m

PSUBS - Subtract signed with
saturation

Y Y N N

mmxreg2 from mmxreg1 0000 1111:111010gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:111010gg: mod mmxreg r/m

PSUBUS - Subtract unsigned
with saturation

Y Y N N

mmxreg2 from mmxreg1 0000 1111:110110gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:110110gg: mod mmxreg r/m

PUNPCKH - Unp ack high data
to next larger type

Y Y Y N

mmxreg2 to mmxreg1 0000 1111:011010gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:011010gg: mod mmxreg r/m

PUNPCKL - Unpack low data
to next larger type

Y Y Y N

mmxreg2 to mmxreg1 0000 1111:011000gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:011000gg: mod mmxreg r/m

PXOR - Bitwise Xor N N N Y

mmxreg2 to mmxreg1 0000 1111:11101111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:11101111: mod mmxreg r/m

Table B-14. MMX™ Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding B W D Q

ch01.bk : apdxb.doc Page 23 Friday, January 17, 1997 12:59 PM

B-24

INSTRUCTION FORMATS AND ENCODINGS

B.4. FLOATING-POINT INSTRUCTION FORMATS AND
ENCODINGS

Table B-15 shows the five different formats used for floating-point instructions In all cases, in-
structions are at least two bytes long and begin with the bit pattern 11011.

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element
 ⋅
 ⋅
 ⋅
111 = Eighth stack element

The Mod and R/M fields of the ModR/M byte have the same interpretation as the corresponding
fields of the integer instructions. The SIB byte and disp (displacement) are optionally present in
instructions that have Mod and R/M fields. Their presence depends on the values of Mod and
R/M, as for integer instructions.

Table B-16 shows the formats and encodings of the floating-point instructions.

Table B-15. General Floating-Point Instruction Formats

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

ch01.bk : apdxb.doc Page 24 Friday, January 17, 1997 12:59 PM

B-25

INSTRUCTION FORMATS AND ENCODINGS

Table B-16. Floating-Point Instruction Formats and Encodings
Instruction and Format Encoding

F2XM1 – Compute 2 ST(0) – 1 11011 001 : 1111 0000

FABS – Absolute Value 11011 001 : 1110 0001

FADD – Add

ST(0) ← ST(0) + 32-bit memory 11011 000 : mod 000 r/m

ST(0) ← ST(0) + 64-bit memory 11011 100 : mod 000 r/m

ST(d) ← ST(0) + ST(i) 11011 d00 : 11 000 ST(i)

FADDP – Add and Pop

ST(0) ← ST(0) + ST(i) 11011 110 : 11 000 ST(i)

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m

FCHS – Change Sign 11011 001 : 1110 0000

FCLEX – Clear Exceptions 11011 011 : 1110 0010

FCMOVcc – Conditional Move on EFLAG
Register Condition Codes

move if below (B) 11011 010 : 11 000 ST(i)

move if equal (E) 11011 010 : 11 001 ST(i)

move if below or equal (BE) 11011 010 : 11 010 ST(i)

move if unordered (U) 11011 010 : 11 011 ST(i)

move if not below (NB) 11011 011 : 11 000 ST(i)

move if not equal (NE) 11011 011 : 11 001 ST(i)

move if not below or equal (NBE) 11011 011 : 11 010 ST(i)

move if not unordered (NU) 11011 011 : 11 011 ST(i)

FCOM – Compare Real

32-bit memory 11011 000 : mod 010 r/m

64-bit memory 11011 100 : mod 010 r/m

ST(i) 11011 000 : 11 010 ST(i)

FCOMP – Compare Real and Pop

32-bit memory 11011 000 : mod 011 r/m

64-bit memory 11011 100 : mod 011 r/m

ST(i) 11011 000 : 11 011 ST(i)

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001

FCOMI – Compare Real and Set EFLAGS 11011 011 : 11 110 ST(i)

FCOMIP – Compare Real, Set EFLAGS, and Pop 11011 111 : 11 110 ST(i)

FCOS – Cosine of ST(0) 11011 001 : 1111 1111

FDECSTP – Decrement Stack-Top Pointer 11011 001 : 1111 0110

FDIV – Divide

ST(0) ← ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

ST(0) ← ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

ST(d) ← ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)

FDIVP – Divide and Pop

ST(0) ← ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i)

ch01.bk : apdxb.doc Page 25 Friday, January 17, 1997 12:59 PM

B-26

INSTRUCTION FORMATS AND ENCODINGS

FDIVR – Reverse Divide

ST(0) ← 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

ST(0) ← 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

ST(d) ← ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

FDIVRP – Reverse Divide and Pop

ST(0) ¨ ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i)

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i)

FIADD – Add Integer

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 000 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 000 r/m

FICOM – Compare Integer

16-bit memory 11011 110 : mod 010 r/m

32-bit memory 11011 010 : mod 010 r/m

FICOMP – Compare Integer and Pop

16-bit memory 11011 110 : mod 011 r/m

32-bit memory 11011 010 : mod 011 r/m

FIDIV

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 110 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 110 r/m

FIDIVR

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 111 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 111 r/m

FILD – Load Integer

16-bit memory 11011 111 : mod 000 r/m

32-bit memory 11011 011 : mod 000 r/m

64-bit memory 11011 111 : mod 101 r/m

FIMUL

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 001 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

FIST – Store Integer

16-bit memory 11011 111 : mod 010 r/m

32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

16-bit memory 11011 111 : mod 011 r/m

32-bit memory 11011 011 : mod 011 r/m

64-bit memory 11011 111 : mod 111 r/m

FISUB

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 100 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 100 r/m

Table B-16. Floating-Point Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding

ch01.bk : apdxb.doc Page 26 Friday, January 17, 1997 12:59 PM

B-27

INSTRUCTION FORMATS AND ENCODINGS

FISUBR

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 101 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 101 r/m

FLD – Load Real

32-bit memory 11011 001 : mod 000 r/m

64-bit memory 11011 101 : mod 000 r/m

80-bit memory 11011 011 : mod 101 r/m

ST(i) 11011 001 : 11 000 ST(i)

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000

FLDCW – Load Control Word 11011 001 : mod 101 r/m

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m

FLDL2E – Load log 2(ε) into ST(0) 11011 001 : 1110 1010

FLDL2T – Load log 2(10) into ST(0) 11011 001 : 1110 1001

FLDLG2 – Load log 10(2) into ST(0) 11011 001 : 1110 1100

FLDLN2 – Load log ε(2) into ST(0) 11011 001 : 1110 1101

FLDPI – Load π into ST(0) 11011 001 : 1110 1011

FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110

FMUL – Multiply

ST(0) ← ST(0) × 32-bit memory 11011 000 : mod 001 r/m

ST(0) ← ST(0) × 64-bit memory 11011 100 : mod 001 r/m

ST(d) ← ST(0) × ST(i) 11011 d00 : 1100 1 ST(i)

FMULP – Multiply

ST(0) ← ST(0) × ST(i) 11011 110 : 1100 1 ST(i)

FNOP – No Operation 11011 001 : 1101 0000

FPATAN – Partial Arctangent 11011 001 : 1111 0011

FPREM – Partial Remainder 11011 001 : 1111 1000

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101

FPTAN – Partial Tangent 11011 001 : 1111 0010

FRNDINT – Round to Integer 11011 001 : 1111 1100

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m

FSAVE – Store FPU State 11011 101 : mod 110 r/m

FSCALE – Scale 11011 001 : 1111 1101

FSIN – Sine 11011 001 : 1111 1110

FSINCOS – Sine and Cosine 11011 001 : 1111 1011

FSQRT – Square Root 11011 001 : 1111 1010

FST – Store Real

32-bit memory 11011 001 : mod 010 r/m

64-bit memory 11011 101 : mod 010 r/m

ST(i) 11011 101 : 11 010 ST(i)

FSTCW – Store Control Word 11011 001 : mod 111 r/m

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m

Table B-16. Floating-Point Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding

ch01.bk : apdxb.doc Page 27 Friday, January 17, 1997 12:59 PM

B-28

INSTRUCTION FORMATS AND ENCODINGS

FSTP – Store Real and Pop

32-bit memory 11011 001 : mod 011 r/m

64-bit memory 11011 101 : mod 011 r/m

80-bit memory 11011 011 : mod 111 r/m

ST(i) 11011 101 : 11 011 ST(i)

FSTSW – Store Status Word into AX 11011 111 : 1110 0000

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m

FSUB – Subtract

ST(0) ← ST(0) – 32-bit memory 11011 000 : mod 100 r/m

ST(0) ← ST(0) – 64-bit memory 11011 100 : mod 100 r/m

ST(d) ← ST(0) – ST(i) 11011 d00 : 1110 R ST(i)

FSUBP – Subtract and Pop

ST(0) ← ST(0) – ST(i) 11011 110 : 1110 1 ST(i)

FSUBR – Reverse Subtract

ST(0) ← 32-bit memory – ST(0) 11011 000 : mod 101 r/m

ST(0) ← 64-bit memory – ST(0) 11011 100 : mod 101 r/m

ST(d) ← ST(i) – ST(0) 11011 d00 : 1110 R ST(i)

FSUBRP – Reverse Subtract and Pop

ST(i) ← ST(i) – ST(0) 11011 110 : 1110 0 ST(i)

FTST – Test 11011 001 : 1110 0100

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i)

FUCOMP – Unordered Compare Real and Pop 11011 101 : 1110 1 ST(i)

FUCOMPP – Unordered Compare Real and Pop
Twice

11011 010 : 1110 1001

FUCOMI – Unorderd Compare Real and Set
EFLAGS

11011 011 : 11 101 ST(i)

FUCOMIP – Unorderd Compare Real, Set
EFLAGS, and Pop

11011 111 : 11 101 ST(i)

FXAM – Examine 11011 001 : 1110 0101

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i)

FXTRACT – Extract Exponent and Significand 11011 001 : 1111 0100

FYL2X – ST(1) × log 2(ST(0)) 11011 001 : 1111 0001

FYL2XP1 – ST(1) × log 2(ST(0) + 1.0) 11011 001 : 1111 1001

FWAIT – Wait until FPU Ready 1001 1011

Table B-16. Floating-Point Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding

ch01.bk : apdxb.doc Page 28 Friday, January 17, 1997 12:59 PM

Index

ch01.bk : indexdiv.doc Page 29 Friday, January 17, 1997 12:59 PM

ch01.bk : indexdiv.doc Page 30 Friday, January 17, 1997 12:59 PM

INDEX-1

INDEX

A
AAA instruction. .3-11
AAD instruction .3-12
AAM instruction .3-13
AAS instruction. .3-14
Access rights, segment descriptor3-253
ADC instruction 3-15, 3-273
ADD instruction 3-11, 3-15, 3-17, 3-79, 3-273
Address size attribute

override prefix .2-2
Address size override prefix2-2
Addressing, segments .1-7
Advanced programmable interrupt controller

(see APIC)
AND instruction 3-19, 3-273
APIC flag, CPUID instruction3-73
APIC, presence of .3-73
Arctangent, FPU operation.3-149
ARPL instruction .3-21

B
B (default stack size) flag, segment descriptor . . .

3-350, 3-385
Base (operand addressing)2-2
BCD integers

packed 3-79, 3-81, 3-98, 3-100
unpacked 3-11, 3-12, 3-13, 3-14

Binary numbers .1-6
Binary-coded decimal (see BCD)
Bit order .1-5
BOUND instruction. .3-23
BOUND range exceeded exception (#BR). . . .3-23
BSF instruction. .3-25
BSR instruction .3-27
BSWAP instruction. .3-29
BT instruction .3-30
BTC instruction. 3-32, 3-273
BTR instruction. 3-34, 3-273
BTS instruction. 3-36, 3-273
Byte order. .1-5

C
Caches, invalidating (flushing) 3-230, 3-456
Call gate .3-249
CALL instruction. .3-38
Calls (see Procedure calls)
CBW instruction .3-49
CDQ instruction .3-77

CF (carry) flag, EFLAGS
register . . . 3-15, 3-17, 3-30, 3-32, 3-34,
3-36, 3-51, 3-56, 3-82, 3-209, 3-213,
3-306, 3-395, 3-420, 3-430, 3-432,
3-439, 3-448

Classify floating-point value,
FPU operation 3-194

CLC instruction . 3-51
CLD instruction . 3-52
CLI instruction. 3-53
CLTS instruction . 3-55
CMC instruction . 3-56
CMOV flag, CPUID instruction 3-73
CMOVcc instructions 3-57, 3-73
CMP instruction . 3-61
CMPS instruction3-63, 3-404
CMPSB instruction . 3-63
CMPSD instruction . 3-63
CMPSW instruction . 3-63
CMPXCHG instruction3-66, 3-273
CMPXCHG8B instruction 3-68
Compatibility

software. 1-5
Condition code flags, EFLAGS register 3-57
Condition code flags, FPU status word

flags affected by instructions. 3-8
setting 3-188, 3-190, 3-194

Conditional jump. 3-241
Conforming code segment3-248, 3-253
Constants (floating point)

loading. 3-139
Control registers, moving values to

and from . 3-291
Cosine, FPU operation3-115, 3-169
CPL. .3-53, 3-453
CPUID instruction . 3-70
CR0 control register 3-437
CS register 3-38, 3-218, 3-233, 3-245, 3-286,

3-350
CS segment override prefix 2-1
Current privilege level (see CPL)
CWD instruction . 3-77
CWDE instruction . 3-49
CX8 flag, CPUID instruction 3-73

D
D (default operation size) flag, segment

descriptor 3-350, 3-354, 3-385
DAA instruction. 3-79
DAS instruction. 3-81
DE (debugging extensions) flag, CPUID

instruction . 3-72

ch01.bk : ch01.ix Page 1 Friday, January 17, 1997 12:59 PM

INDEX

INDEX-2

Debug registers, moving value to and from . .3-293
DEC instruction 3-82, 3-273
Denormal number (see Denormalized finite

number)
Denormalized finite number3-194
DF (direction) flag, EFLAGS register . . 3-52, 3-64,

3-215, 3-275, 3-299, 3-317, 3-422,
3-440

Displacement (operand addressing) 2-3
DIV instruction .3-84
Divide error exception (#DE)3-84
DS register3-63, 3-256, 3-275, 3-299, 3-317
DS segment override prefix2-2

E
EDI register 3-422, 3-440, 3-443
Effective address .3-259
EFLAGS register

condition codes. 3-58, 3-107, 3-112
flags affected by instructions 3-8
loading .3-252
popping .3-356
popping on return from interrupt3-233
pushing .3-390
pushing on interrupts 3-218
saving .3-415
status flags 3-61, 3-242, 3-425, 3-450

EIP register 3-38, 3-218, 3-233, 3-245
EMMS instruction .3-87
ENTER instruction .3-88
ES register 3-256, 3-317, 3-422, 3-443
ES segment override prefix 2-2
ESI register 3-63, 3-275, 3-299, 3-317, 3-440
ESP register . 3-39, 3-351
Exceptions

BOUND range exceeded (#BR)3-23
list of .3-9
notation .1-7
overflow exception (#OF)3-218
returning from .3-233

Exponent
extracting from floating-point number3-198

Extract exponent and significand,
FPU operation3-198

F
F2XM1 instruction 3-91, 3-198
FABS instruction .3-93
FADD instruction .3-95
FADDP instruction .3-95
Far call

CALL instruction .3-38
Far pointer

loading .3-256
Far return

RET instruction .3-407

FBLD instruction . 3-98
FBSTP instruction. 3-100
FCHS instruction . 3-103
FCLEX/FNCLEX instructions 3-105
FCMOVcc instructions3-73, 3-107
FCOM instruction . 3-109
FCOMI instruction.3-73, 3-112
FCOMIP instruction 3-112
FCOMP instruction . 3-109
FCOMPP instruction. 3-109
FCOS instruction . 3-115
FDECSTP instruction 3-117
FDIV instruction . 3-118
FDIVP instruction . 3-118
FDIVR instruction . 3-122
FDIVRP instruction . 3-122
Feature information, processor. 3-70
FFREE instruction . 3-126
FIADD instruction . 3-95
FICOM instruction. 3-127
FICOMP instruction 3-127
FIDIV instruction . 3-118
FIDIVR instruction . 3-122
FILD instruction . 3-129
FIMUL instruction . 3-145
FINCSTP instruction. 3-131
FINIT/FNINIT instructions.3-132, 3-162
FIST instruction . 3-134
FISTP instruction . 3-134
FISUB instruction . 3-182
FISUBR instruction . 3-185
FLD instruction . 3-137
FLD1 instruction . 3-139
FLDCW instruction . 3-141
FLDENV instruction 3-143
FLDL2E instruction . 3-139
FLDL2T instruction . 3-139
FLDLG2 instruction. 3-139
FLDLN2 instruction. 3-139
FLDPI instruction . 3-139
FLDZ instruction . 3-139
Floating-point exceptions

list of, including mnemonics 3-10
Flushing

caches. .3-230, 3-456
TLB entry. 3-232

FMUL instruction . 3-145
FMULP instruction . 3-145
FNOP instruction . 3-148
FNSTENV instruction 3-143
FPATAN instruction 3-149
FPREM instruction . 3-151
FPREM1 instruction 3-154
FPTAN instruction . 3-157
FPU

checking for pending FPU exceptions. . . 3-455
constants. 3-139
existence of . 3-72

ch01.bk : ch01.ix Page 2 Friday, January 17, 1997 12:59 PM

INDEX-3

INDEX

initialization .3-132
FPU control word

loading . 3-141, 3-143
RC field 3-135, 3-139, 3-173
restoring .3-160
saving . 3-162, 3-178
storing. .3-176

FPU data pointer 3-143, 3-160, 3-162, 3-178
FPU flag, CPUID instruction.3-72
FPU instruction

pointer 3-143, 3-160, 3-162, 3-178
FPU last opcode. 3-143, 3-160, 3-162, 3-178
FPU status word

condition code flags 3-109, 3-127, 3-188,
3-190, 3-194

FPU flags affected by instructions 3-8
loading .3-143
restoring .3-160
saving 3-162, 3-178, 3-180
TOP field. .3-131

FPU tag word 3-143, 3-160, 3-162, 3-178
FRNDINT instruction 3-159
FRSTOR instruction .3-160
FS register .3-256
FS segment override prefix 2-2
FSAVE/FNSAVE instructions. 3-160, 3-162
FSCALE instruction .3-165
FSIN instruction .3-167
FSINCOS instruction3-169
FSQRT instruction .3-171
FST instruction .3-173
FSTCW/FNSTCW instructions.3-176
FSTENV/FNSTENV instructions 3-178
FSTP instruction. .3-173
FSTSW/FNSTSW instructions3-180
FSUB instruction .3-182
FSUBP instruction .3-182
FSUBR instruction .3-185
FSUBRP instruction .3-185
FTST instruction. .3-188
FUCOM instruction. .3-190
FUCOMI instruction .3-112
FUCOMIP instruction3-112
FUCOMP instruction 3-190
FUCOMPP instruction3-190
FXAM instruction .3-194
FXCH instruction .3-196
FXTRACT instruction 3-165, 3-198
FYL2X instruction. .3-200
FYL2XP1 instruction 3-202

G
GDT (global descriptor table) 3-265, 3-268
GDTR (global descriptor table register) 3-265,

3-427
General-purpose registers

moving value to and from3-286

popping all. 3-354
pushing all . 3-388

GS register . 3-256
GS segment override prefix 2-2

H
Hexadecimal numbers 1-6
HLT instruction . 3-204

I
IDIV instruction . 3-205
IDT (interrupt descriptor table)3-219, 3-265
IDTR (interrupt descriptor table register) . . . 3-265,

3-427
IF (interrupt enable) flag, EFLAGS register . . 3-53,

3-441
Immediate operands. 2-3
IMUL instruction . 3-208
IN instruction. 3-211
INC instruction 3-213, 3-273
Index (operand addressing) 2-2
Initialization FPU. 3-132
Input/output (see I/O)
INS instruction 3-215, 3-404
INSB instruction . 3-215
INSD instruction . 3-215
Instruction format

base field . 2-2
description of reference information 3-1
displacement . 2-3
illustration of . 2-1
immediate . 2-3
index field . 2-2
Mod field . 2-2
ModR/M byte. 2-2
opcode . 2-2
prefixes . 2-1
reg/opcode field. 2-2
r/m field . 2-2
scale field . 2-2
SIB byte. 2-2

Instruction operands . 1-6
Instruction prefixes (see Prefixes)
Instruction reference, nomenclature 3-1
Instruction set

reference . 3-1
string instructions . .3-63, 3-215, 3-275, 3-299,

3-317, 3-443
INSW instruction. 3-215
INT 3 instruction . 3-218
Integer, FPU data type

storing . 3-134
Inter-privilege level call

CALL instruction . 3-38
Inter-privilege level return

RET instruction . 3-407

ch01.bk : ch01.ix Page 3 Friday, January 17, 1997 12:59 PM

INDEX

INDEX-4

Interrupts
interrupt vector 4.3-218
returning from .3-233
software .3-218

INTn instruction .3-218
INTO instruction .3-218
INVD instruction .3-230
INVLPG instruction. .3-232
IOPL (I/O privilege level) field, EFLAGS

register 3-53, 3-390, 3-441
IRET instruction .3-233
IRETD instruction .3-233
I/O privilege level (see IOPL)

J
Jcc instructions. .3-241
JMP instruction. .3-245
Jump operation .3-245

L
LAHF instruction. .3-252
LAR instruction. .3-253
LDS instruction. .3-256
LDT (local descriptor table) 3-268
LDTR (local descriptor table

register) 3-268, 3-435
LEA instruction .3-259
LEAVE instruction .3-261
LES instruction .3-256
LFS instruction .3-256
LGDT instruction .3-265
LGS instruction. .3-256
LIDT instruction .3-265
LLDT instruction .3-268
LMSW instruction .3-271
Load effective address operation3-259
LOCK prefix . 2-1, 3-66, 3-68, 3-273, 3-460, 3-462
Locking operation. .3-273
LODS instruction 3-275, 3-404
LODSB instruction .3-275
LODSD instruction .3-275
LODSW instruction. .3-275
Log epsilon, FPU operation3-200
Log (base 2), FPU operation3-202
LOOP instructions .3-278
LOOPcc instructions 3-278
LSL instruction .3-280
LSS instruction .3-256
LTR instruction .3-284

M
Machine status word, CR0 register . . 3-271, 3-437
MCA (machine check architecture), CPUID

instruction. .3-73
MCE (machine check exception) flag, CPUID

instruction. .3-73

Mod field, instruction format 2-2
ModR/M byte

16-bit addressing forms of. 2-4
32-bit addressing forms of. 2-5
description of. 2-2
format of . 2-1

MOV instruction . 3-286
MOV instruction (control registers) 3-291
MOV instruction (debug registers) 3-293
MOVS instruction3-299, 3-404
MOVSB instruction . 3-299
MOVSD instruction . 3-299
MOVSW instruction 3-299
MOVSX instruction . 3-302
MOVZX instruction . 3-304
MSR flag, CPUID instruction 3-72
MSRs (model specific registers)

existence of . 3-72
reading . 3-399
writing . 3-458

MTRRs (memory type range registers)
flag, CPUID instruction 3-73

MUL instruction.3-13, 3-306

N
NaN

testing for . 3-188
Near call

CALL instruction . 3-38
Near return

RET instruction . 3-407
NEG instruction 3-273, 3-308
Nomenclature, used in instruction

reference pages 3-1
Nonconforming code segment 3-248
NOP instruction . 3-310
NOT instruction.3-273, 3-311
Notation

bit and byte order . 1-5
exceptions . 1-7
hexadecimal and binary numbers 1-6
instruction operands 1-6
reserved bits . 1-5
segmented addressing 1-7

Notational conventions 1-5
NT (nested task) flag, EFLAGS register 3-233

O
OF (carry) flag, EFLAGS register 3-209
OF (overflow) flag, EFLAGS register . . 3-15, 3-17,

3-218, 3-306, 3-420, 3-430, 3-432,
3-448

Opcodes
format of . 2-2

Operand
instruction . 1-6

ch01.bk : ch01.ix Page 4 Friday, January 17, 1997 12:59 PM

INDEX-5

INDEX

Operand-size attribute
override prefix .2-2

Operand-size override prefix2-2
OR instruction 3-273, 3-313
OUT instruction .3-315
OUTS instruction 3-317, 3-404
OUTSB instruction .3-317
OUTSD instruction .3-317
OUTSW instruction .3-317
Overflow exception (#OF) 3-218
Overflow, FPU exception (see Numeric overflow

exception)

P
PACKSSDW instruction3-320
PACKSSWB instruction3-320
PACKUSWB instruction3-323
PADDB instruction .3-325
PADDD instruction .3-325
PADDSB instruction .3-328
PADDSW instruction 3-328
PADDUSB instruction 3-331
PADDUSW instruction3-331
PADDW instruction .3-325
PAE (physical address extension) flag, CPUID

instruction. .3-73
PAND instruction .3-334
PANDN instruction .3-336
PCMPEQB instruction3-338
PCMPEQD instruction3-338
PCMPEQW instruction.3-338
PCMPGTB instruction 3-341
PCMPGTD instruction3-341
PCMPGTW instruction3-341
PE (protection enable) flag, CR0 register . . .3-271
Pentium Pro processor

introduction to .2-1
Performance-monitoring counters

reading .3-401
PGE (page-table-entry global flag), CPUID

instruction. .3-73
Pi

loading .3-139
PMADDWD instruction.3-344
PMULHW instruction3-346
PMULLW instruction 3-348
POP instruction .3-350
POPA instruction .3-354
POPAD instruction .3-354
POPF instruction .3-356
POPFD instruction .3-356
POR instruction .3-359
Prefixes

address size override2-2
instruction, description of 2-1
LOCK . 2-1, 3-273
operand-size override2-2

repeat . 2-1
REP/REPE/REPZ/REPNE/REPNZ. 3-404
segment override . 2-1

Procedure stack
pushing values on 3-385

PSE (page size extensions) flag, CPUID
instruction . 3-72

PSLLD instruction. 3-361
PSLLQ instruction. 3-361
PSLLW instruction . 3-361
PSRAD instruction . 3-364
PSRAW instruction . 3-364
PSRLD instruction . 3-367
PSRLQ instruction . 3-367
PSRLW instruction . 3-367
PSUBB instruction . 3-370
PSUBD instruction . 3-370
PSUBSB instruction 3-373
PSUBSW instruction. 3-373
PSUBUSB instruction 3-376
PSUBUSW instruction 3-376
PSUBW instruction . 3-370
PUNPCKHBW instruction. 3-379
PUNPCKHDQ instruction 3-379
PUNPCKHWD instruction. 3-379
PUNPCKLBW instruction 3-382
PUNPCKLDQ instruction 3-382
PUNPCKLWD instruction 3-382
PUSH instruction . 3-385
PUSHA instruction . 3-388
PUSHAD instruction 3-388
PUSHF instruction . 3-390
PUSHFD instruction 3-390
PXOR instruction . 3-392

Q
Quiet NaN (see QNaN)

R
RC (rounding control) field, FPU control

word 3-135, 3-139, 3-173
RCL instruction . 3-394
RCR instruction . 3-394
RDMSR instruction 3-72, 3-399, 3-403
RDPMC instruction . 3-401
RDTSC instruction3-72, 3-403
Reg/opcode field, instruction format 2-2
Related literature . 1-8
Remainder, FPU operation.3-151, 3-154
REP/REPE/REPZ/REPNE/REPNZ prefixes. . . 2-1,

3-64, 3-216, 3-318, 3-404
Reserved bits . 1-5
RET instruction . 3-407
ROL instruction. 3-394
ROR instruction . 3-394
Rotate operation . 3-394

ch01.bk : ch01.ix Page 5 Friday, January 17, 1997 12:59 PM

INDEX

INDEX-6

Rounding
round to integer, FPU operation3-159

RPL field. .3-21
RSM instruction .3-414
R/m field, instruction format2-2

S
SAL instruction .3-416
SAR instruction .3-416
SBB instruction. 3-273, 3-420
Scale (operand addressing)2-2
Scale, FPU operation3-165
SCAS instruction 3-404, 3-422
SCASB instruction .3-422
SCASD instruction .3-422
SCASW instruction. .3-422
Segment descriptor

segment limit. .3-280
Segment limit .3-280
Segment override prefixes2-1
Segment registers

moving values to and from3-286
Segment selector

RPL field .3-21
Segmented addressing 1-7
SETcc instructions .3-425
SF (sign) flag, EFLAGS register. 3-15, 3-17
SGDT instruction .3-427
SHAF instruction .3-415
SHL instruction. .3-416
SHLD instruction .3-430
SHR instruction .3-416
SHRD instruction .3-432
SIB byte

32-bit addressing forms of 2-6
description of .2-2
format of .2-1

SIDT instruction .3-427
Signaling NaN (see SNaN)
Significand

extracting from floating-point number3-198
Sine, FPU operation. 3-167, 3-169
SLDT instruction. .3-435
SMSW instruction. .3-437
Square root, FPU operation3-171
SS register 3-256, 3-287, 3-351
SS segment override prefix 2-1
Stack (see Procedure stack)
Status flags, EFLAGS

register 3-58, 3-61, 3-107, 3-112, 3-242,
3-425, 3-450

STC instruction. .3-439
STD instruction. .3-440
STI instruction .3-441
STOS instruction 3-404, 3-443
STOSB instruction .3-443
STOSD instruction .3-443

STOSW instruction . 3-443
STR instruction . 3-446
String operations 3-63, 3-215, 3-275,

3-299, 3-317, 3-443
SUB instruction. 3-14, 3-81, 3-273, 3-448

T
Tangent, FPU operation 3-157
Task gate . 3-249
Task register

loading. 3-284
storing . 3-446

Task state segment (see TSS)
Task switch

CALL instruction . 3-38
return from nested task, IRET

instruction . 3-233
TEST instruction . 3-450
Time-stamp counter, reading 3-403
TLB entry, invalidating (flushing) 3-232
TS (task switched) flag, CR0 register 3-55
TSC (time stamp counter) flag, CPUID

instruction . 3-72
TSD flag, CR4 register 3-403
TSS

relationship to task register 3-446

U
UD2 instruction . 3-452
Undefined

format opcodes . 3-188
Underflow, FPU exception (see Numeric underflow

exception)
Unordered values 3-109, 3-112, 3-188, 3-190

V
Vector (see Interrupt vector)
VERR instruction . 3-453
Version information, processor. 3-70
VERW instruction . 3-453
VM (virtual 8086 mode) flag, EFLAGS

register . 3-233
VME (virtual 8086 mode enhancements) flag,

CPUID instruction. 3-72

W
WAIT/FWAIT instructions 3-455
WBINVD instruction 3-456
Write-back and invalidate caches. 3-456
WRMSR instruction 3-72, 3-458

X
XADD instruction 3-273, 3-460

ch01.bk : ch01.ix Page 6 Friday, January 17, 1997 12:59 PM

INDEX-7

INDEX

XCHG instruction 3-273, 3-462
XLAT/XLATB instruction 3-464
XOR instruction 3-273, 3-466

Z
ZF (zero) flag, EFLAGS register 3-66,

3-68, 3-253, 3-278, 3-280, 3-404, 3-453

ch01.bk : ch01.ix Page 7 Friday, January 17, 1997 12:59 PM

ch01.bk : ch01.ix Page 8 Friday, January 17, 1997 12:59 PM

	CHAPTER 1: ABOUT THIS MANUAL
	1.1. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL, VOLUME 2: INSTRUCTION SET REFERENCE
	1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL, VOLUME 1: BASIC ARCHITECTURE
	1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL, VOLUME 3: SYSTEM PROGRAMMING GUIDE
	1.4. NOTATIONAL CONVENTIONS
	1.4.1. Bit and Byte Order
	1.4.2. Reserved Bits and Software Compatibility
	1.4.3. Instruction Operands
	1.4.4. Hexadecimal and Binary Numbers
	1.4.5. Segmented Addressing
	1.4.6. Exceptions

	1.5. RELATED LITERATURE

	CHAPTER 2: INSTRUCTION FORMAT
	2.1. GENERAL INSTRUCTION FORMAT
	2.2. INSTRUCTION PREFIXES
	2.3. OPCODE
	2.4. MODR/M AND SIB BYTES
	2.5. DISPLACEMENT AND IMMEDIATE BYTES
	2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB BYTES

	CHAPTER 3: INSTRUCTION SET REFERENCE
	3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES
	3.1.1. Instruction Format
	3.1.1.1. OPCODE COLUMN
	3.1.1.2. INSTRUCTION COLUMN
	3.1.1.3. DESCRIPTION COLUMN
	3.1.1.4. DESCRIPTION

	3.1.2. Operation
	3.1.3. Flags Affected
	3.1.4. FPU Flags Affected
	3.1.5. Protected Mode Exceptions
	3.1.6. Real-Address Mode Exceptions
	3.1.7. Virtual-8086 Mode Exceptions
	3.1.8. Floating-Point Exceptions

	3.2. INSTRUCTION REFERENCE

	APPENDIX A: OPCODE MAP
	A.1. KEY TO ABBREVIATIONS
	A.1.1. Codes for Addressing Method
	A.1.2. Codes for Operand Type
	A.1.3. Register Codes

	A.2. ONE-BYTE OPCODE INTEGER INSTRUCTIONS
	A.3. TWO-BYTE OPCODE INTEGER INSTRUCTIONS
	A.4. OPCODE EXTENSIONS FOR ONE- AND TWO-BYTE OPCODES
	A.5. ESCAPE OPCODE INSTRUCTIONS
	A.5.1. Escape Opcodes with D8 as First Byte
	A.5.2. Escape Opcodes with D9 as First Byte
	A.5.3. Escape Opcodes with DA as First Byte
	A.5.4. Escape Opcodes with DB as First Byte
	A.5.5. Escape Opcodes with DC as First Byte
	A.5.6. Escape Opcodes with DD as First Byte
	A.5.7. Escape Opcodes with DE as First Byte
	A.5.8. Escape Opcodes with DF As First Byte

	APPENDIX B: INSTRUCTION FORMATS AND ENCODINGS
	B.1. MACHINE INSTRUCTION FORMAT
	B.1.1. Reg Field (reg)
	B.1.2. Encoding of Operand Size Bit (w)
	B.1.3. Sign Extend (s) Bit
	B.1.4. Segment Register Field (sreg)
	B.1.5. Special-Purpose Register (eee) Field
	B.1.6. Condition Test Field (tttn)
	B.1.7. Direction (d) Bit

	B.2. INTEGER INSTRUCTION FORMATS AND ENCODINGS
	B.3. MMX™ INSTRUCTION FORMATS AND ENCODINGS
	B.3.1. Granularity Field (gg)
	B.3.2. MMX™ and General-Purpose Register Fields (mmxreg and reg)
	B.3.3. MMX™ Instruction Formats and Encodings Table

	B.4. FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS

	INDEX

