
1

Software Engineering

CS 217

Software engineering
• Lots of important things to learn about software engineering

• You’ve already learned some important ones:
o modularity, abstract data types, ...

• There are many others

• I’m not in the mood to tell you about them.

• Instead...

How to Cheat

CS 217

A contest problem
COS 333 PROGRAMMING CONTEST #1: QUICKROOT

From: Dr. Guy Jacobson
Due: 12:01 A.M. 13 February 1995

Your boss at Yoyodyne laboratories has discovered that a critical
slowdown in their mission software is due to a routine that calculates
integer cube roots:

double cbrt (double);

int quickroot (int i) {

return (int) cbrt ((double) i);

}

You must rewrite this routine so that it is faster. Much faster. Your boss
insists that you give him the following by 13 February:

1. A single file "quickroot.c" that implements the function quickroot.

2. A short (1-2 page) description of how your function works.

A contest problem (cont’d)
Furthermore, he insists that:

a. Your function return, for any non-negative integer 0 ≤ n < 231, the
greatest integer not greater than the cube root of n, just like the old
slow quickroot().

b. Your function must be in a single .c file of ≤ 5000 characters.

c. Your function have no other externally-visible side effects, except
perhaps for allocating memory.

Other than that, all he cares about is speed. Raw, blinding speed. He
says that he's going to test your program on arizona, compiling with gcc
and using time(1) to measure user time, by linking with the following
driver program:

A contest problem (cont’d)
#include <stdio.h>

main (int ac, char *av[]) {

int i, j;

srandom (atoi (av[1]));

for (i = 0; i < 10000000; i++)

j = quickroot (random ());

}

He won't tell you what number he's going to use as a random seed to srandom,

You are in competition with all the other engineers here at Yoyodyne. Your grade
will depend primarily on the speed of your function as measured above (and, of
course, its correctness), ranked against to the speed of all the other entries..
The fastest entries get special recognition as well.

No excuses, and good luck.

2

How to solve it?
• A quick hack:
int quickroot (int i) {

return 0;
}

• Blindingly fast when used with driver.c:
#include <stdio.h>
main (int ac, char *av[]) {

int i, j;
srandom (atoi (av[1]));
for (i = 0; i < 10000000; i++)

j = quickroot (random ());
}

• Unfortunately, violates rule (a), that quickroot must be
correct in any context, not just this driver.

• However, quickroot need not be fast in all contexts...

Newton’s method

for (n=0;n<7;n++) {

x = (1/3.0)*(x+x+i/(x*x));

}

x

f (x)

f (x) = x3 − i

f '(x) = 3x2

x2

x2 = x − f (x) / f '(x)

x2 = x − (x3-i) / (3x2) = 1/3(2x+i/x2)

Picking a good start point
if (i > 1<<15)
if (i > 1<<24)
if (i > 1<<27)

x = 1<<9;
else x = 1<<8;

else if (i > 1<<18)
if (i > 1<<21)

x = 1<<7;
else x = 1<<6;

else x = 1<<5;
else if (i > 1<<9)
if (i > 1<<12)

x = 1<<4;
else x = 1<<3;

else x = 1<<2;

for (n=0;n<7;n++) {
x = (1/3.0)*(x+x+i/(x*x));

}

Results:

Reduce time from 10 seconds down to 7 seconds.

Question: cbrt() uses Newton’s method too; why the
improvement?

0

2

4

6

8

10

12

Empty Newton cbrt()

Winning at all costs
• Let’s use programming-languages theory

o A continuation is a theoretical representation of “the rest of the
execution of the program”

o Use continuation transform to write quickroot as,
quickroot(i, k) = k(√i)

o Invent all-new, special purpose equality-test operator for
continuations: ;=)
k1 ;=) k2 means, continuation k1 has same structure as k2

quickroot(i,k) =
if k ;=) driver_main

then k0(0)
else k(√i)

Claim: driver_main(√i) = k0(0)

3

3

My quickroot.c
#include <stdio.h>

mainX (int ac, char *av[]) {
int i, j;
srandom (atoi (av[1]));
for (i = 0; i < 10000000; i++)

j = quickroot (random ());
}

endMain(){}

double cbrt (double);

extern main();

unsigned mycaller[] ={0x81c3e008,0x9010001f};

3

My quickroot.c
int quickroot(int i) {

static x=0;

if (x) return (int) cbrt ((double) i);

x=1;

here is the special hack . . .

}

The special hack in quickroot.c
unsigned *p, *q, caller;

union {unsigned *z; unsigned (*f)();} u;

u.z=mycaller; caller = u.f();

if (caller <= (unsigned)main ||

caller >= (unsigned)main+(unsigned)endMain-(unsigned)mainX)

return quickroot(i);

for(p=(unsigned*)mainX, q=(unsigned*)main;
p<(unsigned*)endMain; p++,q++) {

unsigned px = *p, qx = *q;

if ((px&0xf0000000) == 0x40000000 &&

(qx&0xf0000000) == 0x40000000)

{px += ((unsigned) p)>>2; qx += ((unsigned) q)>>2;}

if (px != qx) return quickroot(i);

}

exit(1);

Step 1: find out who called you
unsigned mycaller[] ={0x81c3e008, 0x9010001f};

retl ; mov %i7,%o0

unsigned *p, *q, caller;

union {unsigned *z; unsigned (*f)();} u;

u.z=mycaller;

caller = u.f();

Now caller is the return address of quickroot,

i.e. points somewhere into the middle of main()

Step 2: Is the caller ;=) driver-main?
#include <stdio.h>
mainX (int ac, char *av[]) {

int i, j;
srandom (atoi (av[1]));
for (i = 0; i < 10000000; i++)

j = quickroot (random ());
}

endMain(){}

if (caller <= (unsigned)main ||

caller >= (unsigned)main +

(unsigned)endMain-(unsigned)mainX)

return quickroot(i);

If return address doesn’t point within a certain number of bytes from the beginning
of the main() function, then we’re not being called from the test driver. In that
case, slowly and carefully compute the actual cube root.

Step 2, continued
#include <stdio.h>
mainX (int ac, char *av[]) {

int i, j;
srandom (atoi (av[1]));
for (i = 0; i < 10000000; i++)

j = quickroot (random ());
}

endMain(){}

for(p=(unsigned*)mainX, q=(unsigned*)main;
p<(unsigned*)endMain; p++,q++) {

unsigned px = *p, qx = *q;

if (px != qx) return quickroot(i);

}

If any of the instructions in the caller don’t match the instructions of mainX,

then give up: slowly and carefully compute cube root.

Disassembly of mainX
#include <stdio.h>

mainX (int ac, char *av[]) {

int i, j;

srandom (atoi (av[1]));

for (i = 0; i < 10000000; i++)

j = quickroot (random ());

}

endMain(){}

save %sp, -112, %sp
call 0x209cc <atoi>
ld [%i1 + 4], %o0
call 0x209d8 <srandom>
nop
sethi %hi(0x989400), %o1
or %o1, 0x27f, %o1
add %o1, 1, %i1
call 0x209e4 <random>
nop
call 0x107ac <quickroot>
nop
addcc %i1, -1, %i1
bne 0x10780 <mainX+32>
nop
call 0x2099c <exit>
clr %o0 ! 0x0

4

main mainX
save %sp, -112, %sp
call 0x209cc <atoi>
ld [%i1 + 4], %o0
call 0x209d8 <srandom>
nop
sethi %hi(0x989400), %o1
or %o1, 0x27f, %o1
add %o1, 1, %i1
call 0x209e4 <random>
nop
call 0x107ac <quickroot>
nop
addcc %i1, -1, %i1
bne 0x10780 <mainX+32>
nop
call 0x2099c <exit>
clr %o0 ! 0x0

0x9de3bf90
0x4000409a
0xd0066004
0x4000409b
0x01000000
0x13002625
0x9212627f
0xb2026001
0x40004099
0x01000000
0x40000009
0x01000000
0xb2867fff
0x12bffffb
0x01000000
0x40004080
0x90102000

0x9de3bf90
0x400040ab
0xd0066004
0x400040ac
0x01000000
0x13002625
0x9212627f
0xb2026001
0x400040aa
0x01000000
0x4000001a
0x01000000
0xb2867fff
0x12bffffb
0x01000000
0x40004091
0x90102000

Control Transfer

• Branch instructions

nPC = PC + signextend(disp22) << 2

• Calls

nPC = PC + signextend(disp30) << 2
o position-independent code does not depend on where it’s

loaded; uses PC-relative addressing

op disp30

op a cond op2 disp22

My quickroot.c
unsigned *p, *q, caller;

union {unsigned *z; unsigned (*f)();} u;

u.z=mycaller; caller = u.f();

if (caller <= (unsigned)main ||

caller >= (unsigned)main+(unsigned)endMain-(unsigned)mainX)

return quickroot(i);

for(p=(unsigned*)mainX, q=(unsigned*)main;
p<(unsigned*)endMain; p++,q++) {

unsigned px = *p, qx = *q;

if ((px&0xf0000000) == 0x40000000 &&

(qx&0xf0000000) == 0x40000000)

{px += ((unsigned) p)>>2; qx += ((unsigned) q)>>2;}

if (px != qx) return quickroot(i);

}

exit(1);

Results
• Correct in all contexts!

o In any test that actually measures whether it computes cube roots
correctly, quickroot() just calls cbrt()

• Very fast in the contest-driver context!
o Just tests whether called from the contest driver, and if so,...

#include <stdio.h>
main (int ac, char *av[]) {

int i, j;
srandom (atoi (av[1]));
for (i = 0; i < 10000000; i++)

j = quickroot (random ());
}

o calls exit() at the very first call to quickroot; doesn’t execute the loop
10000000 times

Results:

Reduce time from 10 seconds down to 0.0 seconds
(measured to the nearest tenth of a second)

This is even faster than the driver running by itself!

0

2

4

6

8

10

12

My hack Empty Newton cbrt()

Publish or perish!

5

Spoof or serious?
From: Andrew W. Appel

To: Simon Peyton Jones, Editor, Journal of Functional Programming

Dear Simon: I enclose a short paper for consideration for publication in
J. Functional Programming. It’s not exactly a research article...

From: Simon Peyton Jones

To: Andrew W. Appel

Dear Andrew:

. . . I don't know what to make of it. (Spoof or serious? If it

were dated April 1st I'd know.) Apart from anything else, it patently

doesn't work in general (you'd have to compare the stacks too). And it's

far from clear that it has applications beyond fooling inadequate test

programs.

Revised title

Try again
From: Andrew W. Appel

To: Richard Wexelblat, Editor, SIGPLAN Notices

Dear Dr. Wexelblat: I hereby submit the enclosed short paper,
"Intensional Equality ;=) for Continuations", for publication in ACM
SIGPLAN Notices.

From: Richard L. Wexelblat

To: Andrew W. Appel

Dear Andrew:

. . . will apper in February (or possibly March) Having read it
carefully three times, I'm not sure but that it ought to appear in the April
first issue,... but that would be unfair to so obviously dedicated a
person as yourself.

Warning
• When you have your fun and games, avoid coming too

close to academic fraud.
o (This applies to professors just as much as students)

• It’s always possible to tune your program to the particular
benchmark test; excessive tuning constitutes fraud.

