Princeton University
COS 217: Introduction to Programming Systems
C Unions

Problem: We need to define an array of 10 elements, some of which are of type int and
some of which are of type double. What should the element type be?

Solution 1: The generic pointer (void*)

void *a[10];
int *pi;
double *pd;

pi = (int*)malloc(sizeof (int));

*pi = 5;

al0] = pi;

pd = (double*)malloc (sizeof (double));
*pd = 5.5;

all]l] = pd;

printf (“%d”, *(int*)al0]);
printf (“%£f”, *(double*)alll);

free(al[0]);
free(alll):;

Note: Awkward

Solution 2: A structure

struct MyStruct
{
int 1i;
double d;
}i

struct MyStruct a[l0];
al0]

.1 5;
all].d

5.5;

printf (“%d”, al0].1i);
printf (“%d”, all]l.d);

Note: Wastes space
Note: For each element, how do we know whether i or d is significant?

Page 1 of 2

Solution 3: A union

union MyUnion
{
int 1i;
double d;
}i

union MyUnion af[l0];

a[0].1

i =5;
all].d

5.5;

printf (“%d”, al0].1i);
printf (“&d”, all]l.d);

Note: For each element, how do we know whether i or d is significant? (Disastrous to

choose the wrong field.)

Solution 4: A structure containing a “kind” field and a union

enum Kind = {INTEGER, DOUBLE};

struct MyStruct
{
enum Kind k;
union
{
int 1i;
double d;
}ous

}i

struct MyStruct a[l0];

INTEGER;
DOUBLE;
= 5.5;

L0 0w
== oo

[]
(07.
[1]
[1]

c ~Nc ~
Q Il -

if (a[0].k == INTEGER)
printf (“%d”, al0].

else
printf (“%£”, afl0].
if (a[l].k ==
printf (™%
else

a”, afll].

printf (“%£”, aflll.

INTEGER

Copyright © 2002 by Robert M. Dondero, Jr.

Page 2 of 2

