
Intensional Equality ;=) for Continuations

Andrew W. Appel
Princeton University
appel@princeton.edu

September 8, 1995

Abstract

I propose a novel language feature, intensional continuation
equality, useful in languages with or without first-class con-
tinuations, and show how it enables truly remarkable gains
in efficiency of ordinary user programs.

Continuations, expressing “what the program will do from
now on,” are a much-used tool of semantics, and sometimes
show up as a user-accessible programming feature. But most
use of continuations is parametric, in the sense that func-
tions behave the same way independent of their continuation.
I will show that nonparametric use of continuations allows
very substantial, almost incredible gains in program speed.
Furthermore, this technique is compatible with almost any
style of programming language; imperative, functional, even
object-oriented.

Introduction

Many programming languages allow variables to hold func-
tion values; some languages allow the programmer to test
function values for equality. But what does such a test f = g
mean? One can imagine three possibilities:

Extensional: returns true if f (x) = g(x) for all x. This test
is not computable in an ordinary (Turing-equivalent)
programming language, so an extensional = must be
partial, perhaps returning false accurately on some in-
puts, but necessarily returning maybe on most inputs.
I know of no programming language with an exten-
sional equality primitive.

Intensional: returns true if f is the same expression (has
the same internal structure) as g. Intensional equal-
ity implies extensional equality, but the lack of inten-
sional equality does not provide much information to
the programmer. Interpreted Lisp 1.5 has a structural
(intensional) equality test.

Reference: tests whether f points to the same location as g.
This is a weak form of intensional equality; reference
equality implies intensional equality. Many languages
have reference equality.

A seemingly unrelated development in the field of pro-
gramming languages is the notion of continuation to express

“what the program will do next.” Originally developed as
a “behind-the scenes” tool to help express the semantics of
control flow in programming languages, continuations are a
programmer-accessible feature of languages such as Scheme.

This call-with-current-continuation feature has been crit-
icized as being too expensive to implement because entire
control stacks need to be copied. Some researchers [1, 2]
propose a “prompt” primitive to ameliorate the expense by
manipulating continuations in a carefully controlled way. Here
I will propose a new, limited continuation primitive that is
cheap (even for stacks) and that can accomplish certain things
for which prompts are too weak.

A programming contest

In the spring of 1995, I invited Guy Jacobson of AT&T Bell
Laboratories to teach our undergraduate software engineer-
ing course, entitled “Advanced Programming Techniques.”
During the semester Jacobson gave his class several pro-
gramming assignments, and he he formulated some of them
in the form of contests. The post-facto discussion of differ-
ent solutions implemented by the students was a useful and
lively pedagogical exercise.

One of the early exercises was to implement an efficient
integer cube-root function. He provided two program mod-
ules, a driver module main.c (figure 1) and a cube-root
module root.c (figure 2). The task was to write an effi-
cient module fastroot.c to be run on a Sparc worksta-
tion such that

1. The executable obtained by conventionally linking
fastroot.cwithmain.cwould run as fast as pos-
sible;

2. fastroot.cwould match the behavior of root.c
when linked with any test driver.

That is, fastroot.c must be both fast and correct.
To derive a good solution to this problem, I examined the

continuation transform Q of the quickroot function:

Q : (Int×Kont) → Cont

where Cont is a conventional continuation function of the
form Store → Answer and Kont is an expression continuation
of the form Int → Cont.

1

main (int ac, char *av[])
{

int i, j;
(void) srandom (atoi (av[1]));
for (i = 0; i < 10000000; i++) {

j = quickroot (random ());
}
exit (0);

}

Figure 1: The driver module main.c

double cbrt (double);

int quickroot(int i)
{return (int) cbrt ((double) i);}

Figure 2: The cube-root module root.c
The library function cbrt computes floating-point cube
roots.

Here, Store is a snapshot of the machine’s memory, and
Answer is the sequence of all output (and other externally
visible system calls) that the program will perform from “now”
until the time it exits.

We are required to implement a function extensionally
equal to Q1, where

Q1(i,k)s = k(�i1/3�)s

Here it is very valuable that we have made the continua-
tion argument explicit, because we can now apply a standard
rule of software engineering: make the program fast on fre-
quently occurring arguments. One frequently occurring ar-
gument is the particular continuation k0 provided when the
driver program main.c calls quickroot. Examination
of the program reveals that main and quickroot produce
no output and do no other system calls before calling exit.
Thus, the continuation k0 is extensionally equal to

λx.λs.exit(0)

where exit is a library function that produces the empty
answer.

To optimize for the common case, we can write

Q2(i,k)s = if k = k0 then exit(0) else k(�i1/3�)s

It is easy to check that Q2 is extensionally equal to Q1 by
case analysis on k.

But the equality test k = k0 is problematic. We cannot
use an extensional check, as that will take far too long. How-
ever, for this purpose, intensional equality suffices. Let kmain

be the actual continuation value passed to the compiled Q by
the compiled main function; it is extensionally equal to k0

but (unless the compiler is very smart) not necessarily inten-
sionally equal.

We can just test k = kmain, using intensional equality as
a weak but sufficient approximation. To make this explicit, I
will introduce the symbol ;=) for intensional equality:
Q3(i,k)s = if k ;=) kmain then exit(0) else k(�i1/3�)s

Practical application

It is all very well to write lambda calculus, but for the con-
test I need a C program. Fortunately, C is powerful enough to
allow the implementation of intensional equality on continu-
ations. My quickroot can simply grab the return address
register and see if it points within machine code structurally
similar to the contest-drivermain. If so, we have k ;=) kmain

and we can apply the exit continuation. If not, we must
have some other continuation meant to test for correct cube
root computation, and it would be wise to compute the cube
root (slowly and carefully) and return it.

The complete solution is shown in figure 3.
The array mycaller is actually two Sparc instructions

that will return the return address of its caller. Using the
attractive and powerful union feature of C, we cast this to a
function value.

The first if statement is so that we apply the intensional
equality optimization only on the first call to quickroot,
so that not much time is lost for unexpected test programs.

The second if tests whether quickroot’s continuation
points within main, taking advantage of the fact that C func-
tion pointers are represented uniformly as addresses.

The for loop examines the instructions of main to see
if they match our copy of the standard driver, which we call
copyOfMain. The if statement inside the loop relocates
certain jump instructions that contain absolute addresses.

Performance

The original program using cbrt runs in about 20 seconds.
The driver alone (using an empty quickroot function)
runs in about 2 seconds. My version, using intensional equal-
ity on continuations, runs in 0.0 seconds (rounded to the
nearest tenth). This was sufficient to win the contest, had I
been eligible to enter. Furthermore, my version gave correct
answers on any test input that Jacobson was able to devise.

Conclusion

As I have shown, the use of an intensional equality test on
continuations does not require the programming language
to have full first-class continuation (i.e., call-with-current-
continuation). But what I have done cannot be expressed
using prompts, because I need to reason about the full an-
swer produced by the program, not a partial answer up to the
next prompt.

But my implementation is a bit clumsy in C. What we
need is a primitive for testing intensional equality on contin-
uations against specified constant values, to allow portable
code to be efficient in the common case.

2

#include <stdio.h>

copyOfMain (int ac, char *av[])
{

int i, j;

(void) srandom (atoi (av[1]));

for (i = 0; i < 10000000; i++) {
j = quickroot (random ());

}

exit (0);
}
endMain(){}

double cbrt (double);

extern main();

unsigned mycaller[] =
{0x81c3e008,0x9010001f};

int quickroot(int i)
{static x=0;
if (x) return (int) cbrt ((double) i);
x=1;
{ unsigned *p, *q, caller;
union {unsigned *z; unsigned (*f)();} u;
u.z=mycaller;
caller = u.f();
if (caller <= (unsigned)main ||

caller >= (unsigned)main +
(unsigned)endMain -
(unsigned)copyOfMain)

return quickroot(i);
for(p=(unsigned*)copyOfMain,

q=(unsigned*)main;
p<(unsigned*)endMain;
p++,q++)

{ unsigned px = *p, qx = *q;
if ((px&0xf0000000) == 0x40000000 &&

(qx&0xf0000000) == 0x40000000)
{px += ((unsigned) p)>>2;
qx += ((unsigned) q)>>2;}

if (px != qx) return quickroot(i);
}
exit(0);
}

}

Figure 3: Optimizing the common case

Disclaimer The opinions expressed in this paper are not
those of Princeton University, nor even those of the author.

References
[1] Matthias Felleisen. The theory and practice of first-class

prompts. In Fifteenth Annual ACM Symp. on Principles of
Prog. Languages, pages 180–90, New York, Jan 1988. ACM
Press.

[2] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generaliza-
tion of exceptions and control in ML-like languages. In Proc.
Seventh Int’l Conf. on Functional Programming and Computer
Architecture, pages 12–23. ACM Press, 1995.

3

