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Introduction
» Splines: mathematical way to express curves 1

» Motivated by “loftsman’s spline”
o Long, narrow strip of wood/plastic
o Used to fit curves through specified data points
o Shaped by lead weights called “ducks” -
o Gives curves that are “smooth” or “fair” ,

* Have been used to design: /
o Automobiles ’
o Ship hulls ’
o Aircraft fuselages and wings Vi

Many applications in graphics

e ABC

* Animation paths

» Shape modeling

Animation
(Angel, Plate 1)

» etc...

Shell

(Douglas Turnbull,
CS 426, Fall99)

Goals

» Some attributes we might like to have: .
o Predictable control . ,
o Multiple values e ~———— .
o Local control ,
o Versatility '/ . \ P

o Continuity \ , \

« We'll satisfy these goals using: \
o Piecewise
o Parametric / ) -~ P
o Polynomials j / -

Parametric curves
A parametric curve in the plane is expressed as:

X =X(u)
y =y

Example: a circle with radius r centered at origin:

X=rcos u
y=rsinu

In contrast, an implicit representation is:

X2+y2=p2

Parametric polynomial curves

» A parametric polynomial curve is described:
x(u)= Z":a,u‘
i=0
W)= b
=0

» Advantages of polynomial curves

o Easy to compute
o Infinitely differentiable




Piecewise parametric polynomials

» Use different polynomial functions
on different parts of the curve /\
o Provides flexibility /
o How do you guarantee smoothness at “joints”?
(continuity)

* In the rest of this lecture, we'll look at:

o Bézier curves: general class of polynomial curves
o Splines: ways of putting these curves together

Bézier curves
» Developed simultaneously in 1960 by

o Bézier (at Renault)
o deCasteljau (at Citroen)

» Curve Q(u) is defined by nested interpolation:

Vs are control points
{V,, vV}, ..., V,} is control polygon

Basic properties of Bézier curves
» Endpoint interpolation:

0(0)=V,

ow=7,

* Convex hull:
o Curve is contained within convex hull of control polygon

* Symmetry
O(u) defined by (V...V} = Q(1—u)defined by {¥,....V,}
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More properties

» General case: Bernstein polynomials
< n i n—i
Q(u)=ZV,(Ju (A-u)
=0
» Degree: is a polynomial of degree n

* Tangents:
0'(0)=nl, -V

Q'M)=nV,=V,)
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Explicit formulation
» Let’s indicate level of nesting with superscript j:
+ An explicit formulation of Q(u) is given by:
v/ = A=l v
+ Case n=2:
0w =V;
=(1-wV, +uV}
= (=1 =V +uV 1+ ul(1 =) +uly]
=(1=uw)’Vy + 2u(l-u)V; +u’Vy
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Cubic curves

* From now on, let’s talk about cubic curves (n=3)
* In CAGD, higher-order curves are often used

* In graphics, piecewise cubic curves will do it
o Specify points and tangents
o Will describe curve in space

All these ideas generalize to higher-order curves
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Matrix form

» Bézier curves can also be described in matrix form:

O(u) = Z”jz[';]u‘(l—w""

=0

=1-u)’V, +3u(l—u)’V,+ 3’ (1 —u)V, +u'V,

-1 3 =3 1\(¥,
., 3 -6 3 0||%
=(u U u l)
-3 3 0 o||ln
1 0 o oy
MBezier

Display

-
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Q: How would you draw it using line segments?

A: Recursive subdivision!

Vi

Flatness

L g

Q: How do you test for flatness?

A: Compare the length of the control polygon
to the length of the segment between endpoints

A A AR A AP
‘Vz_VU‘

£
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Display
» Here is pseudocode for displaying Bézier curves:
procedure Display({V;}):
if {V,} flat within &
then
output line segment V;V
else
subdivide to produce {L;} and {R;}
Display({L;})
Display({R})
end if
end procedure
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Splines
» For more complex curves, piece together Béziers

* We want continuity across joints:

o Positional (C°) continuity /\

o Derivative (C') continuity
* Q: How would you satisfy continuity constraints?

» Q: Why not just use higher-order Bézier curves?
» A: Splines have several of advantages:

« Numerically more stable

« Easier to compute

« Fewer bumps and wiggles

Catmull-Rom splines

* Properties
o Interpolate control points
o Have C%and C' continuity

* Derivation
o Start with joints to interpolate

o Build cubic Bézier between each joint
o Endpoints of Bézier curves are obvious

» What should we do for the other
Bézier control points?
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Catmull-Rom Splines

* Catmull & Rom use:
o half the magnitude of the vector between adjacent CP’s

* Many other formulations work, for example:

o Use an arbitrary constant T times this vector
o Gives a “tension” control
o Could be adjusted for each joint
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Properties
» Catmull-Rom splines have these attributes:
o C1 continuity
o Interpolation
o Locality of control
o No convex hull property

(Proof left as an exercise.)
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Matrix formulation
» Express conversion from Catmull-Rom CP’s
to Bezier CP’s with a matrix:
B, 0 6 0 v,
B| 1|-1 61 v,
B,| 6|0 1 6 —-1{|1,
B, 0 06 0)
» Exercise: Derive this matrix.
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B-splines
* We still want local control
» Now we want C? continuity
» Give up interpolation
* It turns out we get convex hull property

» Constraints:
o Three continuity conditions at each joint j
» Position of two curves same
» Derivative of two curves same
» Second derivatives same
o Local control
» Each joint affected by small set of (4) CP
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Matrix formulation for B-splines

» Grind through some messy math to get:

13 -3 (7,
o 113 -6 3 of|n
0=l w g T v,
14 1 ol
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What’s next?

» Use curves to create parameterized surfaces

» Surface of revolution
» Swept surfaces

» Surface patches
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