Ray Casting

Thomas Funkhouser
(covering for Finkelstein 9/27)

Princeton University
CO0S 426, Fall 2001

3D Rendering

» The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

through
view plane

Simplest method
is ray casting

Eye position

4
Ray Casting Ray Casting
» For each sample ... » For each sample ...
o Construct ray from eye position through view plane o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel o Find first surface intersected by ray through pixel
o Compute color sample based on surface radiance o Compute color sample based on surface radiance
Rays
of e efdo o | o through
Ny view plane
i I A I i %/ Samples on
i I
Eye position view plane
6

Ray Casting

« Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j <height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);
}
}

return image;

Ray Casting

» Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
imagel[i][j] = GetColor(hit);
}
}

return image;

}

Constructing Ray Through a Pixel

Up direction

back

right *

Ray: P =P, + tV

Constructing Ray Through a Pixel
« 2D Example

O = frustum half-angle
d = distance to view plane

right = towards x up

P1 =P, + d*towards - d*tan(®)*right

v
P2 =P, + d*towards + d*tan(©)*right P2

Ray: P = P, + tV

P =PI + (/width + 0.5) * 2*d*tan (©)*right
V=(P-Py)/[P-Py|

P1
N

@———+————
e~}

9 10
Ray Casting Ray-Scene Intersection
« Simple implementation: * Intersections with geometric primitives
o Sphere
Image RayCast(Camera camera, Scene scene, int width, int height) o Triangle
Image image = new Image(width, height); o Groups of primitives (scene)
for (int i = 0; i < width; i++) { . : :
for (int} = 0: < height j+-+) { Acceleration techniques
Ray ray = ConstructRayThroughPixel(camera, i, j); o Bounding volume hierarchies
Intersection hit = FindIntersection(ray, scene);) Spatia| panitions
image[i][j] = GetColor(hit); » Uniform grids
) » Octrees
return image; » BSP trees
}
11 12

Ray-Sphere Intersection

Ray: P =P, +tV
Sphere: |P-0J2-r2=0

Ray-Sphere Intersection |

Ray: P =P, + tV

- - 2_r2=
Sphere: [P - Of? -r2=0 Algebraic Method
Substituting for P, we get:

|Po+tV-0J]2-r2=0

Solve quadratic equation:
atz+bt+c=0

where:
a=1
b=2V-(P,-0) Po
c=|P,-CJ]2-r2=0

P=P,+tV

13
Ray-Sphere Intersection Il

Ray: P =P, +tV

Sphere: |P-02-r2=0
L=0-P,

ta=L-V

if (t;o < 0) return 0

if (d2 > r2) return 0

the = sqrt(r? - d?)
t=t,-t and t,, + t,,

P=P,+tV

14
Ray-Sphere Intersection

* Need normal vector at intersection
for lighting calculations

N=(P-0O)/||P-0O|

15 16
Ray-Scene Intersection Ray-Triangle Intersection
« Intersections with geometric primitives « First, intersect ray with plane
. » Then, check if point is inside triangle
» Triangle
o Groups of primitives (scene)
* Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions
» Uniform grids
» Octrees
» BSP trees \Y
PU
17 18

Ray-Plane Intersection

Ray: P =P, +tV
Plane:P+N+d=0

Algebraic Method

Substituting for P, we get:
(Po+tV)eN+d=0

Solution:
t=-(PysN+d)/(V*N)

P=Py+tV

Po

Ray-Triangle Intersection |

» Check if point is inside triangle algebraically
T3

For each side of triangle
V,=T,-P
V,=T,-P
N, =V,xV,
Normalize N,

d, =-Py* N,
if (P+Ny+dy)<0)
return FALSE;
end

19
Ray-Triangle Intersection Il

« Check if point is inside triangle parametrically

Compute a, B:
P=a (TyTy) + B (T-Ty)

Check if point inside triangle.
O<oa<tand0<B<A1
a+PB<1

20
Other Ray-Primitive Intersections

« Cone, cylinder, ellipsoid:
o Similar to sphere

* Box
o Intersect 3 front-facing planes, return closest

» Convex polygon
o Same as triangle (check point-in-polygon algebraically)

» Concave polygon
o Same plane intersection
o More complex point-in-polygon test

21 22
Ray-Scene Intersection Ray-Scene Intersection
« Find intersection with front-most primitive in group
Intersection FindIntersection(Ray ray, Scene scene)
{
min_t = infinity @
in_primitive = NULL . .
For sach primitive in soene { » Acceleration techniques
t = Intersect(ray, primitive); o Bounding volume hierarchies
if (t<min_f) then o Spatial partitions
min_primitive = primitive . .
min_t=t » Uniform grids
} » Octrees
} o) B @ » BSP trees
return Intersection(min_t, min_primitive)
)
23 24

Bounding Volumes

» Check for intersection with simple shape first
o If ray doesn'’t intersect bounding volume,
then it doesn’t intersect its contents

Bounding Volume Hierarchies |

« Build hierarchy of bounding volumes
o Bounding volume of interior node contains all children

©

N
/

©
©

0-®

4@>@
O-@
@

>
[>-©

25 26
Bounding Volume Hierarchies Bounding Volume Hierarchies llI
« Use hierarchy to accelerate ray intersections » Sort hits & detect early termination
o Intersect node contents only if hit bounding volume Findintersection(Ray ray, Node node)
{
// Find intersections with child node bounding volumes
// Sort intersections front to back
)}-Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i {
if (min_t < bv_t[i]) break;
shape_t = FindIntersection(ray, child);
if (shape_t < min_t) { min_t = shape_t;}
1
;etum min_t;
}
27 28
Ray-Scene Intersection Uniform Grid
» Construct uniform grid over scene
o Index primitives according to overlaps with grid cells
» Acceleration techniques
D \ F
o Spatial partitions
» Uniform grids
» Octrees c
» BSP trees @
B
29 30

Uniform Grid

« Trace rays through grid cells
o Fast
o Incremental

Only check primitives \
in intersected grid cells

Uniform Grid

» Potential problem:
o How choose suitable grid resolution?

2
Too little benefit
if grid is too coarse D) E Qb
Too rr_1uch cqst)l 2
if grid is too fine L Y
wy
. B
P G —

31
Ray-Scene Intersection

» Acceleration techniques
o Spatial partitions

» Octrees
» BSP trees

32
Octree

» Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells

(e 9

=

Generally fewer cells

33 34
Octree Ray-Scene Intersection
« Trace rays through neighbor cells
o Fewer cells
o More complex neighbor finding
o » Acceleration techniques
Trade-off fewer cells for D 4 . "
more expensive traversal 1 o Spatial partitions
/@
D 2 » BSP trees
7
35 36

Binary Space Partition (BSP) Tree

« Recursively partition space by planes
o Every cell is a convex polyhedron

e ®\

/®
§ 0L v |
v X

N
/@

O
D
O—

Binary Space Partition (BSP) Tree

» Simple recursive algorithms
o Example: point finding

37 38
Binary Space Partition (BSP) Tree Binary Space Partition (BSP) Tree
* Trace rays by r.ecurS|0n On tree RayTreelntersect(Ray ray, Node node, double min, double max)
o BSP construction enables simple front-to-back traversal
if (Node is a leaf)
return intersection of closest primitive in cell, or NULL if none
else
dist = distance of the ray point to split plane of node
near_child = child of node that contains the origin of Ray
far_child = other child of node
if the interval to look is on near side
return RayTreelntersect(ray, near_child, min, max)
else if the interval to look is on far side
return RayTreelntersect(ray, far_child, min, max)
else if the interval to look is on both side
if (RayTreelntersect(ray, near_child, min, dist)) return ...;
else return RayTreelntersect(ray, far_child, dist, max)
}
39 40
Other Accelerations Acceleration
» Screen space coherence « Intersection acceleration techniques are important
o Check last hit first o o Bounding volume hierarchies
0 Beam tracing + - % : f} o Spatial partitions
o Pencil tracing 581 BBE
; » General concepts
o Cone tracing ololo |o|e]e) >
P TP P B e o Sort objects spatially
* Memory coherence oo e oot o Make trivial rejections quick
o Large scenes o Utilize coherence when possible
« Parallelism
o Ray casting is “embarassingly parallelizable” Expected time is sub-linear in number of primitives
 etc.
41 42
Summary Next Time is lllumination!

« Writing a simple ray casting renderer is easy
o Generate rays
o Intersection tests
o Lighting calculations

Image RayCast(Camera camera, Scene scene, int width, int height)

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
ion hit = Fi ion(ray, scene);
image[i][j] = GetColor(hit);

return image;

Without lllumination With lllumination

